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We define the Q factor in the percolation problem as the quotient of the size of the largest cluster and the
average size of all clusters. As the occupation probability p is increased, the Q factor for the system size L
grows systematically to its maximum value Q. (L) at a specific value pn.x (L) and then gradually decays. Our
numerical study of site percolation problems on the square, triangular, and simple cubic lattices exhibits that
the asymptotic values of py.x, though close, are distinct from the corresponding percolation thresholds of these
lattices. We also show, using scaling analysis, that at py,., the value of Q. (L) diverges as LY d denoting
the dimension of the lattice) as the system size approaches its asymptotic limit. We further extend this idea to
nonequilibrium systems such as the sandpile model of self-organized criticality. Here the Q(p, L) factor is the
quotient of the size of the largest avalanche and the cumulative average of the sizes of all the avalanches, with p
the drop density of the driving mechanism. This study was prompted by some observations in sociophysics.
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I. INTRODUCTION

Critical fluctuations of all length scales appearing at the
critical points are the signatures of phase transitions. Over
the past century, extensive studies of phase transitions have
helped establish the statistical-physics descriptions of the
scaling theory and the critical phenomena in different physical
systems. For example, few well-studied systems are magnetic
and fluid systems [1], polymer systems [2,3], percolating
systems [3], and self-organized critical (SOC) systems [4].
Essentially, the order parameter of the corresponding systems
vanishes following in general a singular power law or critical
behavior at the critical point and beyond. Its higher moments
include susceptibilities and diverge again with singular or
critical power-law exponent values at the respective critical
points. For SOC systems, these singular behaviors are seen
from the precritical side and then remain critical in the SOC
state of the systems. For practical purposes, these diverging
susceptibilities help locate the critical point.

For social systems, scientists have studied for ages, starting
with Pareto’s 80-20 principle [5], the Lorenz function [6], the
Gini index [7], the Hirsch index [8], etc., the extreme unequal
distributions of income or wealth, votes, and paper citations.
Following more recent observations [9-11] of the extreme
inequality level in citation statistics of successful individuals
and even institutions, universities, and journals, with Gini and
other inequality index values going beyond the Pareto 80-20
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limit, we studied and found [12] the clear presence of a similar
level of inequality index values in the physical models of
SOC system, like the Bak-Tang-Wiesenfeld (BTW) sandpile
[13] and the Manna [14] sandpile. In particular, in our recent
study [15] of citation statistics of some very successful prize-
winning scientists and a few other not so successful scientists
it was observed that their research dynamics is clearly SOC-
like and the most successful achieved the critical level in their
citation inequalities, while others were still approaching that
level, though they had not reached it. All these studies showed
that just the average high level of citations per paper (reflected
by the Hirsch index values, which are determined by the ef-
fective network coordination or Dunbar number [16,17]), does
not reflect the success of the scientist but rather the high level
(beyond the Pareto level) of critical fluctuations in citations
from publication to publication of the scientist. Indeed, it
was seen in [15] that crossing a threshold value of a simple
quotient of the citation number of the highest cited paper and
the average citation of all the papers (including the highest
cited one) by the scientist indicates a very good correlation
with the appreciation by the respective communities.
Following this clue, we study here how the topper
competes with the average in the well-known models of per-
colation processes and in the sandpile model of self-organized
criticality. In the percolation model we define the Q factor as
the quotient of the largest cluster size and the average size
over all clusters for the percolation models. Similarly, the O
factor in the sandpile model is defined as the quotient of the
largest avalanche size and the average size over all avalanches.
As the control variables are tuned in these problems, Q factors
grow very sharply right before a specific value of the control
variable, reach the maxima, and then decay very rapidly. The
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FIG. 1. Plot of the average number of distinct clusters per lattice
site (n(p, L))/L? against the site percolation occupation probability
p- For each type of lattice, the data for three different system sizes are
plotted and overlap completely; only the colors used for the largest
lattices are visible.

locations of the maxima are distinct from the critical points of
these systems.

In Sec. I we describe our calculations and results of the
percolation problem for the square, triangular, and simple
cubic lattices. We calculate the Q factors for the entire range of
occupation probability p. A nice finite-size extrapolation gives
the precise value of the percolation occupation probability
Pmax 10 the asymptotic limit, which we find to be larger than
their percolation thresholds. In Sec. III we execute a similar
analysis for the BTW sandpile where we use the drop density
p as the tuning parameter. The value of py,.x in the asymptotic
limit is calculated. We summarize in Sec. I'V.

II. SITE PERCOLATION

A. Square lattice

An initially empty square lattice of size L x L is grad-
ually filled in by occupying the randomly selected lattice
sites one by one. At any arbitrary intermediate stage the
fraction p of occupied sites is referred to as the percolation
occupation probability. A cluster is defined as a set of occu-
pied sites connected by nearest-neighbor distances. Different
distinct clusters are identified using the well-known Hoshen-
Kopelman algorithm [18]. Since we are not going to study
any spanning property of the percolation clusters, we use
periodic boundary conditions in all simulations reported here.
The number of distinct clusters n(p, L) increases from unity at
p — 0+, reaches a maximum at some intermediate p value,
and then finally goes down to unity again at p = 1. We refer
to the entire process as a run.

In Fig. 1 we plot the average number of distinct clusters per
lattice site (n(p, L))/L¢ against p for three different system
sizes of the square, triangular, and simple cubic lattices, where
d represents the Euclidean dimension of these lattices. The
collapse of the plots on top of one another for three system
sizes is extremely good. The sizes of the lattices used are L =
256, 1024, and 4096 for the square and triangular lattices and

N

—
~
A
A
’Jﬁ
]
A
7]
v

0.0 T T T

0.80 0.85 0.90 0.95 1.00
p
1.0
(b)
1 — L=256
L — L=1024

- — L=4096
~ -
A 06
qn
£ 041
wn
v

0.2

0.0 .

0 4 5

FIG. 2. (a) Plot of the average cluster size (s(p, L)) scaled by the
total number L? of lattice sites against the site percolation occupation
probability p for the square lattice. (b) Same data as in (a) plotted
against (1 — p)L'/?, which yields nice collapse of the data.

L =32, 64, and 128 for the simple cubic lattice. The peak po-
sitions of these curves have coordinates (0.269 68, 0.129 54)
for the square lattice, (0.21192, 0.096 306) for the triangular
lattice, and (0.178 71, 0.086 066) for the simple cubic lattice.

At an intermediate stage the average size of all clusters
including the largest one is therefore s,,(p, L) = pL? /n(p, L).
This is further averaged over a large number of indepen-
dent runs and we define the average cluster size (s(p, L)) =
(sav(p, L)). In Fig. 2(a) we plot the scaled average cluster size
(s(p, L))/L? against p only for the square lattice and again for
the same three system sizes. The curves become sharper as
p — 1 and as the system size becomes larger. In Fig. 2(b) the
x axis is inverted and the same data (s(p, L))/L? are plotted
against (1 — p)L'/? to observe a nice collapse of the data over
the entire range of p values.

As more and more sites are occupied, the growth of
the size smax of the largest cluster is monitored. The order
parameter Q2(p, L) of the percolation transition is defined as
the fractional size of the largest cluster averaged over many
independent runs, i.e., Q(p, L) = (Smax(p, L))/L¢. In Fig. 3
we plot the order parameter Qgq(p, L) for the square lattice
for three different system sizes. For a larger system size,
the growth of the order parameter becomes sharper. For a
particular system 4 (p, L) grows rapidly as the percolation
occupation probability p approaches from below the site
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FIG. 3. Plot of the percolation order parameter Q(p,L) =
(Smax(p, L)) /L? against the site percolation occupation probability p
for the square lattice.

percolation threshold of the square lattice, whose best value
to date is p.(sq) = 0.592746 050792 10(2) [19,20].

Now we define the Q factor as the quotient of the average
size (Smax(p, L)) of the largest cluster and the average size
(s(p, L)) of all clusters for every value of p for a certain
system size L as

O(p, L) = [{smax(p, L))/ (s(p, L))1/L*
= Q(p, L)/(s(p, L)). (1)

We plot in Fig. 4 three quantities for a particular system size
L = 256. They are (i) the average size (Smax(p, L)) of the
largest cluster, (ii) the average size (s(p, L)) of all clusters,
and (iii) the Q(p, L) factor multiplied by the system size L.
The first two quantities are monotonically increasing func-
tions of p. It is observed that when p gradually increases to
a specific value (pmax(L)), the value of (smax(p, L)) becomes
increasingly larger than the average cluster size (s(p, L))
and therefore Q(p, L) increases very sharply. However,
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FIG. 4. Plot of the average size of the largest cluster (syax(p, L)),
average size of all clusters (s(p, L)), and Q factor Q(p, L)L? against
the site occupation probability p for a system of size L = 256 on the
square lattice.
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FIG. 5. Plot of Qy(p,L) against the percolation occupation
probability p for the square lattice.

after crossing (pmax (L)), the growth of (sp.x(p, L)) becomes
slower but (s(p, L)) maintains its previous growth rate. Conse-
quently, their ratio Q factor decays gradually, which explains
the existence of a peak of Q at (pm.x(L)). This is visible
in Fig. 5, where Q(p, L) is plotted against p for three dif-
ferent system sizes. All three curves have single peaks of
nearly the same heights, but their positions have systematic
variations.

Now we present numerical evidence in Fig. 6 to claim
that the asymptotic value ppax = limz_, oo (Pmax (L)) is distinct
from the ordinary percolation threshold p. on the same lattice.
Let us denote a typical run from an empty lattice (p = 0) to
a fully occupied lattice (p = 1) on a square lattice of size
L x L by a. For every o we estimate three different values
of the occupation probability, namely, (i) the value of occu-
pation probability p.(«, L) at which the occupation of only
the next site in the sequence causes the maximal jump of
the size of the largest cluster smax(o, L), (ii) the value of
po(a, L) at which the occupation of only the next site in
the sequence causes the maximal jump of the value of the
Q(a, L) factor, and (iii) the value of pp.x(ce, L) at which
the ratio Smax(a, p, L)/Sav(a, p, L) reaches its maximum
value.

Their average values (p.(L)), (po(L)), and (pmax (L)) have
been calculated over a large number of runs, namely, 108 runs
for lattices of size up to L = 128, which decreases to 18 000
for L = 4096. Each of these quantities is then extrapolated
using a finite-size correction term in the power-law form
(pe(L)) = p. — AL™'/% where v, v,, and v3 correspond to
Pe> Po, and pmay, respectively. Here vy = v is the ordinary
correlation length exponent of the two-dimensional percola-
tion problem. In comparison to 1/v; = 0.75, we get 0.7574,
which is quite close. The values of 1/v, = 0.9145 and 1 /v; =
1.0425 show that the values of v, and v; are quite different
from v, but their values are close to each other and nearly
equal to 1.

After extrapolation, the asymptotic value of p.=
0.592717 is obtained, which is very close to the actual
value of the site percolation threshold approximately equal
to 0.592746, with a difference of approximately 0.000 03.
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FIG. 6. Finite-size extrapolations with suitable tuning parame-
ters yield (a) p. = 0.592 717 and 1/v; = 0.7574, (b) po = 0.592419
and 1/v, = 0.9145, and (¢) pmax = 0.603288 and 1/v; = 1.0425.

The asymptotic value of pp = 0.592419 is found, which
is approximately equal to 0.0003 away from the perco-
lation threshold, whereas the asymptotic value of ppax =
0.603 288 differs from the percolation threshold by an amount
approximately equal to 0.01. With this analysis, we con-
clude that while the values of py and p. are most likely
to be the same, the value of pn.x is in fact distinct
from p..

In the following analysis we calculate and plot the
ratios of successive values of three quantities. Specifi-
cally, if the occupation probability is increased by a small
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FIG. 7. Plot of R[(smax(p, L))], RI(s(p,L))], and R[Q(p, L)]
against the site occupation probability p for the square lattice of
size L = 256. The first two curves meet at point 1, where their
values are equal. Therefore, their ratio is unity, which corresponds
to R[Q(p, L)] =1 at point 2.

amount of, say, Ap = 1/L2, i.e., one more site is occu-
pied, then to what factors are the quantities (i) (Smax(p, L)),
@ii) (s(p, L)), and (iii) Q(p, L) increased? These ratios are
defined as

{(Smax(p + Ap, L))

R max , L = ’
[{Smax(p, L))] o (7. L))

(s(p+Ap, L))
R )] = —————,
[(s(p, L))] (L))

(@ +Ap, L)) _ Rl{Smax(p, L))]
(Q(p. L)) RUs(p. )]~

respectively, and are plotted in Fig. 7 for L = 256. In Fig. 3 we
find that the size of the largest cluster increases very fast right
before the percolation threshold, but right after percolation
it starts increasing with p approximately linearly. Therefore,
RI[(Smax(p, L))] must have a peak at p.(L), and the black
curve indeed shows a peak at p.(L = 256) ~ 0.579 815. From
Fig. 2 we observe that the value of (s(p, L)) increases very
slowly except when p is nearly equal to 1. Therefore, the red
curve in Fig. 7 exhibits the slow variation of R[(s(p, L))]
against p. Consequently, their ratio R[Q(p,L)] (in blue)
also has a peak at p., and beyond this peak, it decreases
systematically.

Two points should be noticed. The Q factor has its maxi-
mum at pmax (L) where the ratio R[Q(p, L)] is equal to unity.
Therefore, at p = pmax(L) the two curves meet at point 1
where R[{smax(p, L))] = R[{sav(p, L))]. Point 2 on the plot of
RIQ(p, L)] against p represents the point R[Q(Pmax, L) = 1].
We argue that p.(L) and pmax(L) both assuming the same
asymptotic value, i.e., p. = pmax, would mean a discontinuous
drop in the value of R[Q(p)] at this value of p, which is not
possible since both the largest and the average cluster sizes
vary continuously in a continuous phase transition like the
ordinary percolation.

We have calculated the error in our estimate for the asymp-
totic value of py.x. For a system of size L we have calculated
the standard deviation o (L) = [(p2, (L)) — {Pmax(L))*1"/%.

RIQ(p, L)] =
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FIG. 8. (a) Plot of the standard deviation o (L) for the values of
Pmax (L) of the square lattice against the system size L on a log-log
scale. The estimation of slope implies o (L) ~ L%, (b) Plot of the
average values of (pmax (L)) against L='03%3 to obtain a nice straight
line. Each point is marked with its error bar. The extrapolated value
of pmax = 0.6033 3= 0.0002 has been obtained.

In Fig. 8(a) the values of o (L) are plotted against L using a
double-logarithmic scale. We observe that o (L) nicely scales
as L=°658, Denoting the number of independent runs be M, we
define the error as e(L) = o (L)/M"/?. For this plot the number
of runs M varies from 24 x 10° for L = 128 to 3000 for L =
4096. In Fig. 8(b) the values of (pnax(L)) are plotted against
L0363 a5 well as errors using the vertical lines. For each
point we have drawn a vertical line from (pmax (L)) — e(L) to
(Pmax (L)) + e(L) and then two horizontal bars of fixed length
at the two ends of the vertical line (a close-up of only the two
points for L = 2048 and 4096 is shown in the inset for clarity).
It is obvious that the errors are really small. We conclude that
the maximal error in the estimation of the asymptotic value of
Pmax quite possibly is 0.0002 and therefore our final estimate
1S pmax = 0.6033 £ 0.0002, which is distinct from the actual
value of p. ~ 0.592 746.

We also try a logarithmic correction to the finite-size cor-
rection as follows:

(Pmax(L)) = pmax —AL™*[1 — B(InL/L)]. 2)

From our best fit we obtain pp. = 0.60329, A = 1.4323,
o = 1.047, and B = 0.2608, which shows that the logarithmic
correction has very little effect on pn,x (figure not shown).

N
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p

FIG. 9. Plot of the difference AQ = [Q(p, L) — Q'(p, L)|L? for
six different sizes of the square lattice against the site occupation
probability p.

The collapse of the peak positions Qmax(Pmax, L) of the
curves in Fig. 5 on one another implies the maximal cluster
size at this point (syax(L)) ~ L", with n = 2. This is directly
verified by plotting (figure not shown) (syax(L)) against L
using double-logarithmic scales for the square and simple
cubic lattices. The values of the exponent 7 are estimated from
the slopes of the curves. For the square lattice nyq = 2.0057
is obtained and for the simple cubic lattice n, = 3.0075 is
found. This implies that since the (pmax) values are slightly
larger than the percolation thresholds, the largest clusters turn
out to be compact, and not fractals like the percolating clusters
at the percolation thresholds. Consequently, their dimensions
are equal to their embedding space dimensions. This analysis
gives further support to our claim that p. and py,.x are indeed
distinct from each other.

An alternate definition of the Q factor is as follows:

Q' (p, L) = ([smax(p, L)/sav(p, L) /L7, 3)

Here, for each value of p of every run, we first calculate the
quotient of the largest cluster size sy, (p, L) and the average
cluster size s,,(p, L) and then take an average of this quotient
over a large number of independent runs.

We calculate both the Q(p, L) and Q'(p, L) factors for the
same set of runs. When we plot these two Q factors against p
on the same graph, it appears to the naked eye that one curve
completely overlaps the other as if the two factors were equal.
Actually, this is not the case, which becomes apparent when
we plot the difference AQ = [Q(p, L) — Q'(p, L)]L? against
p in Fig. 9 for six different sizes of the square lattice. It is
observed that though the maximal value of the difference is
very small, there is a nice peak for AQ occurring at (pmax(L))-
The number of independent runs varies from 108 up to L = 64
to 320000 for L = 1024. The locations of the maxima, i.e.,
pmax and p . for O(p,L) and Q'(p, L), respectively, are
almost always the same; if not, they differ by an amount
of approximately equal to 1/L?. They are extrapolated as
(Pmax(L)) = 0.603312 — const x L2142,
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FIG. 10. Plot of the Q factors against the site occupation proba-
bility p for two different lattices: (a) Q. (p, L) for the triangular lattice
and (b) Qs (p, L) for the simple cubic lattice.

B. Triangular lattice

A parallel set of calculations is done on the triangular
lattice. A plot of Qy(p,L) against p for three different
system sizes is shown in Fig. 10(a). The positions of the
maxima are very close to the triangular lattice percolation
threshold p. = 1/2 but slightly larger than 1/2. For each run
we estimate the maximum value of Qpmax(Pmax, L) and the
corresponding pm.x values and then average over all runs.
The average (pmax (L)) values of six different system sizes for
L =128, ...,4096 are extrapolated to their asymptotic limit
(Pmax (L)) = Pmax — const X L1053 with Pmax = 0.5088,
which is approximately 0.9% different from the percolation
threshold p. = 1/2 [see Fig. 11(a)].

C. Simple cubic lattice

For the simple cubic lattice we could study only small
lattice sizes up to L = 256 which are plotted in Fig. 10(b).
The only difference for the simple cubic lattice is the quotient
of the maximal size and average size is scaled by L3, which is
the total number of lattice sites in the system,

Ose(p, L) = [{smax(p, L))/ (s(p, L))1/L°. 4)

The data for the positions of the maximum of Q. (p, L) for the
lattice sizes L = 32-256 are used to extrapolate (pmax(L)) =
Pmax — const x L7812 with p... = 0.3448 [Fig. 11(b)].
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FIG. 11. Extrapolation of (p.x(L)) values to their asymptotic
limit of L — oo gives the estimates of pp,: (a) 0.5088 for the
triangular lattice and (b) 0.3448 for the simple cubic lattice.

Therefore, in each of the three lattices, namely, square,
triangular, and simple cubic, we see that the precise values
of the probabilities pn.x are about 1% larger than their corre-
sponding percolation thresholds p.. Clear power laws for the
finite-size extrapolations in Figs. 6 and 11 in all three cases
indicate that indeed these threshold values pp.x are distinct
from their p. values. These extrapolations are characterized
by the exponents whose values are very close, namely, 1.041
for the square lattice and 1.053 for the triangular lattice, and
widely different 1.812 for the simple cubic lattice, which
may be an indication of the universality of the finite-size
correction exponent. It may be that more extensive study in
the future with much larger systems would yield values 1
and 2 for these exponents in two and three dimensions, a
possibility which we cannot rule out at this moment. Our
conclusion that the pn, are different is also been supported
by the independent measurements of the average mass of
the largest clusters at ppmax(L), which yield that indeed these
clusters are of compact structures instead of being fractals at
their percolation thresholds. Here we recall another problem
of percolation connectivity between two points at a distance
of separation of the order of the system size [21-23]. Also,
enhanced thresholds for the percolation connectivities of the
modified structure have been observed.
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FIG. 12. For the BTW sandpile, the values of Qgrw(p, L) plotted
against the average number of sand particles p dropped per site of a
square lattice.

III. BTW SANDPILE

The BTW sandpile [13] has been studied on a square lattice
of size L x L with open boundary conditions. The dynami-
cal evolution of the sandpile starts from a completely empty
lattice. Sand particles are dropped one by one at randomly
selected lattice sites. The system is allowed to relax through
the deterministic BTW sandpile dynamics [13]. The avalanche
created by dropping one particle has size s, measured by the
total number of sand column topplings in the avalanche. At
any arbitrary intermediate stage of the sandpile dynamics, let
p be the average number of sand particles dropped per lattice
site. We refer to it as the drop density, which is a measure
of the net inward current of sand mass. This implies that an
average number pL” of particles have been dropped onto the
system, many of which have left the system by jumping out
through the boundary. Therefore, the drop density p of particle
addition is the control variable in this problem.

We keep track of the maximal size spmax(p0, L) of all the
avalanches created until pL? particles have been dropped. At
the same time we also calculate the cumulative average size
sav(p, L) of all the avalanches of sizes larger than zero, in-
cluding the largest avalanche. Each run consists of a sequence
of particle drops until the system moves well inside the sta-
tionary regime. We check that running the simulation until the
drop density reaches a value of p = 2.5 ensures arrival at the
stationary state. Quantities that are averaged over many such
independent runs are denoted by angular brackets. Finally, we
define a Q factor, which is the quotient of the largest avalanche
size and the average avalanche size of the sandpile

Orw(p, L) = [(smax (P, L))/ (sav (05 LY/L?, ®)

and plot this quantity against the drop density p in Fig. 12.
There is a nice peak of the value Qn.x(L) at the position
Pmax (L) which we measure for four different system sizes. The
rise and fall of Qgrw(p, L) values on the two sides of oy (L)
are found to asymmetric. Therefore, the variation of Q(p, L)
against p around the drop density pmax(L) has a A shape
and the peak becomes sharper as the system size becomes
larger. In the subcritical regime, the sizes of all avalanches
are small, so the value of Q is small and approximately 1.
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FIG. 13. For the BTW sandpile, (a) the drop densities (omax (L))
for the maximal Q factors and (b) the average values of the maximal
Q factors (Omax(L)) plotted against different negative powers of L.
The two colors, red and blue, represent two different types of calcu-
lations. The extrapolated values in the asymptotic limit of L — oo
are consistent with each other.

The moment the system moves into the stationary regime, a
very large avalanche abruptly appears which is quite generic
in all sandpile models. This makes the value of sy, in the
numerator quite large, but in comparison the value of s,, in
the denominator increases only a little since all the avalanches
share this increase in the total sum of all the avalanches. This
results in a rapid increase of Q. Beyond the drop density
Pmax (L) the system moves into the stationary state where spx
increases very slowly, but s,, increases very fast to reach a
steady value. This ensures that after the peak Q(p, L) takes
a stationary value as both the numerator and denominator
assume steady values. This explains the A shape of the peak.
For a single sequence of sand grain additions on a system
of size L, let pyax (L) be the precise value of the average num-
ber of particles dropped per site of the lattice corresponding to
the maximum value Qnax(p, L) of the Q factor of Eq. (5). We
calculate (pmx(L)) using two different methods and plot the
values against two different negative powers of L in Fig. 13(a).
The red line represents the following calculation. For each run
we have the maximum value Q. (p, L) of Q and its corre-
sponding drop density pn.x. These two quantities are then av-
eraged over a large number of independent runs. It is observed
that both (pmax(L)) and (Qmax(0, L)) depend on the system
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size L [Fig. 13(b)]. The best values of the exponents for ex-
trapolation of these two quantities are selected using the least-
squares-fit method and the straight lines are then extrapolated
to the L — oo limit. We find (pmax (L)) = 2.127 + 5.95L~ 12
and (Qmax (L) = 0.023 4+ 0.136L7%4. The blue line repre-
sents the following calculation. Using a large number of runs,
we calculate for each value of p the values of (smax(0, L))
and (s,y(p, L)) and then calculate Q(p, L) using Eq. (5). The
maximum value Qn.x(p, L) is determined and its location
Pmax (L) is estimated. They are again best fitted by the least-
squares method and then extrapolated. We find (pmax (L)) =
2.126 + 5.78L7"2% and (Qpax (L)) = 0.015 + 0.147L79-6,

IV. SUMMARY

One way to answer the question of how far the topper is
ahead of a typical student in a class may be by looking at
the total marks obtained on the final examination. Similarly,
how the richest in a society is ahead of the average members
can be estimated by looking at their wealth. In addition, how
the most famous research paper of a reputed scientist enjoys
the maximum credit compared to the average credit of all
their papers can be gauged by looking at their updated list
of citation indices. Quite possibly one can cite more examples
where the credit of the topper is compared with the average
credit of a typical individual.

All these examples are dynamic in nature, e.g., the identi-
fication of the topper and the marks secured by them changes
from one exam to the other. The identity of the richest may
also change from one year to the next, as well as the citations
received by the best paper of the scientist. Therefore, we
thought it best to consider a so-called competition between
the topper and the average and quantify this by defining the
quotient of their credits as the Q factor. The natural question
that comes to the mind is why this study is important at
all. The reason is this factor is a quantitative measure of the
fluctuations of the marks obtained by the students, the wealth
possessed by different members of a society, or the quality of
the papers written by the scientist.

We would like to recall that the citation statistics of the
majority of scientists indicated a growth of fluctuations in
citations with time. For very “successful” scientists, the statis-
tical measures seem to indicate that these fluctuations reach a
universal SOC level. It was also observed that for a successful
scientist the ratio of the citation number of the highest cited
paper to the average citation of all their papers often takes

a value beyond a threshold (peak) value. In comparison, the
value of the same ratio for not so reputed scientists does not
reach that desired level.

This observation gave us the clue that the behavior of the
quotient of the largest to the average credits may be interesting
to study in other physical systems as well. Therefore, in this
paper we decided to apply this idea to systems well known in
statistical physics. One example was the problem of percola-
tion from equilibrium systems and another was the sandpile
model of self-organized criticality from nonequilibrium sys-
tems. Both systems evolved under suitably defined dynamical
rules. We defined the connected clusters in the percolation
process and the avalanche clusters in the sandpile model anal-
ogously to the group of members in a society. Though these
systems in their early stages were uncorrelated, under the
process of evolution they gradually became correlated. The
signature of the correlation was traced in the rapid growth of
the largest cluster in the percolation process and the largest
avalanche in the sandpile model. The credits possessed by
these members were estimated by the cluster sizes and the
avalanche sizes.

In both examples, the system passed through a transition
point. On increasing the site occupation probability, the per-
colating system made a transition from the subcritical phase
to the supercritical phase through the critical point. At this
point the size of the largest cluster grew at the fastest rate
compared to the average size of all clusters. However, imme-
diately after the percolation transition the rate of growth of the
largest cluster slowed down. As a consequence, the Q factor
exhibited a peak at a specific value of the site occupation
probability pm.x which was approximately 1% larger than the
percolation threshold p. of all lattices. We argued that these
two numbers pnax and p. cannot be the same, only because the
percolation transition is a continuous transition. A very similar
scenario arose for the sandpile model, where the current size
of the largest avalanche underwent a large jump in its size
when the system moved into the self-organized stationary
state.
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