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Mean-field solution of the neural dynamics in a Greenberg-Hastings
model with excitatory and inhibitory units
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We present a mean-field solution of the dynamics of a Greenberg-Hastings neural network with both excitatory
and inhibitory units. We analyze the dynamical phase transitions that appear in the stationary state as the model
parameters are varied. Analytical solutions are compared with numerical simulations of the microscopic model
defined on a fully connected network. We found that the stationary state of this system exhibits a first-order
dynamical phase transition (with the associated hysteresis) when the fraction of inhibitory units f is smaller than
some critical value ft � 1/2, even for a finite system. Moreover, any solution for f < 1/2 can be mapped to a
solution for purely excitatory systems ( f = 0). In finite systems, when the system is dominated by inhibition
( f > ft ), the first-order transition is replaced by a pseudocritical one, namely a continuous crossover between
regions of low and high activity that resembles the finite size behavior of a continuous phase transition order
parameter. However, in the thermodynamic limit (i.e., infinite-system-size limit), we found that ft → 1/2 and
the activity for the inhibition dominated case ( f � ft ) becomes negligible for any value of the parameters, while
the first-order transition between low- and high-activity phases for f < ft remains.

DOI: 10.1103/PhysRevE.110.014130

I. INTRODUCTION

The theory of phase transitions in systems under ther-
modynamical equilibrium is a well-established statistical
mechanic’s formalism. Conversely, the analogous phenomena
in nonequilibrium systems present a much richer scenario that
appears to be more complex to formalize, so a general theory
is still lacking [1,2]. In particular, critical phenomena and
phase transitions in nonequilibrium systems seem to be more
sensitive to the microscopic details (i.e., the dynamic rules)
than the equilibrium counterpart. In other words, universality
seems to be more restricted in nonequilibrium systems than in
thermodynamical ones, one of the reasons behind the larger
variety of observed behaviors [1–3]. Hence, the path towards
the development of a general theory of the topic at the present
strongly relies on comparing the behavior of as many different
models as possible, with the as deep as possible understanding
of them.

In this work, we considered a basic model of neural dynam-
ics with excitatory and inhibitory units introduced in Ref. [4],
which is indeed a generalization of a previous model [5–7]
based on Greenberg-Hastings (GH) cellular automaton of ex-
citable media [8]. This model has shown recently a very rich
phase transitions scenario [4–7] and provided support to the
“brain criticality hypothesis” [9–11] (for recent reviews on
the topic, see, e.g., Refs. [12–14]). But besides its interest in

neuroscience, the complexity exhibited by the model high-
lights its importance per se to the field of nonequilibrium
phase transitions theory. Up to now, all the studies of this
model were based on numerical simulations. Here we present
the mean-field solution of the previously considered model in
Ref. [4], in the sense of running the same local dynamical
rules in a fully connected network, which allows us to ob-
tain a set of differential equations for the average population
densities of active neurons. Mean-field solutions are always
of theoretical interest, not only because analytical expressions
are a powerful tool that allow a deeper understanding of the
problem but also because they provide us with some limit
cases to check the results of models defined on more realistic
networks.

We obtained a set of differential equations for the average
population densities of excited sites and focused our analysis
on the stationary solutions of those equations, both for finite-
size systems and in the infinite-size limit. For excitatory units
only, we found a discontinuous transition with hysteresis.
For networks with a moderate fraction of inhibitory units,
we found that the solutions can be mapped to solutions for
networks of purely excitatory units, after rescaling the relevant
variables, while a negligible activity was found if there are
more inhibitory than excitatory units.

The paper is organized as follows. In Sec. II we present the
model and describe the stochastic technique used to estimate
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the mean-field dynamical equations. In Sec. III we analyze the
stationary solutions of the mean-field equations in the parame-
ter space and compare them with some numerical simulations
of the fully connected model. A general discussion of the
results is presented in Sec. IV.

II. MODEL AND METHODS

In the model considered here, a three-state dynamical vari-
able xi = 0, 1, 2 is associated to each node i of some complex
network, representing the following dynamical states: quies-
cent (xi = 0), excited (xi = 1), and refractory (xi = 2). Also
to each node i there is associated a quenched random variable
εi = ±1, representing an excitatory or inhibitory unit, respec-
tively. There is a fraction f of inhibitory units in the network,
namely each node has a probability f to be inhibitory (ε =
−1) and 1 − f to be excitatory (ε = +1). The model follows
a parallel dynamics in a discrete time t , already described in
previous articles [4–7], namely (a) each quiescent neuron can
become excited with a small spontaneous activation probabil-
ity r1, or if the sum of their active neighbors, weighted through
the connectivity matrix, surpasses an activation threshold T
(the control parameter of this model), which is the same for
all neurons; (b) active neurons become refractory after one
step; and (c) refractory neurons become quiescent with prob-
ability r2 per unit time (so, the average refractory period has a
duration of 1/r2). The transition probabilities for the i th site
are given by

Pi(0 → 1) = 1 − (1 − r1)

{
1 − �

[∑
j

Wi jε jδ(x j, 1) − T

]}

Pi(1 → 2) = 1

Pi(2 → 0) = r2, (1)

where � is the Heaviside function and δ(x, y) is the
Kroenecker delta function. Wi j is a symmetric synaptic matrix,
and the sum is performed over the nearest neighbors of the
node i. To simplify reading, Tables I and II, containing a list
of variables, are included in Appendix A.

A first version of this model with purely excitatory neu-
rons f = 0 was introduced by Haimovici et al. [5]. The
synaptic matrix Wi j in this case was constructed based on an
empirical structure of neuroanatomical connections of about
N ∼ 1000 nodes [15]. The consequent analysis of cluster
statistics provided the first evidence of critical behavior in
this model [5]. Further evidence about criticality was obtained
through the implementation of the model on small world net-
works (Watts-Strogatz model) with arbitrary size N (still with
f = 0). Such implementation allowed to perform a finite-size
scaling analysis [6]. Moreover, a very rich dynamical phase
diagram emerged as the topological properties of the network
(namely the average degree 〈k〉 and the rewiring probabil-
ity) were varied [6,7]. Subsequent analyses over synthetic,
finite-degree networks considered a weight distribution that
mimicked the neuroanatomical one, specifically, the non-null
synaptic weights were quenched random variables with an
exponential distribution

p(Wi j = w) = βe−βw. (2)

Furthermore, the inclusion of inhibitory units f �= 0 to the
previous model revealed the possibility of tricritical behavior
in the ( f , T ) space, depending on the topology of the network
[4].

In this work, we consider the implementation of the model
on a fully connected network of N units (consequently, its
degree is N − 1). As usual in this kind of system, interactions
have to be rescaled by N to prevent neurons from receiving a
diverging input in the N → ∞ limit. Therefore, instead of W ,
we consider a synaptic matrix W → w, with

wi j = w ji = 1

N
Wi j, (3)

for all pairs of nodes (i, j) with wii = 0 (no self-connections)
and p(Wi j ) given by Eq. (2). The values of W (or w) are
randomly chosen at the beginning of the simulation and re-
main fixed (i.e., quenched disorder). In order to be consistent
with previous results (Refs. [4,6,7]) we also use the values
r1 = 10−3 and r2 = 0.3 and β = 12.5.

For long-enough timescales it is expected the evolution of
this model to be well described as a continuous time Markov
stochastic process in the variables �x(t ) = (x1(t ), . . . , xN (t )),
with appropriated chosen transition rates between states. Fol-
lowing usual procedures [16], a Focker-Planck equation can
be derived through a Kramers-Moyal expansion, which in
turn allows us to obtain stochastic Langevin equations for the
population densities ρe/r and ψe/r , where

ρe = 1

N

〈∑
i∈exc.

δ(xi, 1)

〉
, ρr = 1

N

〈∑
i∈exc.

δ(xi, 2)

〉
,

ψe = 1

N

〈∑
i∈inh.

δ(xi, 1)

〉
, ψr = 1

N

〈∑
i∈inh.

δ(xi, 2)

〉
.

ρe/r is the density of neurons that are simultaneously ex-
citatory and active (e) or refractory (r), respectively, ψe/r

is the density of simultaneously inhibitory and active or re-
fractory neurons, and 〈...〉 is the average over disorder. The
necessary steps are described in detail in Appendix B. The
derivation followed closely similar calculations in a related
in Refs. [17,18]. After some simplifications, we obtained the
following dynamical equations:

ρ̇e = (1 − f − ρe − ρr )

×
{
μ1 + η

[
ω(ρe − ψe) − T

σ

]}
− μ3ρe, (4a)

ρ̇r = μ3ρe − μ2ρr, (4b)

ψ̇e = ( f − ψe − ψr )

×
{
μ1 + η

[
ω(ρe − ψe) − T

σ

]}
− μ3ψe, (4c)

ψ̇r = μ3ψe − μ2ψr, (4d)

where

μ1 = r1

1 − r1
, μ2 = r2

1 − r1
, μ3 = 1

1 − r1
(5)

(see Appendix C). ω ≡ 〈Wi j〉 [from Eq. (1), we get ω =
1/β], and σ is the standard deviation of the argument of the
Heaviside function in Eq. (1) and it measures the neuron’s in-
put variability. We verified that σ 2 ∼ 1/N (and consequently
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σ → 0 in the thermodynamic limit) on numerical simulations
of the microscopic model for different values of f and T (see
Appendix D). η(x) is some sigmoid function monotonically
going from 0 (for x → −∞) to 1 (for x → ∞). We have
chosen

η(x) = e2x

1 + e2x
. (6)

We focused on the stationary solutions of Eqs. (4a)–(4d)
(with their corresponding stability) and the dynamical phase
transition between them in the ( f , T ) space. The solutions
were obtained analytically, when possible, and numerically
using fourth-order Runge-Kutta method when needed.

We also made some comparisons between stationary values
of ρe and ψe obtained by solving numerically the model with
σ �= 0 and numerical simulations of the microscopic model
on a fully connected network.

III. RESULTS

We studied the stationary solutions of Eqs. (4a) and (4b) for
small but different from zero values of σ and then we analyzed
the thermodynamic limit σ → 0.

A. Purely excitatory neurons ( f = 0)

We first analyzed the particular case f = 0, i.e., a system
with no inhibitory units. When f = 0 we have ψe = ψr = 0
and Eqs. (4a) and (4b) reduce to

ρ̇e = (1 − ρe − ρr )

[
μ1 + η

(
ωρe − T

σ

)]
− ρeμ3

ρ̇r = ρeμ3 − ρrμ2.

(7)

A combination of Eqs. (7) and (5) reproduces previous
results by Barzon and coauthors [18]. Notice that the sta-
tionary solutions of Eqs. (7) are constrained to an interval
(ρmin

e , ρmax
e ), where the limiting values are those for which

η(..) = 0 and 1 respectively and are given by

ρmin
e = μ1μ2

S
, (8)

and

ρmax
e = μ2(1 + μ1)

S + μ2 + μ3
, (9)

where S = μ1μ2 + μ2μ3 + μ3μ1. Notice that these values
are independent of σ . Assuming r1 � 1, we get ρmin

e =
r1r2

r1+r2+r1r2
� r1: The minimum activity corresponds to the

spontaneous activation solely. Similarly, we get ρmax
e =

r2
2r2+1 = (2 + 1/r2)−1, as expected.1 These results are in com-
plete agreement with previous ones [18,19].

To study the stationary states of Eqs. (7) and their stability,
we analyzed the associated nullclines, i.e., the curves defined
by the conditions ρ̇r = 0 and ρ̇e = 0, whose intersections

1This last result can be easily understood if each single neuron
fires at its maximum rate: It will spend 1 step in the excited state,
on average, 1/r2 steps in the refractory state, and after that, just one
step in the quiescent state before starting the cycle again. So the cycle
lasts on average 2 + 1/r2 steps, and the neuron spends one step per
cycle (i.e., 1

2+1/r2
of the time) in the excited state.

FIG. 1. Stationary solutions of the dynamical equations consid-
ering only excitatory units ( f = 0). (a) Phase portrait for threshold
T = 0.01 and neuron input variability σ = 10−2 showing the evolu-
tion of the density of active (ρe) and refractory (ρr) neurons. Thick
blue line corresponds to the nullcline ρ̇r = 0, while the green line
corresponds to ρ̇e = 0. Black arrows show the flow directions at the
nullclines. Several trajectories starting at the + signs are shown in
brown. The black dashed line delimits the area of physically relevant
solutions (ρe + ρr < 1). (b) Same as (a) for σ = 10−4. (c) Stationary
solutions as a function of σ . Black lines correspond to stable so-
lutions while orange dashed lines correspond to unstable solutions.
The red dashed line corresponds to the polynomial approximation of
ρmid discussed in the Appendix E. From top to bottom, dotted lines
correspond to ρmax

e , T
ω

, and ρmin
e .

give the corresponding fixed points. The typical behavior
of the nullclines is shown in Fig. 1 for different values
of σ . The curve corresponding to ρ̇r = 0 is a straight line
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FIG. 2. Stationary solutions for different values of the threshold
T considering only excitatory units ( f = 0). The lines show null-
clines of the dynamical equations for input variability σ = 10−3. The
blue line corresponds to the nullcline of refractory neuron density,
ρ̇r = 0, while the other lines correspond to active neuron density,
ρ̇e = 0, for different values of T , increasing from left to right: 0.0024,
0.003093, 0.006, 0.01, 0.01365, and 0.018. The full line nullclines
correspond to the limiting values (Tmin, Tmax), respectively, such that
the system presents three fixed points only when Tmin < T < Tmax.

ρ∗
r = ρ∗

e μ3/μ2, where the asterisk holds for stationary solu-
tions (or long time averages in the numerical model). The
curve corresponding to ρ̇e = 0 exhibits a nonmonotonous be-
havior for several values of σ and T .

For relatively large values of σ , and for any value of T , we
have only one fixed point, which is stable [see Fig. 1(a)]. As
σ is decreased, we find several values of T for which there
are three fixed points, two stable and one unstable in between
[see Fig. 1(b)]. The new solutions are generated through a
perturbed pitchfork bifurcation.

Finally, in the limit σ → 0, the stable solutions converge
to ρmin

e and ρmax
e , given by Eqs. (8) and (9). The unstable

solution ρmid is close to T
ω

. Indeed, an estimate of its value
can be obtained expanding Eqs. (7) about ρe = T

ω
, see the

Appendix E.
Multiple solutions can be found also as a function of T .

The nullclines for fixed σ and several values of T are shown
in Fig. 2. We observe a range of values Tmin � T � Tmax for
which there are three fixed points. Outside such a range of
values of T , there is only one stable fixed point. Such behavior
is characteristic of a discontinuous transition with bistability,
and the presence of hysteresis is expected.

We verified the presence of hysteresis and consequently
bistability, by performing a loop of increasing-decreasing T
and solving Eqs. (7) using the Runge-Kutta (RK) method. For
each value of T , we run the RK algorithm until the system
reaches a stationary state and record the stationary value of
ρe before changing T → T ± �T (�T ∼ 1.5 × 10−5) and
restart the RK algorithm with the previous state as the new
initial condition. We also performed a similar calculation
using the cellular automaton defined by Eqs. (1) in a fully
connected network. In this case, for every value of T , we
discard the first t = 500 steps and average the fraction of
active sites over 103–104 steps before changing T . In both

cases, we observed a clear hysteresis loop. The whole phe-
nomenology can be observed for a wide range of variations of
the parameters (μ1, μ2, μ3, σ ) and has also been reported for
the same cellular automaton on a Watts-Strogatz network with
average degree 20 < 〈k〉 < 40 and large-enough values of the
network rewiring probability [6,7].

B. Excitatory and inhibitory neurons

We next considered the general case f �= 0. In this case,
we deal with four equations; nevertheless, we can define the
following change of variables:

�e/r = f ρe/r − (1 − f )ψe/r

�e/r = ρe/r + ψe/r . (10)

�e represents the activity, that is the total fraction of ac-
tive units, independently of whether they are excitatory or
inhibitory, and �r is the same for refractory units. �e/r are
auxilliary variables. The evolution equations for �e/r can be
written as:

�̇e = (−μ3 − N )�e − N�r, (11a)

�̇r = μ3�e − μ2�r, (11b)

where the auxiliary variable N containing the nonlinear terms
is N .= μ1 + η( ω(ρe−ψe )−T

σ
) > 0, and ρe − ψe can be writ-

ten as (1 − 2 f )�e + 2�e. It is straightforward to notice that
�e = �r = 0 is a solution of Eqs. (11) in the stationary state.
Moreover, it can be shown that it is the only solution and that
it is locally stable (see Appendix F). This means that �e/r

monotonically decay to zero. Consequently, after a transient,
we have �e/r = 0 and ψe/r = ρe/r

f
1− f , which is reasonable

since each inhibitory neuron receives, on average, the same
stimulus as each excitatory neuron. We have verified that this
decay holds both in the model equations and in the numerical
simulations. The equations for �e/r , after setting �e/r = 0,
read:

�̇e = (1 − �e − �r )

×
{
μ1 + η

[
ω(1 − 2 f )�e − T

σ

]}
− �eμ3, (12a)

�̇r = �eμ3 − �rμ2. (12b)

Notice that Eqs. (12) for �e/r are the same as Eqs. (7) for
ρe/r in the purely excitatory case, after rescaling T → T/(1 −
2 f ) and σ → σ/(1 − 2 f ). We can also rewrite Eqs. (12) in
terms of the excitatory units activity, since ρe/r = �e/r (1 −
f ). In particular, Eqs. (8) and (9) now read:

�min
e = μ1μ2

S
, (13)

and

�max
e = μ2(1 + μ1)

S + μ2 + μ3
, (14)

or, equivalently,

ρmin
e = (1 − f )

μ1μ2

S
(15)

ρmax
e = (1 − f )

μ2(1 + μ1)

S + μ2 + μ3
. (16)

We verified that these rescaling results also hold for the
stationary solutions (�∗

e , �∗
r ) of Eqs. (12a) and (12b) obtained
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FIG. 3. Stationary activity �∗
e in numerical simulations of the

microscopic model, for different values of the fraction of inhibitory
units f < 1/2. (a) �∗

e as a function of the threshold T for several
values of f , in systems of size N = N0

(1−2 f )2 with N0 = 1000. (b) Same
data as in (a) as a function of T/(1 − 2 f ).

from numerical simulations for finite N (see Fig. 3). Since
σ 2 ∼ 1

N (see Appendix D), we considered systems of size
N0

(1−2 f )2 with N0 = 1000.
For f � 1/2, Eq. (12a) predicts that the fraction of active

neurons �e will decrease as σ decreases, converging to the
minimum possible value Eq. (13) in the limit σ → 0, for any
value of T .

The stationary solutions of Eqs. (12a) and (12b) satisfy
�∗

r = �∗
e μ3/μ2 and

T = R(�∗
e , f ) (17)

where

R(�e, f ) = σ

2
ln

[
μ2 − (μ2 + μ3)�e

S�e − μ1μ2
− 1

]
+ ω(1 − 2 f )�e.

(18)

From Eq. (18), we find that the bistability limits in the
thermodynamic limit (σ → 0 in the model, or N → ∞ in the
numerical simulations) are as follows:

Tmin/max = ω(1 − 2 f )�min/max
e , (19)

having then a finite range of T values where there is bista-
bility. For finite N , we find that Tmin/max converge rather

FIG. 4. Typical behavior of R(�e, f ) as a function of the activity
�e for input variability σ = 10−3 and different values of the fraction
of inhibitory units f .

slowly (as a power law) to the values given by Eq. (19) (see
Appendix E).

The typical behavior of R(�e, f ) as a function of �e is
shown in Fig. 4. When σ � 1, the behavior of R as a function
of �e is dominated by the linear term proportional to ω,
except for values of ρe very close to �min

e or �max
e . Since

ω(1 − 2 f ) changes of sign at f = 1/2, we see that there
exists a value ft ≈ 1/2, such that when f < ft , R(�e, f ) has
a positive slope and Eq. (17) has three solutions that converge
to the previous analyzed ones (i.e., when f → 0). Hence,
one could expect a discontinuous transition between low-
and high-activity phases and hysteresis in the whole range
f < ft . Conversely, when f � ft , there is only one solution
that changes continuously from high values of the activity for
small values of T to small activities for high values of it.

Numerical solutions of Eqs. (4a)–(4d) analog to those
performed for f = 0 (i.e., cycling T ) support the above con-
clusions. The corresponding results for the stationary values
of the total activity �∗

e = ρ∗
e + ψ∗

e as a function of T for dif-
ferent values of f and a finite but small value of σ are shown in
Fig. 5. The behavior of the activity when f > ft is consistent
with the expected finite-size behavior of a second-order phase
transition order parameter, at least for values of f close to
ft . In that sense, the end point of the discontinuous transi-
tion line ( f , T ) = ( ft , Tt ) could be regarded as a tricritical
one. However, we will show that such pseudocritical behavior
for f > ft completely disappears in the thermodynamic limit
σ → 0.

The pseudotricritical values ft and �t
e correspond to an

inflexion point of R(�e, f ). So equating the first and second
derivatives of Eq. (18) to zero and solving together with
Eq. (18) we obtain after some algebra

�t
e = μ1μ2(S + μ2 + μ3) + S(μ2 + μ1μ2)

2S(S + μ2 + μ3)
, (20)

ft = 1

2
− σ

4ω
B, (21)

Tt = σ

2

{
�t

eB + ln

[
μ2 − (μ2 + μ3)�t

e

S�t
e − μ1μ2

− 1

]}
, (22)
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FIG. 5. Stationary activity (excitatory and inhibitory neurons)
during a cycling process of the threshold T , obtained from numerical
solutions of Eqs. (4) for σ = 10−3 and different values of the fraction
of inhibitory units f . A clear hysteresis (red curves) is observed for
f < ft . For f > ft there is no hysteresis and the system exhibits a
continuous crossover (solid blue lines) between a low-activity regime
(for high T ) to a high-activity one (low values of T ).

where

B = 4S(S + μ2 + μ3)

μ2
2μ3

and Tt is the corresponding pseudotricritical threshold value.
In the thermodynamic limit σ → 0 we see that ft → 1/2 and
Tt → 0. To understand the last result we calculated again the
numerical solutions of the dynamical equations in cycling
process of T , for a sequence of decreasing values of σ and
values of f around 1/2. The main results of these calculations
are shown in Fig. 6. We see that in the limit σ → 0 the
global activity becomes negligible (∼ρmin

e ∼ 0.5 × 10−3 in
the present case) for any value of T > 0 when f � 1/2, while
a well defined hysteresis loop is established when f < 1/2.
Consistently, we obtained the same results when simulating
the microscopic model in a fully connected network, follow-
ing the same cycling protocol for increasing values of the
system size N (every curve was averaged in this case over
the quenched disorder in both the synaptic weights and the
distribution of inhibitory units), as shown in Fig. 7. Extrapo-
lation of these curves to N → ∞ (not shown) when f � 1/2
confirms that the activity becomes negligible for any value of
T > 0.

This result can be understood in the following way. Since
for f > 1/2 there are more inhibitory than excitatory neurons,
in a fully connected network, any number of excitatory active
neurons at time t will activate (on average) more inhibitory
than excitatory units at time t + 1, which will make the total
activity decrease at time t + 2. Hence, global activity is ex-
pected to decrease monotonically in the long term and the only
possible activity for f > 1/2 in the stationary state is due to
the finite-size fluctuations in the number of active excitatory
and inhibitory units, which is only relevant for small N . A
phase diagram in the thermodynamic limit is shown in Fig. 8.

FIG. 6. Stationary activity during a cycling process of the thresh-
old T , obtained from numerical solutions of Eqs. (4) when the input
variability σ → 0 for values of the fraction of inhibitory units f
around 1/2.

IV. DISCUSSION

A. Summary of the results

We obtained the mean-field dynamical equations of a
Greenberg-Hastings neural model with excitatory and in-
hibitory units. The dynamical equations results and the
numerical simulation of model show a very good agreement.
The analysis of the stationary solutions revealed the existence
of a first-order (i.e., discontinuous) dynamical phase transition
between an active phase (high values of the total activity �∗

e )
and an inactive one (low values of the total activity �∗

e ), where
the threshold T plays the role of the control parameter of the
transition. Such transition happens for values of the inhibitory
neurons fraction f smaller than certain value ft � 1/2, even
for finite systems, and remains in the thermodynamic limit
σ → 0, where ft → 1/2.
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FIG. 7. Average stationary activity during a cycling process of
the threshold T , obtained from numerical simulations of the mi-
croscopic model defined by Eqs. (1) in a fully connected network
of N sites when N increases. When the fraction of inhibitory units
f < 1/2 we observe the appearance of a hysteresis cycle for large-
enough system sizes, that converge to a well-defined one in the limit
N → ∞. Hysteresis disappears for f � 1/2 for any value of N .

We found that, after a transient, the number of active
inhibitory neurons is proportional to the number of active
excitatory units. As a consequence, any solution in a system
with both excitatory and inhibitory units and f < 1/2 can be
mapped to a solution in a purely excitatory case. Then the
net effect of the inhibitory units is to rescale the value of T .
A moment of reflection allows us to observe that this result
is a consequence of having an interaction matrix W whose
values depend neither on the nature (i.e., either inhibitory or
excitatory) of the presynaptic nor the postsynaptic neurons,
and having a fully connected network.

We found a pseudotriciritical point at ft � 1/2, which is
quite away from biologically relevant fractions (which are

FIG. 8. Dynamical phase diagram (log-linear plot) in the ( f , T )
space, in the thermodynamic limit (N → ∞ or σ → 0). Stability
border lines of the bistable region correspond to Eq. (19). The inset
shows a linear-linear plot of the same phase diagram.

about f = 0.2). However, as it will be discussed below, the
obtained value of ft is not relevant on it’s own, but rather, a
consequence of having the same strength for inhibitory and
excitatory output connections. A different value of ft could be
obtained if we considered that the inhibitory units had stronger
output connections (as frequently assumed in other models
[20,21]) without changing qualitatively any of the preceding
results.

B. Comparison to other models

The solutions of other neuronal models with excitatory
and inhibitory units, either in fully connected or in sparse
networks have also been discussed in the literature. There, a
variety of mathematical descriptions where considered. For
instance, in Ref. [20] integrate-and-fire neurons in a sparsely
connected network are considered. In Ref. [21], discrete-time
stochastic integrate-and-fire neurons in a fully connected net-
work are considered. In Ref. [17], equations for the rate of
activation of a contact process (closely related to neuronal
dynamics) are considered. Also, in an early phenomenological
description of excitatory and inhibitory neuronal dynamics,
differential equations for the activity of neuronal population
were considered [22]. It should be stressed that bistable be-
havior, as observed here, is present in all these models.

In most of such models more sophisticate descriptions of
neurons were used; consequently, a larger number of variables
and parameters were employed. However, some of them could
be related to the present model variables. For instance, instead
of having the fraction of inhibitory units as a variable ( f ), in
Refs. [20,21] they fix the proportion to 80% excitatory and
20% inhibitory but let the strength of inhibitory synapses be
g times that of the excitatory ones. Then, for each value of g
we would get an essentially related value of f � (g + 1)/10.
In particular, the so-called balanced system, where the net
effect of the excitatory and the inhibitory units has the same
magnitude, corresponds to gc = 4 (or ft = 1/2 as discussed
here).
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For low values of external input, if g < gc (here, f < 1/2),
then in Refs. [20,21] they find three solutions in complete
agreement with our results. If g > gc, i.e., the inhibition dom-
inated region, then they find a single low-activity solution.
Other interesting results arise when the intensity if external
input [20,21] becomes larger than some critical value, which
do not have a clear relation to results presented here. If home-
ostatic mechanisms are added to the dynamics, then it will
converge to a single critical point where scale-free avalanches
take place [21].

Regarding the contact process model with inhibitory units,
although a richer regime diagram is obtained in Ref. [17],
when asymmetric inhibition is considered (inhibitory units do
not inhibit inhibitory units), a simple regime is recovered for
symmetric inhibition, as in the present case.

If we now consider the dynamics taken by brain’s cortical
neurons (instead of the simple numerical models described
above), then a larger variety of behaviors is obtained, which
depends on the cortical region being studied, the species,
and many other factors. Nevertheless, inhibition dominated
regimes, with loose excitatory-inhibitory (E/I) balance are
frequent [23]. There the average strength of the excitatory
connections, the average strength of the inhibitory connec-
tions, their instantaneuos difference, and the threshold are
all of the same order of magnitude. As a consequence, the
fluctuations in the input signals of a single neuron are of
comparable size with their mean values, and spiking is fluc-
tuation dominated (in contrast to tight E/I balance) [23]. This
scenario is similar to the one already predicted in Ref. [24],
where chaotic dynamics is expected as a result of the fluctu-
ating balance. These results differ from those presented here.
Notice that a key ingredient in these cases is a sparse network
with connectivity (or degree) 〈k〉 much smaller than network
size (i.e., 〈k〉 � N), quite different from the fully connected
networks considered here.

C. Concluding remarks and future work

From a statistical physics point of view, the presence of
a phase transition (i.e., a nonanalytic behavior of the state
variables) in a finite system, is not unusual in nonthermody-
namical systems [4,25,26], at variance with what happens in
thermodynamical ones where nonanalytic behavior can only
happen in the thermodynamic limit.

The present example is consistent with predictions of
bistable behavior in other models [17,20–22]. Nevertheless,
we found that the first-order transition line in the ( f , T )
space stops at a point ( ft , Tt ), being replaced by a continu-
ous crossover between low- and high-activity regions when
f > ft , that resembles the finite-size behavior of a continuous
phase transition order parameter. In that sense, ( ft , Tt ) could
be regarded as a pseudotricritical point. However, such pseu-
docritical behavior for f > ft completely disappears in the
thermodynamic limit σ → 0, where the total activity becomes
negligible for any value of T > 0.

On the other hand, the behavior of the GH model on a fully
connected network is expected to reproduce (with the interac-
tions strength properly normalized) the 〈k〉 → N → ∞ limit
of the GH model on a Watts-Strogatz network, which, for an
average degree 〈k〉 = 30 exhibits true tricritical behavior [4].

Therefore, the present results suggest that the critical region
of the last model in the large connectivity limit should shrink
as the average degree increases and the tricritical fraction of
inhibitory units should converge to 1/2. Moreover, prelimi-
nary simulation results indicate that the critical region remains
finite (and consequently the triciritical point still exists) in
large N � 1 systems with large connectivity 〈k〉 � 1, as long
as 〈k〉/N � 1. Works along these lines are in progress and
will be published elsewhere. It is worth stressing that tricirical
behavior was also observed in a different mean-field model
[17].

Finally, we have checked that the proportionality among
active excitatory and active inhibitory units holds, at least
approximately, when the GH model is simulated on a Watts-
Strogatz network (as in Ref. [4]), suggesting that this property
does not depend on the network’s topology. Furthermore, if
this property holds, then it may provide further insights on the
so-called paradoxical effect, according to which, the external
inhibition of inhibitory units may generate responses where
both the activity of excitatory and inhibitory units increase
and oscillate in phase [27]. An interesting avenue of future
research is to study under which conditions this proportional-
ity is maintained in other models and solutions studied in the
literature. Also, it would be worth to study under which con-
ditions the solutions including inhibitory units can be mapped
to equivalent solutions for purely excitatory neurons.
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APPENDIX A: LISTS OF VARIABLES

The list of variable names and their description for the
cellular automaton model is included in Table I, while
the variables for the dynamical equations are included in
Table II.

TABLE I. Neuronal network model variables.

Symbols Reference

N Number of neurons
xi = 0, 1, 2 Neuron i state
f Fraction of inhibitory units
εi = 1 (−1) If neuron i is excitatory (inhib.)
r1 Spontaneous activation rate (r1 = 10−3)
r2 Relaxation from refractory rate (r2 = 0.3)
T Threshold, model’s control parameter
Wi j Connection weight (absolute value)

among neurons i and j in the original model
wi j Connection weight (absolute value) used in the

fully connected model wi j = Wi, j/N
β Weight distribution parameter [Eq. (2)]
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TABLE II. Variables used in the dynamical equations.

Symbols Reference

ρe/r Density of excited (refractory) excitatory units
ψe/r Density of excited (refractory) inhibitory units
�e Activity (�e = ρe + ψe)
�r Total number of refractory units (�r = ρr + ψr)
�e/r Auxiliary variables (�e/r = f ρe/r − (1 − f )ψe/r)
μ1,2,3 Transition rates
η() Sigmoideal function approximation
σ Mean-square deviation of vi (see Appendix B)
�∗

e/r, ρ
∗
e/r Stationary values

�max/min
e

ρmax/min
e Values at the bistability limits

T max/min

�t
e, Tt , ft Values at the pseudotriciritical point

S Auxilliary variable. S = μ1μ2 + μ2μ3 + μ3μ1

R(�e, f ) Auxilliary variable; see Eq. (17)
B Auxilliary variable, B = 4S(S+μ2+μ3 )

μ2
2μ3

APPENDIX B: STOCHASTIC TREATMENT

Starting from the neuronal network model, we will assume
the following transition rates for xi(t ):

Ui(0 → 1) = μ1 + α �(vi)

Ui(1 → 2) = μ3

Ui(2 → 0) = μ2,

(B1)

where

vi ≡
N∑

j=1

wi jε jδ(x j (t ), 1) − T, (B2)

and μ1, μ2, μ3, and α are constants whose value will
be derived in the next section. While Eqs. (B1) allow in
principle to construct a master equation for the probabil-
ity P(�x, t ), it would be analytically intractable. Thus, it
is convenient to work with macroscopic variables like the
number of sites in every state, such as nE

q = ∑
i∈exc δ(xi, 0),

nE
e = ∑

i∈exc δ(xi, 1), and nE
r = ∑

i∈exc δ(xi, 2) for excitatory
sites (analogously for inhibitory ones).

Using the local transition probabilities Eqs. (B1), we can
calculate the transition probabilities for the populations �n =
(�nE

, �nI ) = (nE
q , nE

e , nE
r , nI

q, nI
e, nI

r ), namely

U E/I
({

nE/I
q , nE/I

e

} → {
nE/I

q − 1, nE/I
e + 1

})
=

∑
q state

(μ1 + α �) ≈ nE/I
q (μ1 + α 〈�〉)

U E/I
({

nE/I
e , nE/I

r

} → {
nE/I

e − 1, nE/I
r + 1

})
=

∑
e state

μ3 = nE/I
e μ3

U E/I
({

nE/I
r , nE/I

q

} → {
nE/I

r − 1, nE/I
q + 1

})
=

∑
r state

μ2 = nE/I
r μ2. (B3)

The approximation made in the first equation � → 〈�(vi)〉
where the average is over stochastic variable vi, is expected to
be valid for a mean-field system. These rates give rise to the
Master equation

∂

∂t
P(�n, t ) = μ3

(
nE

e + 1
)
P
(
nE

q , nE
e + 1, nE

r − 1, �nI
, t
)

+ μ2
(
nE

r + 1
)
P
(
nE

q − 1, nE
e , nE

r + 1, �nI
, t
)

+ (μ1 + α 〈�〉)
(
nE

q + 1
)

× P
(
nE

q + 1, nE
e − 1, nE

r , �nI
, t
)

− [
μ3nE

e + μ2nE
r + (μ1 + α 〈�〉)nE

q

]
P(�n, t )

+ (analogous terms for inhibitory). (B4)

Using a Kramers-Moyal expansion [16] a Fokker-Planck
equation for the densities �y = �n/N can be derived in the limit
N → ∞, namely

∂

∂t
P(�y, t ) = −

∑
i

∂

∂yi
[aiP(�y, t )] + 1

2

∑
i j

∂2

∂yi∂y j
[bi jP(�y, t )],

(B5)
where subindexes run over six components (three excitatory
and three inhibitory) and [16]

�a = (�aE
, �aI ) = (

aE
q , aE

e , aE
r , aI

q, aI
e, aI

r

)
= (RE − QE ,QE − EE , EE − RE ,RI − QI ,QI − E I , E I − RI )

b̂ =
(

b̂E 0
0 b̂I

)
(B6)

with

b̂E/I = 1

N

e q r⎛
⎜⎝

⎞
⎟⎠

EE/I + QE/I −QE/I −EE/I e

−QE/I QE/I + RE/I −RE/I q

−EE/I −RE/I EE/I + RE/I r

QE/I = yE/I
q (μ1 + α 〈�〉)

EE/I = yE/I
e μ3

RE/I = yE/I
r μ2.

(B7)

Under the Itô interpretation [16], we can derive from Eq. (B5) the stochastic differential equation

d�y = �A(�y, t )dt + B̂(�y, t )d�ξ(t ), (B8)
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where �A = (�aE
, �aI ), (B̂B̂ᵀ)i j = bi j , and �ξ is a multivari-

able Wiener process. Averaging over the noise and defining

�̇ρ ≡ 〈�̇yE 〉 and �̇ψ ≡ 〈�̇yI〉, we obtained

ρ̇q = μ2ρr − (μ1 + α 〈�〉)ρq

ρ̇e = (μ1 + α 〈�〉)ρq − μ3ρe

ρ̇r = μ3ρe − μ2ρr

ψ̇q = μ2ψr − (μ1 + α 〈�〉)ψq

ψ̇e = (μ1 + α 〈�〉)ψq − μ3ψe

ψ̇r = μ3ψe − μ2ψr,

(B9)

where ρk = 〈nE
k /N〉 and ψk = 〈nI

k/N〉 (k = q, e, r), as in
main text. Finally, using the relationships

N = Ne + Ni

ρe + ρq + ρr = Ne

N
= 1 − f

ψe + ψq + ψr = Ni

N
= f ,

(B10)

we get

ρ̇e = (1 − f − ρe − ρr )(μ1 + α〈�〉) − μ3ρe

ρ̇r = μ3ρe − μ2ρr

ψ̇e = ( f − ψe − ψr )(μ1 + α〈�〉) − μ3ψe

ψ̇r = μ3ψe − μ2ψr .

(B11)

Assuming that vi behaves as a Gaussian variable we can
calculate the average

〈�〉 = 1

σ
√

2π

∫ ∞

−∞
�(vi )e

− (vi−μ)2

2σ2 dvi

= 1

2

[
1 + erf

(
μ√
2σ

)]
≡ η(μ/σ ),

(B12)

where σ 2 = Var(vi ) and

μ = 〈vi〉 =
〈

N∑
j=1

wi jε jδ(x j (t ), 1) − T

〉

≈ ω

N

〈
Nexc∑
j∈exc

δ(x j (t ), 1) −
Ninhib∑

j∈inhib

δ(x j (t ), 1)

〉
− T

≈ ω(ρe − ψe) − T,

where

ω ≡ 〈Wi j〉. (B13)

From Eq. (2), we get ω = 1/β. We have also assumed that

〈wi jε jδ(x j (t ), 1)〉 ≈ 〈wi j〉〈ε jδ(x j (t ), 1)〉.
We checked the validity of this approximation by

performing numerical simulations of the microscopic GH
model in a fully connected network for different values of T
and N . We found that the correlations between the quenched
disorder variables and δ(x j (t ), 1) were indeed negligible for
large-enough values of N . Since the results are not expected
to depend on the specific form of the sigmoidal function η(x)
as long as it has the same asymptotic behaviors for x → ±∞,

in what follows we replaced η in Eq. (B12) by the simplified
form

η(x) = e2x

1 + e2x
. (B14)

Replacing the above results into Eqs. (B11) we obtained

ρ̇e = (1 − f − ρe − ρr )

×
{
μ1 + α η

[
ω(ρe − ψe) − T

σ

]}
− μ3ρe, (B15a)

ρ̇r = μ3ρe − μ2ρr, (B15b)

ψ̇e = ( f − ψe − ψr )

×
{
μ1 + α η

[
ω(ρe − ψe) − T

σ

]}
− μ3ψe, (B15c)

ψ̇r = μ3ψe − μ2ψr, (B15d)

which are similar to Eqs. (4) but still depend on α.

APPENDIX C: MODEL PARAMETRIZATION

The continuous time stochastic process defined by
Eqs. (B1) can be described as a set of coupled, constant
rate jump (or Poisson) processes, each one corresponding to
the transition of a single neuron. The Poisson processes are
coupled in the sense that an event generated by one process
may alter the other process by changing their rates [28]. The
transition probabilities of a single neuron i in this continuous
time process are then given by [28]

�i(0 → 1) = Ui(0 → 1)/νi

�i(1 → 2) = Ui(1 → 2)/νi

�i(2 → 0) = Ui(2 → 0)/νi,

where

νi = Ui(0 → 1) + Ui(1 → 2) + Ui(2 → 0).

Now the basic assumption is that, at least as far as the
stationary properties are concerned, the parallel dynamics
where the state of all the neurons at time t + 1 are updated
simultaneously from their state at time t (according to the
transition probabilities given by Eqs. (B1) is equivalent to a
sequential update, in a way analogous to the single spin flip
rules used in Monte Carlo simulations of discrete spin systems
[29]. In other words, neurons in such rules would be updated
one by one, where each update may affect the probabilities
of the next one. In such a sense, the macroscopic timescale
to be compared with the parallel dynamics time unit would
be a set of N single update trials (the “Monte Carlo step”).
We checked numerically the stationary properties of both
dynamics in different regions of the parameters space for the
fully connected model. We verified that both dynamics give
qualitatively always the same results, where the quantitative
differences become negligible close enough to the dynamical
transition regions (not shown). Under the assumption of such
equivalency, we can assume that

�i(0 → 1) = Pi(0 → 1), (C1)

�i(1 → 2) = Pi(1 → 2), (C2)

�i(2 → 0) = Pi(2 → 0), (C3)

014130-10



MEAN-FIELD SOLUTION OF THE NEURAL DYNAMICS … PHYSICAL REVIEW E 110, 014130 (2024)

FIG. 9. (a) Maximum activity as a function of r2 for r1 = 10−3.
(b) Minimum activity as a function of r1 for r2 = 0.3. Numerical
values of fully connected simulations are plotted for two network
sizes in both cases. Theoretical results were obtained for σ 2 = 10−7.

where the transition probabilities Pi are given by Eqs. (1).
Hence

μ1 + α �

νi
= 1 − (1 − r1)(1 − �), (C4)

μ3

νi
= 1, (C5)

μ2

νi
= r2. (C6)

From Eq. (C4) we have that μ1/νi = r1 when � = 0 and
(μ1 + α)/νi = 1 when � = 1. Therefore

μ1 = α r1

1 − r1
. (C7)

Combining Eqs. (C5) and (C6) with the last one we obtain

μ2 = α r2

1 − r1
, (C8)

μ3 = α

1 − r1
. (C9)

Since μ1,2,3 are proportional to α, then the time evolution of
each variable in Eq. (B15) is proportional to α. Without loss of
generality we may rescale time in such way that α = 1, so we

FIG. 10. Finite-size scaling of the variance σ 2 for different com-
binations of the parameters ( f , T ). (a) σ 2 as a function of the
networks size N . (b) σ 2/�e as a function of N . The dashed lines
are power laws proportional to N−1.

finally arrive to Eqs. (4) of main text. Expressions (C7)–(C9)
can be checked by considering some limiting cases of the
dynamical equations (7) for f = 0. As explained in Sec. III A,
the stationary solutions of Eqs. (7) present a discontinuous
transition from a high-activity phase to a low-activity one as
the threshold T is increased, with the presence of hysteresis
(see also Appendix E). The associated maximum (T → 0)
and minimum (T → ∞) values of the density of active sites
ρe correspond to the stationary solutions Eqs. (7) when η →
0 and η → 1, respectively. Combining such solutions with
Eqs. (C7)–(C9) (assuming α = 1) we obtain the expressions

ρmin
e = r2

2r2 + 1
ρmax

e = 1

1 + 1/r1 + 1/r2
, (C10)

which are independent of σ and therefore from the system
size. These can be compared with numerical simulation results
from the microscopic model. The comparison shown in Fig. 9
exhibits a full agreement in the whole range of values of r1

and r2.

APPENDIX D: FINITE-SIZE SCALING

We analyzed the finite-size scaling of the variance σ 2 =
〈v2

i 〉 − 〈vi〉2 for the microscopic model defined on a fully
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FIG. 11. Comparison between a hysteresis loop generated with
Greenberg-Hastings dynamics over a fully connected network of size
N = 30 000 (black line-dots) and one obtained from the mean-field
model with parameter σ = 10−4 (solid pink line).

FIG. 12. Hysteresis width � tends to its maximum value �max in
the thermodynamic limit (N → ∞ or σ → 0) as power law both for
the numerical simulation and for the mean-field equations. (a) Nu-
merical simulation results. The pink dashed line is a power law in
the network size ∼N−0.5. (b) Mean-field equations results. The blue
dashed line is a power law in the σ parameter ∼σ 0.8.

FIG. 13. Evolution of the auxilliary variables �e and �r com-
puted the from full system of equations, Eqs. (11) for different
parameters and initial conditions. The trajectories for �r as a func-
tion of �e are shown for f = 0.3, and 3 values of T : T = 0
(a), T = 0.004 (b), and T = 0.02 (c). We computed trajectories
for all the possible combinations of the following initial values:
ρe = 0, 0.2, . . . , 1; ρr = 0, 0.2, . . . , 1 − ρe; ψe = 0, 0.2, . . . , 1; and
ψr = 0, 0.2, . . . , 1 − ψe, making a total of 225 trajectories for each
value of T . For clarity, we only show approximately 20% of the
trajectories, randomly selected. Black crosses correspond to different
initial conditions and the red circles correspond to the final condi-
tions. The arrows show the instantaneous evolution of a few selected
trajectories. Notice that different combinations of ρe/r and ψe/r may
lead to the same values of �e/r .
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connected network with N sites, where the variables vi are
given by Eq. (B2).

It is assumed that σ is independent of the site i. The results
are shown in Fig. 10, for different values of the parameters
( f , T ). We see, that in all cases σ 2 ∝ C/N , where C ∝ �e

(see Fig. 10).

APPENDIX E: MULTISTABILITY

To verify the existence of hysteresis we solved numerically
the dynamical equations (7) for f = 0 for different values of
σ . We verified that for small-enough values of σ the properties
of the stationary state of Eqs. (7) are almost insensitive to σ

for a wide range (around two orders of magnitude) of values
of it. We performed a loop of increasing-decreasing T solving
Eqs. (7) using the RK method. For each value of T , we
run the RK algorithm until the system reaches a stationary
state and record the stationary value of ρe before changing
T → T ± �T (�T ∼ 1.5 × 10−5) and restart the RK algo-
rithm with the previous state as the new initial condition. We
also performed a similar loop in a numerically simulated GH
model in a fully connected network. In this case, for every
value of T , we discard the first t = 500 steps and average
the fraction of active sites over 103–104 steps before changing
T , taking the last configuration as the initial one for the new
value of T . In Fig. 11 we compare two loops of ρe vs T
for both systems, one with N = 30 000 and the other with
σ = 10−4. We also show in Fig. 12 the hysteresis width �2

as a function of the network size N for numerical simulated
GH model loops or as a function of σ for numerical solutions
of the Eqs. (7). We find that � converges through a power law
to its limit value �max = Tmax − Tmin for N → ∞ and σ → 0
in each case, where Tmin and Tmax are given by Eqs. (19) of
main text.

We now analyze the unstable solution for the case f = 0.
The unstable solution in the general case can be derived in a
similar way.

In the limit σ → 0, η( ωρe −T
σ

) can only have three values:
0, 1, and 1/2. The first two correspond to stable solutions. We
found that the third one is close to the unstable solution pre-
sented by the model. To find that solution, we approximated
η(x) by the first two terms of its Taylor series expansion,
1
2 (1 + x), obtaining the equation for the stationary solution

[
1 − ρe

(
1 + μ3

μ2

)](
μ1 + 1

2
+ ωρe − T

2σ

)
− ρeμ3 = 0.

(E1)

2The hysteresis width � is calculated as the difference between the
threshold values in the loop edges. Those thresholds are an average
between the values in the upper and lower corners of the loop edges.

This is second degree polynomial on ρe. It has two solutions,
one for which ρe > ρmax

e , and the other, which is close to T
ω

.
This solution is already plotted in Fig. 2.

APPENDIX F: STABILITY OF �e/r = 0

The equations for �e/r are

�̇e = (−μ3 − N )�e − N�r, (F1)

�̇r = μ3�e − μ2�r . (F2)

In the stationary state, the equations for �e/r read

(−μ3 − N )�∗
e − N�∗

r = 0

μ3�
∗
e − μ2�

∗
r = 0.

(F3)

Since we are in the stationary state N is constant. Hence, we
can consider the above system as two linear equations on �e/r .
Both equations are linearly independent since the first one has
two negative coefficients and the second one has one positive
and the other negative. Then, they have only one solution,
which is �∗

e/r = 0 (for any value of N ). We now consider
their stability. We can write

�e/r = �∗
e/r + δ�e/r, (F4)

�e/r = �∗
e/r + δ�e/r, (F5)

where δ�e/r and δ�e/r are the (small) fluctuations of �e/r and
�e/r around their stationary values. We can also write N =
N ∗ + δN , with δN = ∂N

∂�e
δ�e + ∂N

∂�e
δ�e. We then get

˙δ�e = (−μ3 − N ∗)δ�e − δN �∗
e︸︷︷︸

0

−N ∗

+ δ�r − δN �∗
r︸︷︷︸

0

+O(δ2)

˙δ�r = μ3δ�e − μ2δ�r + O(δ2).

(F6)

This can be written in matrix form(
˙δ�e
˙δ�R

)
=

(−μ3 − N ∗ −N ∗
μ3 −μ2

)
·
(

δ�e

δ�R

)
.

The eigenvalues of the matrix are λ± = −N∗−μ3−μ2

2 ±
1
2

√
(N ∗ − μ3 − μ2)2 − 4μ2μ3, which have negative real

part, so the solution is stable. We have computed numerically
the evolution of the ρe/r and ψe/r , Eqs. (7), for different values
of f and T , and several different initial conditions. The results
show that the different trajectories converge to �e/r = 0. In
Fig. 13 we show some examples of these trajectories for
f = 0.3, and three values of T : T = 0 (where the only station-
ary solution corresponds to �e � �max

e ), T = 0.004 (where
�e � �max

e and �e � �min
e coexist), and T = 0.02 (where

�e � �min
e ).
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