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Avalanche shapes in the fiber bundle model
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We study the temporal evolution of avalanches in the fiber bundle model of disordered solids, when the model
is gradually driven towards the critical breakdown point. We use two types of loading protocols: (i) quasistatic
loading and (ii) loading by a discrete amount. In the quasistatic loading, where the load is increased by the
minimum amount needed to initiate an avalanche, the temporal shapes of avalanches are asymmetric away from
the critical point and become symmetric as the critical point is approached. A measure of asymmetry (A) follows
a universal form A ∼ (σ − σc )θ , with θ ≈ 0.25, where σ is the load per fiber and σc is the critical load per fiber.
This behavior is independent of the disorder present in the system in terms of the individual failure threshold
values. Thus it is possible to use this asymmetry measure as a precursor to imminent failure. For the case of
discrete loading, the load is always increased by a fixed amount. The dynamics of the model in this case can be
solved in the mean field limit. It shows that the avalanche shapes always remain asymmetric. We also present a
variable range load sharing version of this case, where the results remain qualitatively similar.
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I. INTRODUCTION

Intermittent avalanche dynamics are seen in a myriad of
systems, including invasion of fluid in a porous media, mov-
ing domain walls in impure magnetic materials, compressed
rocks prior to breakdown, and sliding tectonic plates causing
earthquakes. The statistical nature of these avalanches, partic-
ularly their scale free size and duration distributions, reveals
information regarding the system that are nearly universal in
nature, i.e., they depend on only a few parameters such as the
interaction range in such systems, their dimensions, and so on
[1–3]. The properties of avalanches are also used in hazard
assessments of certain systems, where such assessments are
crucial. For example, it is well established that the size dis-
tributions of avalanches if sampled near a catastrophic failure
point, show an exponent value that is smaller than what one
would obtain if all avalanches are sampled [4]. Specifically, in
shear dynamics of compressed granular media, the avalanche
size distribution exponent is known to depend on the differen-
tial stress [5]. The same is observed in earthquake statistics,
i.e., the Guttenberg-Richter exponent changes in the regions
where larger events are likely to occur [6,7]. There are other
ways to extract meaningful information from the avalanche
statistics near the breaking point, for example the inequality
of avalanches shows universal precursors that signal imminent
breakdown [8,9].

In this work, we study the evolution of a breaking process
for a disordered system that is driven towards catastrophic
breakdown. Particularly, we use the fiber bundle model, which

*Contact author: soumyajyoti.b@srmap.edu.in
†Contact author: psphy@caluniv.ac.in

is a paradigmatic model for fracture of disordered solids [2]. It
is a threshold activated model, where a collection of elements
of different load carrying capacities carries an overall external
load. When the external load is applied gradually, the system
goes through intermittent avalanches of breaking events that
eventually culminate, for a sufficiently high external load, at a
global failure. The individual avalanches that take the system
from one stable state to the other (until global failure) have
multiple steps of stress field readjustments within them. For
example, if S number of fibers break in an avalanche, that
breaking happens through several subavalanches, such that the
sum of all subavalanche sizes within an avalanche equals the
size of that avalanche. The sizes of the subavalanches are the
numbers of fibers broken in one step of load redistribution,
and the number of load redistribution steps is denoted by the
duration τ of the avalanche.

The temporal shapes of avalanches in the fiber bun-
dle model have been looked at before in different contexts
[10,11], particularly for a creep rupture, i.e., a constant load
and external noise and also with load induced failures in
different dimensions. It was found that, for a given duration
of an avalanche, the shapes become more symmetric as the
dimensionality increases. As we shall discuss later on, this is
consistent with our observations here, but looks at a different
limit than what we report here.

The temporal shape of an avalanche has been investigated
in other avalanching systems also, both theoretically and ex-
perimentally [12–16]. Particularly, when an “elastic” interface
is driven through a disordered medium, it goes through stick-
slip motions, showing avalanches. With a “slow” (compared
to the avalanche duration) drive and associated dissipation
(acoustic and other such forms of energy emissions), dynam-
ics of such driven interfaces reach a self-organized critical
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(SOC) state. Among other things, one property of an SOC
system is that the critical point is an attractive fixed point
and the SOC systems always reside close to it. With this
being said, the temporal shapes of the avalanches were shown
to depend on the nature of “elasticity” of the driven inter-
face. Particularly, it was shown [12] that for sufficiently local
range of the interaction kernel in the driven interface the
time-reversal symmetry of the avalanches is broken, while for
sufficiently nonlocal kernels the shapes are symmetric under
time reversal. In the mean field limit, therefore, the direction
of time cannot be determined by looking at the time variations
of the stress field readjustments within an ongoing avalanche
(or similar other manifestations of the dynamics). However,
these assertions (dependence of time-reversal asymmetry on
nonlocality of interaction kernels) are studied only close to the
critical point. A more generic approach to modeling avalanche
was by various forms of (returning) random walks [17]. It
was shown [18] that such avalanche shapes follow univer-
sal features for uncorrelated stochastic processes, while for
correlated processes the shapes of avalanches could become
asymmetric. The effect of dimensionality, particularly near the
upper critical dimensions, was also studied for the avalanche
shapes [19].

Here we look at the variations of the avalanche shapes
in disordered systems, starting far away from the critical
point and gradually approaching the breakdown point. We
find that the avalanche shapes are asymmetric away from
the critical point and become symmetric as the critical point
is approached, even for a mean field interaction. Given that
the system is mean field, the symmetry at the critical point
is expected. For the same reason, therefore, a reduction of
asymmetry could be a useful indicator of the approaching crit-
icality. We show that there is a universal trend in approaching
a time-reversal symmetric avalanche pattern in the fiber bun-
dle model of fracture with quasistatic load increase that does
not depend on the type of disorder present in the model. We
also study other modes of load increase, viz., the load increase
by a discrete amount. The dynamical class of the system is
known to be different under this loading condition. Here, we
solve analytically the dynamics of the model. The analytical
solution of the dynamical equations show that the avalanche
shapes under this loading condition is always asymmetric. The
full functional form could be obtained in this case.

II. THE MODEL AND ITS AVALANCHE DYNAMICS

The fiber bundle model is a threshold activated model for
fracture of disordered solids that can capture many qualitative
features of fracture dynamics, for example the intermittent
scale-free avalanche statistics. In this study of the evolution
of a fiber bundle with time, we consider L fibers arranged in
parallel. These fibers carry an external mechanical load. The
fibers are assumed to be linear elastic elements which can
bear load up to a threshold σth. After reaching the threshold
capacity, the fibers break irreversibly. The values of these
thresholds for the individual fibers are randomly sampled
from a probability density function ρ(σth ). Unless otherwise
specified, this function is uniform in the domain (0,1) [20].

To initiate the dynamics of the failure process, an initial
load σ0 is applied on each fiber. The fibers with threshold

σth > σ0 will survive and the remaining fibers will break irre-
versibly. The load applied on the failed fibers is redistributed
equally to all the surviving fibers. Because of this increase in
the load of the surviving fibers, further fibers may break. The
process of redistribution will continues until no more fibers
break, i.e., all thresholds are higher than the applied load per
fiber value or the entire system has broken down. In the former
case, the load is increased again.

It is important to clarify the notations used here at this
point. The number of fibers broken between two successive
load increase is called an avalanche S, while the number
of fibers breaking in each step of redistribution is called a
subavalanche s. We denote by t ′ the time step of load re-
distribution within an avalanche (t ′ runs from 0 to τ for an
avalanche of duration τ ). Here t ′ simply counts the redistri-
bution steps. On the other hand, we denote by t the total time
elapsed since the start of load application on the intact system.
This means, at the start of the nth avalanche, t = ∑n−1

i=1 τi and
t ′ has run from 0 to τi for all i between 1 to n.

There are two kinds of loading protocols that we will deal
with here. These are distinguished based on how the load is
increased once the system reaches a stable configuration. One
protocol is to increase the load uniformly on all surviving
fibers by an amount δσ that is the minimum required value in
order to break the fiber which is closest to its breaking point
i.e., δσ = min(σ i

th − σi ) ∀ i, where σi denotes load on the ith
intact fiber. This process will restart the dynamics by breaking
exactly one fiber (the one closest to the failure threshold)
and the avalanche may continue. This is called the quasistatic
loading protocol. In the other protocol, the increment of load
is always by a constant amount to the system (note that incre-
ment of load per fiber will progressively increase, since the
number of surviving fibers decreases). This is called the dis-
crete loading protocol. The avalanche initiation step here will
typically cause more than one fiber to break, and the dynamics
may continue thereafter. These two types of loading proto-
cols are profoundly different in terms of the corresponding
avalanche statistics. Particularly, while both protocols produce
scale-free size distributions for the avalanches, the exponent
values differ; it is −5/2 in the former [21] (Eq. (208) of [2])
and −3 in the latter [22] (Eq. (139) of [2]).

In this work, we study the avalanche shapes for both these
loading protocols under mean field and localized load sharing
and study the time-reversal symmetry of the avalanche shapes
and its universal properties near the breaking point.

III. AVERAGE AVALANCHE SHAPE IN THE CASE
OF QUASISTATIC LOADING

As mentioned above, with quasistatic loading, the
avalanche of fiber failures [14] starts with a single fiber failing
(the one closest to failure), causing the load to be redistributed
onto the remaining intact fibers, which can lead to further
breaking events. S(τ ) denotes the size of an avalanche hav-
ing a duration τ . Its magnitude, of course, is the sum of its
constituent subavalanches sτ (t ′):

S =
τ∑

t ′=0

sτ (t ′), (1)

014129-2



AVALANCHE SHAPES IN THE FIBER BUNDLE MODEL PHYSICAL REVIEW E 110, 014129 (2024)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  5  10  15  20  25  30  35  40

A
va

la
nc

he
 sh

ap
e 

, <
s τ

(t’
)>

Time ,t’

τ=10
τ=15
τ=20
τ=25
τ=30
τ=35
τ=40

FIG. 1. The shape of an avalanche is shown as the time (step
of load redistribution) variation of subavalanche sizes. The average
avalanche shapes 〈sτ (t ′)〉 for different specific durations (τ ) of the
avalanches are shown from simulations for uniform threshold dis-
tribution under quasistatic loading, system size L = 100 000, and
number of samples is 10 000.

where the index t ′ refers to an integer value that tracks the
number of redistribution steps, as mentioned before. The
stress field relaxation process within the system (i.e., the load
redistribution steps) is assumed to be much faster than the
external load increase rate (hence the quasistatic nature of
loading). Therefore, the total load can be taken as constant
during an ongoing avalanche process. This makes it possible
to consider the duration of an avalanche τ to be a proxy for
the total load on the system; i.e., the duration is, on average,
a monotonically increasing function of the total load on the
system, as a reflection of the diverging timescale with the
proximity to the failure point. To calculate the asymmetry of
the avalanches we define the average shape as follows: we
generate an ensemble of N samples having the same failure

threshold distribution. Let s(α)
τ (t ′) (t ′ = 1 to τ ) denote the

average value of sτ (t ′) obtained from all avalanches of a par-
ticular duration τ in the α-th sample. The ensemble average
of this quantity is defined as the average shape given by

〈sτ (t ′)〉 = 1

N

N∑
α=1

s(α)
τ (t ′). (2)

The data for the average shape as a function of t ′ are plot-
ted after rescaling the x axis by the duration τ (making
it vary between 0 to 1) and the y axis by the max-
imum height of the avalanche shape profile (making it
vary between 0 to 1 also), shown in Fig. 1. This process
was repeated for different types of threshold distributions:
uniform, Gaussian, and triangular, each within the range
(0,1) (see Fig. 2). Then, the asymmetry of the resulting
average avalanche profile (denoted by 〈st ′ 〉) is calculated
from [23]

A = 1

〈smax〉τ
τ∑

t ′=0

|〈sτ (t ′)〉

− min{〈sτ (t ′)〉, 〈sτ (τ − t ′)〉}|. (3)

Defined in this way, a fully (time-reversal) symmetric shape
would give A = 0. As can be seen in Fig. 3, a plot of the
above mentioned asymmetry measure with the corresponding
average initiating load (load per fiber at the time when an
avalanche was started) shows a sharp decrease as the crit-
ical load (σc, the load per fiber value at which the system
collapses) is approached [see Fig. 3(a)]. This form of the
decrease is found to be universal, i.e., it does not depend on the
particular threshold distribution used [see Fig. 3(b)]. Indeed,
an approximate power-law fitting suggests

A ∼ (σc − σ )1/4 (4)

FIG. 2. Average avalanche shapes for avalanches with of duration τ for various disorder disorder distribution functions. (a) Uniform
distribution, (b) triangular distribution, (c) Gaussian distribution. The load redistribution steps t ′ are scaled by the avalanche duration τ and the
subavalanche sizes (number of fibers breaking in one load redistribution) are scaled by the maximum value for each duration. While generally
the shape is that of an inverted parabola, there are deviations from this symmetric shape, as the the system approaches failure (higher avalanche
duration here is a proxy to higher applied load, which in turn indicates imminent failure). For simulations, system size is L = 50 000 and
number of samples is 30 000.
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FIG. 3. Plot showing the variation of the asymmetry of the avalanches [measured using Eq. (3)] with the scaled external load on the system
for which the avalanche of a particular duration had started. The larger duration avalanches start with a higher load. The initial small-sized
avalanches are symmetric, but the avalanches become more asymmetric from higher loads. However, as the system nears the failure point,
the avalanches start becoming more symmetric, which is then an indication of imminent failure. For simulations, the number of samples used
varied between 20 000 to 100 000 for the largest (L = 100 000) to the smallest (L = 20 000) system sizes.

for all three types of threshold distributions [see Fig. 3(b)].
These results also do not seem to have any systematic system
size dependence.

It is interesting to note here the size distribution of the
avalanches of a particular duration (see Fig. 4). While the size
distribution of all avalanches is expected to be a power-law
(with exponent value −5/2), when looked at for a specific du-
ration, the size distributions are no longer scale free. Indeed,
the scale of the avalanche sizes (for example, the average
or the most probable value) increases monotonically with
duration. This is expected for the correspondence between
avalanches of longer duration and that of the average initiating
load on the system. A fit of the most probable values show a
power-law of exponent −1.25. This non-scale-free structure
of the individual components of an overall scale-free distri-
bution has a resemblance to similar observations in wealth
distribution models [24].

IV. SOLUTIONS TO THE DYNAMICAL
PROCESS IN DISCRETE LOADING

Now we consider the case when the load is increased by
a fixed amount in each step. The breaking dynamics [the
evolution of U (t ), the surviving fraction of fibers at time t]
can be solved analytically for this case of discrete loading.
While such solutions have been looked at previously for the
case when the system is very close to the breaking point, here
we attempt a solution for the entire range of the dynamics and
thereby get a form for the avalanche shapes under this loading
protocol.

To do that, we consider the initial threshold distribution to
be uniform within the range (0,1). Then, for any subsequent
step of the dynamics, the threshold distribution of the remain-
ing part of the system will be a uniform distribution within the
domain (σL, σR = 1). This is because, as soon as a fixed load
is applied, the weaker fibers will break, i.e., the weaker part of
the distribution will disappear, resulting in a gradual increase
in the values of σL. Indeed, the values of σL will be a function
of U (t ), the surviving fraction of fibers at time t , with the

understanding that only the strongest fibers survive, i.e., U (t )
is also the fraction of the strongest fibers of the initial sample.
This simplification is a result of the mean field nature of the
dynamics and does not apply to any localized load distribution
process where there is stress concentration around damaged
regions.

In what follows, we first solve U (t ) for fixed values of σL

and σR when a load σ0 is applied. For this case, of course, in
the beginning σL = 0 and σ0 = δ. Each loading step will then
give a time evolution of U (t ). As we shall see, this is a tran-
scendental equation and needs to be evaluated numerically.
The saturation value of U (t ) = U ∗, for each loading step,
gives the surviving fraction of fibers in that step. Using that
we get the updated value of σL = σ0/U ∗. Then we follow the
time evolution again, when the load is increased to σ0/U ∗ + δ,
with the updated value of σL, and so on. In this way, the entire
time evolution of the surviving fraction could be obtained.

The cumulative distribution of the thresholds [20] can be
written as

P(σth ) =

⎧⎪⎪⎨
⎪⎪⎩

0, σth < σL,
σth − σL

σR − σL
, σL � σth � σR,

1, σth � σR.

(5)

For the above mentioned threshold distribution of the stress
values, the recursive relation of the failure process [20] is
written as

Ut+1 = 1

σR − σL

(
σR − σo

Ut

)
, (6)

which can be converted to a differential equation (in the limit
of continuous t , or in this case large L) of the form

dU

dt
= 1

σR − σL

σRU − σ0 − U 2(σR − σL )

U
. (7)
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FIG. 4. (a) Probability distribution D(S) of avalanche size S for
uniform threshold distributions for different specific durations (τ ) of
avalanche (with increasing values of τ from left to right). (b) Col-
lapsed data of the probability of the avalanche size for different
specific durations of the avalanche τ . For the simulations, system
size is L = 100 000 and number of samples is 10 000.

Using the partial fraction method, the above equation can
be solved as

−t = 1

2

∫
2U (σR − σL ) − σR

U 2(σR − σL ) − σRU + σo
dU

+ 1

2

∫
σR

U 2(σR − σL ) − σRU + σo
dU . (8)

Now setting b = σR
σR−σL

, c = σo
σR−σL

, the transformed equa-
tion after solving will give us the evolution of the surviving
fraction of fibers U (t ) when the system is applied with an

initial load per fiber σo:

−t = 1

2
ln |U 2(σR − σL ) − σRU + σ0|

+ b

4
√

b2

4 − c
ln

∣∣∣∣∣∣∣
2U − b − 2

√
b2

4 − c

2U − b + 2
√

b2

4 − c

∣∣∣∣∣∣∣ + ln k (9)

where

ln k = −1

2
ln |(σR − σL ) − σR + σ0|

− b

4
√

b2

4 − c
ln

∣∣∣∣∣∣∣
2 − b − 2

√
b2

4 − c

2 − b + 2
√

b2

4 − c

∣∣∣∣∣∣∣.
While a closed form solution of the above equation for U (t )
is not possible, the dynamics of the model follow this equa-
tion for the entire range of time evolution. This is a general
case of the special condition where such dynamics were
solved [20] only near the stable points, leading to an evalu-
ation of the relaxation time scale.

However, here we are interested in the temporal shape of
the avalanches, which can be obtained numerically from the
above equation.

A. Numerical calculation and simulations
of failure process in ELS model

Equation (9) gives the time evolution of the fraction of
surviving fibers in the model when the failure thresholds of
the individual fibers are distributed uniformly within (σL, σR)
and an initial load σ0 is applied on the intact system.

The numerical solution of Eq. (9) is done by decreasing
U from 1 iterative by a small amount (0.00001) until the
corresponding value of t increases. The point beyond which
t starts decreasing [as obtained from Eq. (9)] is the solution
for that combination of σ0, σL, σR. The validity of this process
can be checked in Fig. 5, where comparisons with numerical
simulations for L = 100 000 are made for different values
of σ0. The saturation limit of U (t ) is the stable limit of the
surviving fraction, generally denoted as U ∗, corresponding to
the applied load σ0.

Our aim, of course, is to solve the dynamics for successive
load increments on the system. The basic scheme for that is
to rescale σL, σ0, and U at the beginning of each loading step.
The dynamical equation is the same and the same solution
process described above is applied, except with the rescaled
values of the parameters. This is possible only in the mean-
field limit, where the fibers break strictly in the same order
as their individual failure thresholds (hence, effectively σL in-
creases). The rescalings are done as follows: σ0 is adjusted to
increase such that it takes the value σ0/U ∗ + δ, σL is adjusted
to the value σ0/U ∗, U is set at 1. After solving Eq. (9) and
finding the corresponding U ∗, it is multiplied with the U ∗ of
the previous step. This process is repeated successively, for
each loading step. An additional input was also used: As can
be seen from Fig. 5, the time at which the surviving fraction of
fibers reach saturation in the simulation is earlier than what is
seen from the numerical evaluation of Eq. (9). This is because,
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FIG. 5. The theoretical estimates [numerically solving Eq. (9)]
and the simulation results of the surviving fraction of fibers U (t, σ0 )
as a function of redistribution (time) steps, when the system is loaded
with several values of initial load per fiber σ0, with initial condition
U (t = 0, σ0) = 1 in each case. The saturation value of surviving
fraction decreases as the initial load increases. The threshold distri-
butions are uniform in (0,1) and the system size L = 100 000 for the
simulations.

numerically, U can change by an arbitrarily small amount,
but in simulations the change is bounded from below by
1/L. Therefore, we keep saturation time from the simulations,
while evaluating U ∗ numerically from Eq. (9). The resulting
variation of the fraction of surviving fibers is shown in Fig. 6,
along with the corresponding numerical solution. They match
satisfactorily.

Now, the avalanche shape can be obtained just by dif-
ferentiating U (t ). Clearly, the saturation values of U (t ) give

FIG. 6. The comparison between the theoretical [from numer-
ical solution of Eq. (9)] and simulation results for the surviving
fraction of fibers as the load is increased in equal steps every time
the surviving fraction reaches saturation. The saturation time limit
for the surviving fraction is taken as an input from the simulation
while evaluating the theoretical curves. The saturation values for the
surviving fractions match very well between the simulations and the
theoretical estimates. The initial threshold distribution is uniform in
(0,1) and the system size for simulations is L = 100 000.

FIG. 7. Theoretical (a) and simulation (b) (as in Fig. 6) results of
the recursive dynamics for the avalanche size with system size (L =
100 000 fibers). Theoretical curves are obtained by differentiation of
data of Fig. 6. The area between two successive zeros of the function
gives one avalanche of size S.

zero when differentiated. Such zeros segregate the avalanches
from each other. The avalanche shapes, obtained from the
numerical evaluation and simulations, are shown in Fig. 7.
Although the widths (i.e., duration) of the avalanches match,
the maximum heights are different, again as the approach to
saturation value depends on numerical choice of integration
steps for U . Nevertheless, the asymmetry in the shapes of
the avalanches remains unchanged and consistent during the
entire dynamical process.

The codes used for these steps are made available in the
Supplemental Material [25].

B. Avalanche shape prior to catastrophic failure
with variable load redistribution range

Here, we look at the shape of the avalanches when the
load sharing is local. Particularly, we look at the case where
the load of a broken fiber is shared between R nearest sur-
viving neighbors (in a one-dimensional lattice). The loading
protocol is the discrete load increase. The system size used is
L = 50 000.

While taking the averages of the simulation results, we
record the subavalanche sizes of the last three avalanches that
occur just before the catastrophic event. This is because the
manifestation of symmetry, if any, will be most prominent just
prior to the critical point. We then calculated the average shape
of these three avalanches to understand the pattern before
the breakdown took place. The avalanche shapes are always
asymmetric in this case, as seen from Fig. 8.

V. DISCUSSIONS AND CONCLUSIONS

The intermittent avalanche dynamics in driven disordered
systems show remarkable statistical regularities. Particularly,
the size distributions of avalanches are known to follow
power-law distributions, with exponent values that are only
dependent on the ranges of interactions and dimensionality of
the system, and do not depend on the other system specific
details, such as the distributions of disorders within the sys-
tem, and so on. Such regularities have been studied in great
detail both theoretically and experimentally. However, much
less is known about the time variation profile of the individual
avalanches.
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FIG. 8. Simulation results showing last three avalanches before the catastrophic event under discrete loading; load redistribution is varied
by different interaction ranges R. The avalanche shape remains asymmetric irrespective of the value of R.

Here we looked at this question of temporal avalanche
shapes in the fiber bundle model of fracture, primarily in the
mean-field limit. While it is known that near the critical point
the avalanche shapes, for mean-field systems, are symmetric
with respect to time reversal, here we have shown that away
from the critical point, under quasistatic loading protocol, the
symmetry is broken. Therefore, quantification of asymmetry
for the avalanches leads to a drastic drop as the system ap-
proaches the failure point (see Fig. 3). The functional form
[see Eq. (4)] of the variation of the asymmetry in the avalanche
shapes is universal, in the sense that it does not depend upon
the threshold distributions of the fibers. Also, there is no
systematic system size dependence. Therefore, monitoring the
shapes of avalanches could serve as a useful indicator of the
imminent failure. It is important to note here that in Ref. [11]
the avalanche shapes in fiber bundles of higher dimensions
show that, for a fixed duration, the shape becomes more
symmetric with increase in dimensions. Their quantification
of asymmetry also shows that, with duration, the asymmetry
decreases for high dimensions (mean-field limit), which is

consistent with what we note here. But here we also show
the functional form of the variation of asymmetry as the
failure point is approached, which could not be concluded
from Ref. [11].

We also study the avalanche shapes for the discrete loading
protocol. While the dynamical evolution of the avalanche
shapes is partially analytically tractable in this case, the shapes
are always asymmetric, both in the mean field and local load
sharing limit.

In conclusion, the temporal shapes of avalanche for the
fiber bundle model under quasistatic loading tend from an
asymmetric to symmetric shape, in a universal manner, as the
catastrophic breakdown point is approached.
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