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Proof of concept for a nonadditive stochastic model of supercooled liquids
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The recently proposed nonadditive stochastic model (NSM) offers a coherent physical interpretation for
diffusive phenomena in glass-forming systems. This model presents nonexponential relationships between
viscosity, activation energy, and temperature, characterizing the non-Arrhenius behavior observed in supercooled
liquids. In this work, we fit the NSM viscosity equation to experimental temperature-dependent viscosity data
corresponding to 25 glass-forming liquids and compare the fit parameters with those obtained using the Vogel-
Fulcher-Tammann (VFT), Avramov-Milchev (AM), and Mauro-Yue-Ellison-Gupta-Allan (MYEGA) models.
The results demonstrate that the NSM provides an effective fitting equation for modeling viscosity experimental
data in comparison with other established models (VFT, AM, and MYEGA), characterizing the activation energy
in fragile liquids, presenting a reliable indicator of the degree of fragility of the glass-forming liquids.
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I. INTRODUCTION

Glass science is a developing field of research due to the
numerous technological applications of glass-forming liquids,
and the formation mechanisms of amorphous solids remain
an open question in the literature [1–5]. The glass-forming
process involves a liquid cooling to below its melting tem-
perature without crystallizing, resulting in a metastable state
called supercooled liquid. As the supercooled liquid cools,
it becomes highly viscous until it passes through the glass
transition, resulting in an amorphous solid structure [1,5,6].
Intermolecular bonds in the supercooled liquid impose a po-
tential barrier to viscous flow, i.e., viscosity is a thermally
activated quantity, and its activation energy depends on tem-
perature for several substances. In this scenario, glass-forming
liquids can be classified into two categories [4,6]: strong liq-
uids, which increase viscosity exponentially with temperature
[7], and fragile liquids, which have nonexponential viscosity
curves [4,6–8].

To get a satisfactory interpretation of the non-Arrhenius
behavior in supercooled liquids, the authors of this paper
developed the so-called nonadditive stochastic model (NSM)
for the study of the reaction-diffusion processes in super-
cooled liquids [4]. For the NSM, due to the dissipative effects
present in the supercooled liquid during the diffusion process,
the fluid concentration obeys a nonhomogeneous continuity
equation, and these correspond to a nonlinear Fokker-Planck
equation [4]. This proposed approach provides nonexponen-
tial functions for the thermal behavior of viscosity and the
activation energy in fragile liquids. In other recent work, the
group analyzed the viscosity equation in fragile liquids from
the NSM, focusing on the relationship between activation en-
ergy and temperature [5]. The findings show that the fragility
index is directly proportional to the activation energy for the
glass transition temperature. In this regard, the developed
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approach appears in the literature as a robust method to char-
acterize the degree of fragility of glass-forming systems and
establishes the fragility index as a function of a γ exponent
[5,9–15].

In this context, this paper expands the previous research
and serves as a proof-of-concept for the NSM in experimental
settings. We analyze temperature-dependent viscosity data for
25 different glass-forming materials and use the NSM vis-
cosity equation to determine the behavior of the activation
energy with temperature. For each substance, we determine
the glass transition temperature and the fragility index values.
Additionally, we compare the NSM’s fit parameters with those
of other viscosity models such as the Vogel-Fulcher-Tammann
(VFT), Avramov-Milchev (AM), and Mauro-Yue-Ellison-
Gupta-Allan (MYEGA) models [16,17]. The results demon-
strate that the NSM is more accurate than these models for
studying temperature-dependent viscosity in glass-forming
liquids that exhibit super-Arrhenius behavior. Thus, the NSM
provides a solid way to physically interpret the formation
mechanisms of amorphous solids.

II. VISCOSITY OF GLASS-FORMING SYSTEMS

Viscosity is the reciprocal of fluidity [4–6], and the latter
emerges naturally from the generalized drag coefficient that
compounds the continuity equation in the NSM formalism
[4,5]. Usually, experimental viscosity data are in units of Pa
s or Poise, and the values measured near the glass transition
are very high in both units. Therefore, the logarithmic scale
is the most efficient for representing experimental viscosity
measurements. Thus, for the stationary regime of the reaction-
diffusion process, the dependence of viscosity on temperature
is characterized by a three-parameter model, written in the
logarithmic scale as,

log10 η(T ) = log10(η∞) − γ log10

[
1 − Tt

T

]
, (1)

where η∞ is the high-temperature viscosity limit, Tt is
the viscosity divergence threshold temperature, and γ is a
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FIG. 1. Variation of the logarithm of viscosity as a function of
the reciprocal temperature for silicate glasses [20–23]. The miscella-
neous symbols corresponds to the experimental data, and the curve
lines (continuous and dashed) to the fit of Eq. (1).

characteristic exponent directly related to the fragility degree
of the glass-forming liquid [5].

It is worth mentioning that, despite the similarity with the
viscosity equation of other approaches, such as the mode-
coupling theory (MCT), Eq. (1) does not diverge for the
glass transition temperature (Tg), in contrast to a typical MCT
prediction [18]. Furthermore, it is important to mention that
Eq. (1) is consistent with the microscopic-phenomenological
models of the glass transition [19]. Thus, the viscosity gener-
ated from the NSM exhibits consistent temperature-dependent
behavior, suggesting that the NSM provides an accurate de-
scription of the glass transition phenomena, highlighting the
potential of this model in capturing the complex dynamics of
glassy materials. In this regard, this work validates the NSM
by analyzing experimental temperature-dependent viscosity
data from silicate glasses [20–23], borosilicates [24], alumi-
nosilicates [20,21,25], titania silicates [26], and chalcogenide
glasses [17,27–29], totaling 25 glass-forming materials.

Figure 1 shows the curves (continuous and dashed lines)
corresponding to nonlinear regression fitting of the Eq. (1)
for viscosity experimental data (miscellaneous symbols) of
the silicate glasses – for other substances, see Fig. 5 in Ap-
pendix A. Table I (see Appendix A) contains the fit parameters
obtained for all glass-forming substances. The Pearson coef-
ficient R2 values are on the order of 0.999, and the χ2 test
provides values below 0.1, demonstrating that Eq. (1) provides
an excellent fit to the viscosity-temperature data. From the γ

and Tt values in Table I, we calculated for all compositions the
temperature-dependent activation energy, expressed by

E (T ) = γ R

ln10

(
Tt

1 − Tt
T

)
, (2)

where R is the universal gas constant. Figure 2 shows the
super-Arrhenius behavior for silicate glasses–see Fig. 6 in
Appendix A for the other substances. The activation energy is
an increasing function of the reciprocal temperature, and E (T )
grows as it approaches the glass transition for all analyzed
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FIG. 2. Activation energy as a function of the reciprocal temper-
ature using the fit parameters from Table I in Eq. (2). Curve lines
(continuous and dashed) for silicate glasses.

glass-forming materials. Considering the reference value 1012

Pa s for viscosity [6] in Eq. (1), we can estimate the glass
transition temperature Tg, given by,

Tg = Tt

1 − 10−B/γ
, (3)

where B = 12 − logη∞. Table I (see Appendix A) contains
the Tg values determined from Eq. (3) for all glass-forming
substances.

Furthermore, the condition Tt < Tg allows us to associate
the viscosity divergence temperature in our model with the
Kauzmann’s temperature (TK ) for which the configurational
entropy of the supercooled liquid vanishes, i.e., the entropy
of the glass is equal to the entropy of the correspondent crys-
talline phase [30–32]. Below TK , the supercooled liquid would
have unrealistic physical behavior that violates the Third
Law of Thermodynamics, defining the well-known Kauzmann
paradox, an open question in glass science [30–32]. In a
practical scenario, the glass-forming substance experiences
both structural and dynamic changes when temperatures are
near TK (where Tg < T < TK ). This leads to a change in the
generalized activation energy, denoted as E , Eq. (2), which
defines the threshold temperature Tt [4,5]. As a result, the
supercooled liquid state is unable to reach the condition of
viscosity divergence. Thus, Tt < Tk; otherwise, it would never
be reached. Conversely, it is important to note that delving into
this topic is out of the scope of this paper. The NSM provides
a reliable fragility index (Mη) directly proportional to E (Tg)
[5] and, from Eq. (1) and Eq. (2), we established one unique
relation between the fragility index and the γ exponent [5],
expressed as

Mη = γ

ln 10

(
10B/γ − 1

)
. (4)

The concept of fragility in glass science is related to the
degree of short-range order of the atomic arrangement of the
supercooled liquid upon cooling through the glass transition
so that, unlike strong liquids, a well-defined short-range or-
der is lacking in fragile liquids [17]. According to Eq. (4),
the greater the slope of the activation energy curve as the
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FIG. 3. The fragility index as a function of the exponent γ . The
miscellaneous symbols correspond to the data in Table I, and the
curve (red line) corresponds to the Eq. (3) for B = 15. The horizontal
line (dashed line) corresponds to the value Mη = 15 and is an asymp-
totic limit between fragile and strong behaviors.

substance approaches the glass transition, the greater the
fragility index value, which implies a lower value for the
respective γ exponent. Table I (see Appendix A) contains
the Mη values determined from Eq. (4) for all glass-forming
substances. Figure 3 shows the fragility index as a function of
the γ exponent, where the miscellaneous symbols correspond
to the data in Table I and the red line corresponds to Eq. (4)
for B = 15 (log η∞ ≈ −3) [5]. The dispersion of the data
relative to the theoretical curve is due to the variability of the
experimental values of logη∞ obtained for each glass-forming
substance. The horizontal line (dashed line) corresponds to the
asymptotic limit between fragile and strong liquids, valid from
the γ → ∞ condition, implying Mη = B.

III. VISCOSITY MODELS

We compare the NSM with the Vogel-Fulcher-Tammann
(VFT), Avramov-Milchev (AM), and Mauro-Yue-Ellison-
Gupta-Allan (MYEGA) models [16,17], which provide three
efficient temperature-dependent viscosity equations to model
non-Arrhenius behavior in supercooled liquids. Our objec-
tive is to conduct a comparative analysis of the accuracy
of the NSM and other three-parameter equations for fitting
experimental data. The analysis of the different theoretical
interpretations of the other models is out of the scope of this
paper and can be found in the specialized literature [16,17,33].
The VFT equation [17,33] can be described as,

log10η(T ) = log10(η∞) + A

T − T0
, (5)

where η∞, B, and T0 are the fitting parameters. In this case, A
is an activation barrier, and T0 is a viscosity divergence tem-
perature. The AM model assumes that the structural disorder
of the glass-forming liquid produces a random distribution
of activation barriers whose dispersion around the mean ac-
tivation energy depends on the system entropy [34]. The AM
equation can be expressed as

log10η(T ) = log10(η∞) +
( τ

T

)α

, (6)
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FIG. 4. The logarithm of the high-temperature viscosity limit for
silicates [20–23] and titania silicates [26] glasses. The miscellaneous
symbols correspond to the values of the log10η∞ obtained by the
NSM (see Table I), AM, VFT, and MYEGA (see Table II) equations.
The dashed red line corresponds to the universal behavior for η∞.

where η∞, τ , and α are the fitting parameters. In this case, τ
is a temperature associated with a reference entropy, and the
exponent α is related to the fragility index that emerges from
the AM model [17,34].

The MYEGA equation, which derives from the Adam-
Gibbs model that relates viscosity to the configurational
entropy of the supercooled liquid [16], is given by

log10η(T ) = log10(η∞) + K

T
exp

(
C

T

)
(7)

where η∞, K , and C are the fitting parameters. In Eq. (7), the
exponential function defines the configurational entropy of the
supercooled liquid, and K is an effective activation barrier.
According to Table II (see Appendix B), the values of χ2

and R2 obtained from the nonlinear fit of Eqs. (5), (6), and
(7), about the experimental data of all analyzed glass-forming
substances, are in the same order of magnitude as the values
obtained from Eq. (1) for the same parameters. Therefore,
the results demonstrate that the NSM provides as effective a
fitting equation for modeling temperature-dependent viscosity
experimental data as the VFT, AM, and MYEGA equations.

Table II contains the log10η∞ values obtained from the
AM, VFT, and MYEGA models, given that the fit parameter
is common to the four viscosity equations (see Table I for
the corresponding values of the NSM). Experimental evidence
indicates that the condition log10η∞ ≈ −3 is associated with
universal behavior for the high-temperature viscosity limit
[5,17], a result whose verification is beyond the scope of this
work. Despite this, we can qualitatively discuss the results ob-
tained for the high-temperature viscosity limit relative to the
universal behavior mentioned above. Thus, Fig. 4 illustrates
the dispersion of the log10η∞ fit values obtained by each of
the four viscosity models (miscellaneous symbols) about the
−3 reference value (red dashed line).

We considered only the silicate and titania-silicate glasses
because the four viscosity equations provided less dispersed
values for log10η∞ for these materials if compared to other
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glass-forming liquids. The results demonstrated that the NSM
provides η∞ values close to the limit of 10−3 Pa s for silicate
and titania-silica glasses, and other viscosity models tend to
overestimate the high-temperature viscosity limit for the same
substances, this behavior being more critical in the AM model.

IV. CONCLUSION

In summary, this work demonstrates a proof-of-concept
for the NSM model in experimental settings. The results
demonstrated that the NSM is efficient for characterizing the
temperature-dependent viscosity of glass-forming liquids in
which the activation energy varies with the temperature. The
values of χ2 and R2 obtained from the nonlinear regression
of Eq. (1) imply that the NSM accurately adjusted the ex-
perimental temperature-dependent viscosity data of the 25
glass-forming substances analyzed. These parameters are in
the same order of magnitude if compared to values of the
χ2 and R2 obtained by the VFT, AM, and MYEGA equa-
tions, widely used to model temperature-dependent viscosity
in supercooled liquids. From the fit parameters of Eq. (1), we
calculated the experimental values from the activation energy
[see Eq. (2)] and the glass transition temperature [see Eq. (3)].

Also, we demonstrated the robustness of Eq. (4), which makes
the exponent γ a reliable indicator of the degree of fragility of
the glass-forming substance. Finally, we verified that, while
the NSM provided values for the high-temperature viscos-
ity limit close to the universal behavior 10−3 Pa s from the
silicates and titania-silica glasses, the other viscosity models
overestimate η∞ for the same substances. Thus, the results
demonstrate that the NSM guarantees a solid interpretation
for diffusive processes in supercooled liquids that exhibit
non-Arrhenius behavior and consolidates the NSM as a robust
theoretical basis for the physical interpretation of the dynamic
properties of glass-forming systems.

ACKNOWLEDGMENT

The authors thank the Fundação de Amparo à Pesquisa do
Estado da Bahia–FAPESB for its financial support (Grant No.
APP0041/2023).

APPENDIX A: FIT PARAMETERS OF THE NSM

Similar to Fig. 1, Fig. 5 shows the logarithm of viscosity
as a function of the reciprocal temperature for other glass-
forming substances, where the miscellaneous symbols are

(a) (b)

(c) (d)

FIG. 5. Variation of the logarithm of viscosity as a function of the reciprocal temperature for glass-forming liquids. Experimental data (mis-
cellaneous symbols): (a) borosilicates [24], (b) aluminosilicates [20,21,25], (c) titania silicates [26], and (d) chalcogenides [17,27–29] glasses.
Curved lines (continuous and dashed): fit the Eq. (1) for (a) borosilicates, (b) aluminosilicates, (c) titania silicates, and (d) chalcogenides
glasses.
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TABLE I. Fit parameters of Eq. (1) for temperature-dependent viscosity data of 25 glass-forming liquids, including silicates [20–23],
borosilicates [24], aluminosilicates [20,21,25], titania silicates [26], and chalcogenides [17,27–29] glasses. We calculated the Tg values by the
Eq. (3) and the Mη values by the Eq. (4).

χ 2

Glass log10 η∞ R2 (×10−2) γ Tt (K) Tg (K) Mη

Silicates
CaMgSi2O6 −3.94(7) 0.9994 1.1 16.1(2) 890(3) 991(22) 141(4)
NBS710 −2.34(5) 0.9999 0.1 18.5(3) 708(3) 851(23) 92(3)
NS66 −3.15(4) 0.9999 0.2 18.5(2) 615(2) 725(12) 103(2)
CN6040 −3.38(7) 0.9998 0.4 18.7(4) 593(4) 698(21) 106(4)
CN6020 −4.39(6) 0.9999 0.3 19.0(3) 706(3) 818(17) 119(3)
NC −4.0(1) 0.9996 0.8 23.4(5) 651(4) 821(27) 90(4)
NS80 −3.32(8) 0.9998 0.5 24.1(6) 578(5) 752(27) 80(4)

Aluminosilicates
Ca3627 −7.0(4) 0.9984 5.1 20(1) 980(20) 1104(87) 158(15)
Ca4412 −6.5(3) 0.9976 9.2 22(2) 950(10) 1110(114) 131(18)
Ca7611 −5.65(8) 0.9998 0.6 29.2(6) 867(6) 1154(30) 88(3)
NaAlSi3O8 −5.9(1) 0.9998 0.3 59(3) 550(10) 1094(62) 60(5)

Borosilicates
Pyrex −1.2(2) 0.9977 3.1 11.1(6) 832(8) 890(156) 160(30)
BB −2.9(2) 0.9992 1.4 21(1) 680(12) 845(75) 87(9)
BNC −4.2(1) 0.9994 1.6 21.2(6) 678(5) 819(31) 102(5)
E −5.9(2) 0.9994 1.7 28(1) 725(9) 941(48) 94(6)

Titania-Silica
24Na2O − 76SiO2 −1.74(7) 0.9998 0.3 16.6(4) 655(6) 769(37) 95(5)
22Na2O − 2TiO2 − 76SiO2 −2.1(1) 0.9994 0.7 16.8(6) 685(7) 801(48) 99(7)
17Na2O − 8TiO2 − 75SiO2 −2.8(1) 0.9998 0.2 17.9(5) 743(6) 873(40) 102(6)
19Na2O − 5TiO2 − 76SiO2 −2.55(9) 0.9998 0.2 18.8(4) 687(5) 826(35) 93(4)
23Na2O − 1TiO2 − 76SiO2 −2.20(8) 0.9998 0.3 19.1(5) 638(6) 779(36) 87(5)
15Na2O − 9TiO2 − 76SiO2 −3.0(1) 0.9998 0.3 19.9(7) 703(8) 853(42) 93(6)

Chalcogenides
Se90Te10 −3.7(1) 0.9996 0.7 12.7(1) 296.6(8) 315(9) 206(6)
Se95Te5 −4.75(5) 0.9998 0.7 13.4(1) 287.9(5) 306(4) 218(3)
Se −5.0(1) 0.9988 2.4 15.4(4) 279(2) 303(10) 180(8)
As2Se3 −8.9(2) 0.9993 1.0 38(2) 318(6) 443(27) 97(8)

experimental viscosity data refer to (5a) borosilicates [24],
(5b) aluminosilicates [20,21,25], (5c) titania silicates [26],
and (5d) chalcogenides glasses. The continuous and dashed
lines correspond to the nonlinear regression fitting of Eq. (1)
using the Levenberg-Marquadt method [35] for all cases.
Table I contains the fit parameters γ , log10η∞ and Tt from the
Eq. (1), the Pearson coefficient R2 and the χ2 test obtained
for all glass-forming substances analyzed. The fragility index
values calculated by Eq. (3) and the glass transition temper-
ature values by Eq. (4) complete Table I. We apply the error
propagation method to determine the uncertainties about the
Mη and Tg values. Similar to Fig. 2, Fig. 6 shows the acti-
vation energy as a function of the reciprocal temperature for

(6a) borosilicates, (6b) aluminosilicates, (6c) titania silicates,
and (6d) chalcogenides glasses. Curve lines (continuous and
dashed) correspond to Eq. (2) using the fit parameters from
Table I.

APPENDIX B: FIT PARAMATERS OF THE AM, VFT,
AND MYEGA MODELS

Table II list the values of log10 η∞, R2, and χ2 ob-
tained from the nonlinear regression fitting of the Eq. (5)
(VFT), Eq. (6) (AM), and Eq. (7) (MYEGA) using
the Levenberg-Marquadt method [35] for experimental
temperature-dependent viscosity data of the 25 glass-forming
liquids analyzed in this work.
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(a) (b)

(c) (d)

FIG. 6. Activation energy as a function of the reciprocal temperature using the fit parameters from Table I in Eq. (2). Curved lines
(continuous and dashed) for (a) silicates, (b) borosilicates, (c) aluminosilicates, (d) titania silicates, and (e) chalcogenides glasses.
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TABLE II. log10 η∞, R2, and χ 2 obtained from AM, VFT, and MYEGA equations for temperature-dependent viscosity data of 25
glass-forming liquids, including silicates [20–23], borosilicates [24], aluminosilicates [20,21,25], titania silicates [26], and chalcogenides
[17,27–29] glasses.

AM χ 2 VFT χ 2 MYEGA χ 2

Glass log10 η∞ R2 (×10−2) log10 η∞ R2 (×10−2) log10 η∞ R2 (×10−2)

Silicates
CaMgSi2O6 −0.29(4) 0.9996 0.8 −2.65(4) 0.9999 0.3 −0.91(3) 0.9999 0.3
NBS710 0.58(8) 0.9997 0.3 −1.642(7) 0.99999 0.002 −0.52(6) 0.9999 0.1
NS66 −0.5(2) 0.9988 2.7 −2.46(8) 0.9998 0.5 −1.5(2) 0.9993 1.5
CN6040 −0.08(14) 0.9994 1.6 −2.43(6) 0.9999 0.2 −1.1(1) 0.9997 0.7
CN6020 −0.17(4) 0.99993 0.2 −3.12(5) 0.9999 0.1 −1.18(5) 0.99996 0.1
NC 0.007(72) 0.9998 0.4 −3.00(7) 0.9998 0.3 −1.33(6) 0.9999 0.2
NS80 −0.16(8) 0.9998 0.6 −2.64(8) 0.9996 0.4 −1.46(9) 0.9999 0.4

Aluminosilicates
Ca3627 −1.6(1) 0.9998 0.7 −5.1(3) 0.9991 3 −2.6(2) 0.9996 1.0
Ca4412 −2.0(1) 0.9995 1.8 −5.5(4) 0.9984 6 −3.0(3) 0.9992 3.0
Ca7611 −1.59(6) 0.99991 0.3 −4.75(6) 0.9999 0.3 −3.23(5) 0.99997 0.09
NaAlSi3O8 −3.1(3) 0.9997 0.5 −5.5(2) 0.9998 0.3 −5.1(2) 0.9998 0.4

Borosilicates
Pyrex 1.0(4) 0.9931 9.6 −4.5(3) 0.9959 5.7 0.4(5) 0.9940 8.3
BB 0.11(9) 0.9998 0.4 −2.2(2) 0.9995 0.9 −1.1(1) 0.9997 0.5
BNC 0.005(51) 0.9999 0.3 −2.99(9) 0.9998 0.5 −1.16(3) 0.99998 0.06
E −1.4(3) 0.99997 0.06 −4.8(1) 0.9997 0.8 −3.04(8) 0.99992 0.2

Titania-Silica
24Na2O − 76SiO2 0.71(8) 0.9997 0.3 −1.16(6) 0.9999 0.1 −0.25(7) 0.9999 0.2
23Na2O − 1TiO2 − 76SiO2 0.55(8) 0.9998 0.3 −1.56(6) 0.9999 0.1 −0.54(7) 0.9999 0.1
22Na2O − 2TiO2 − 76SiO2 0.77(9) 0.9996 0.4 −1.3(1) 0.9997 0.4 −0.2(1) 0.9997 0.3
19Na2O − 5TiO2 − 76SiO2 0.5(1) 0.9997 0.4 −1.80(8) 0.9999 0.2 −0.6(1) 0.9998 0.2
17Na2O − 8TiO2 − 75SiO2 1.07(8) 0.9999 0.2 −1.6(1) 0.9999 0.2 0.0002(103) 0.99992 0.1
15Na2O − 9TiO2 − 76SiO2 0.59(4) 0.99998 0.03 −2.10(9) 0.99992 0.1 −0.61(5) 0.99999 0.02
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