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Killing versus branching: Unexplored facets of diffusive relaxation
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We analyze the relaxation dynamics of Feynman-Kac path integral kernel functions, in terms of branching
diffusion processes with killing. This amounts to the killing versus branching approach to path integration, which
seems to be a novelty in the pathwise description of conditioned Brownian motions and diffusion processes
with absorbing boundaries. There, Feynman-Kac kernels appear as building blocks of inferred (Fokker-Planck)
transition probability density functions. A consistent probabilistic meaning is hereby provided (killing versus
branching time rate) to bounded from below Feynman-Kac potential functions, which instead of being positive-
definite (a standard killing paradigm), may take negative values on bounded spatial subdomains (that inflicts
trajectory branching).
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I. MOTIVATION

The familiar Feynman-Kac formula [1–3] for nonnegative
potential functions has received a canonical probabilistic in-
terpretation in terms of diffusion processes with killing [4,5],
ultimately resulting in the asymptotic decay of the related
F-K kernel function. It has been noticed, that for renormal-
ized potentials (“potentials with subtraction” [3,6]), the killing
can be tamed [1] but no probabilistic interpretation has been
associated with the pertinent “tamed dynamics.” Basically, in
view of the obvious “proliferation” of involved sample trajec-
tories, whose surplus (sometimes named “mass creation” in
the mathematical literature) seems to invalidate a customary
probabilistic reasoning.

We assign a direct probabilistic meaning to the relaxation
dynamics (when in existence) of Feynman-Kac path integral
kernel functions, in terms of the tamed-killing-diffusion pro-
cess, in which killing is (over)compensated by branching of
still alive sample paths. We explain a probabilistic origin of
the compensation effect.

To this end we follow a strict logical route, beginning
from conditioned diffusion processes, with a built-in killing
mechanism, investigate the decay of the “probability mass”
(its loss), and propose a decay-prohibiting solution in the form
of the taming mechanism. The relaxation property is hereby
enforced by the branching of not yet killed paths.

The present endeavor departs directly from the discussion
of various aspects of the relaxation versus killing intertwine
in the pathwise analysis of the Brownian motion in trapping
enclosures, cf. Refs. [1,7,8]. That actually stems from the
pseudo-Schrödinger reformulation of the Fokker-Planck dy-
namics [9,10] and the validity of the Feynman (respectively,
Feynman-Kac) path integration route in the derivation of inte-
gral kernels of closely related motion operators exp(tL∗) and
exp(−tH ) [2,3,11,12], cf. also Refs. [13–15].

Here L∗ stands for the Fokker-Planck generator, while H
for the associated Schrödinger-type Hamiltonian, [1,10,12].
We point out that the integral kernels in question are tran-
sition probability densities p(y, s, x, t ) = [exp(tL∗)](y, x),

0 � s < t of the diffusion process and (Euclidean) prop-
agators k(y, s, x, t ) = [exp(−tH )](y, x) of the generalized
Schrödinger equation, where H = −(1/2)� + V , and the po-
tential function V (x) may take negative values on bounded
domains, while being bounded from below.

We focus on Markovian diffusion processes driven by
conservative (gradient) time-independent drift fields. Let us
consider a diffusion process X (t ), associated with the stochas-
tic differential equation of the Langevin-type (here interpreted
in terms of infinitesimal time increments)

dX (t ) = b(X (t ))dt +
√

2νdW (t ), (1)

where b(x) stands for a forward drift, ν is a diffusion constant
(2ν is interpreted as the variance parameter), and W (t ) is the
normalized Wiener noise in R, defined by expectation values
〈W 〉 = 0 and 〈W (s)W (t )〉 = δ(s − t ).

From now on we rescale the diffusion coefficient to the
value ν = 1/2 to conform with the notation of Refs. [1,2,12].
Accordingly, if an initial probability density function ρ0(x)
is given, then its time evolution ρ0(x) = ρ(x, 0) → ρ(x, t ) =
[exp(tL∗)ρ0](x) follows the Fokker-Planck equation:

∂tρ = 1
2�ρ − ∇(bρ) = L∗ρ, (2)

where the operator L∗ = ν� − ∇(b ·) is a Hermitian L2(R)
adjoint of the, traditionally favored by mathematicians, diffu-
sion generator L = ν� + b∇ [10].

We anticipate the existence of a transition probabil-
ity density function p(y, s, x, t ), 0 � s < t � T , (T → ∞
is admissible) for the diffusion process Eqs. (1) and (2):
ρ(x, t ) = ∫

p(y, s, x, t )ρ(y, s)dy. We presume p(y, s, x, t ) to
be a (possibly fundamental) solution of the Fokker-Planck
equation, with respect to variables x and t , i.e., ∂t p(y, s, x, t ) =
L∗

x p(y, s, x, t ).

A. Relaxation regime

Given ρ(x, t ) solving Eq. (2). Let us introduce an osmotic
velocity field u = ∇ ln ρ1/2 and the current velocity field v =
b − u, with b = −∇φ, where φ = φ(x) is time-independent.
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PIOTR GARBACZEWSKI AND MARIUSZ ŻABA PHYSICAL REVIEW E 110, 014127 (2024)

We can readily rewrite the Fokker-Planck equation as the con-
tinuity equation ∂tρ = −∇ j, where j = v · ρ has a standard
interpretation of a probability current.

We assume that the diffusion process asymptotically
relaxes to the stationary (invariant) strictly positive probability
density function (pdf), ρ(x, t ) → ρ∗(x) as t → ∞. In the sta-
tionary regime we have j → j∗ = 0 and thence v → v∗ = 0.
Since b is time-independent, the drift field potential (presumed
to be confining) φ(x) becomes correlated with ρ∗: b = u∗ =
∇ ln ρ

1/2
∗ = −∇φ. Accordingly, a stationary solution of

the Fokker-Planck equation actually appears in the form
(Gibbs-Boltzmann by provenance [1]) ρ∗(x) =
(1/Z ) exp[−U (x)], with the normalization constant
Z = ∫

R exp(−U )dx, where U (x) = 2φ(x).
Following a standard procedure [9,10], given a stationary

density ρ∗(x), one can transform the Fokker-Planck dynamics
into an associated Hermitian (Schrödinger-type) dynamical
problem in L2(R), by means of a factorization:

ρ(x, t ) = �(x, t )ρ1/2
∗ (x). (3)

Indeed, the Fokker-Planck evolution of ρ(x, t ) implies the va-
lidity of the generalized diffusion (Schrödinger-type) equation

∂t� = 1
2�� − V� = −H�, (4)

for �(x, t ) = [e(−tH )�](x), with �(x.0) = ρ(x, 0)/ρ1/2
∗ (x).

Note that the ρ(x, t ) → ρ∗(x) as t → ∞ needs to be paral-
leled by �(x, t ) → ρ

1/2
∗ (x); hence, �(x, t ) itself exhibits the

relaxation behavior (its pathwise implementation is actually
the main focus of the present paper).

We demand that Hρ
1/2
∗ = 0, which implies that the admis-

sible functional form of the potential function V (x) derives as
a function of ρ

1/2
∗ (x) [1]:

V (x) = 1

2

�ρ
1/2
∗

ρ
1/2
∗

= 1

2
(b2 + ∇b) = 1

2
[(∇φ)2 − �φ], (5)

with b(x) = −∇φ(x). Note that proceeding in reverse, the
functional form (5) of the potential function V (x) is a guar-
antee for the existence of the bottom eigenvalue zero of the
Hermitian operator H = − 1

2� + V , associated with a strictly

positive ground state ρ
1/2
∗ (x).

We note that by its very derivation, the potential function
V (x) is not necessarily positive definite, nor nonnegative, but
surely is bounded from below and continuous (this is secured
by the properties of ρ∗(x) and thence φ(x) = ∇ ln ρ

1/2
∗ ). This

admissible negativity property of V (x) on bounded subsets of
R will be of relevance in our further discussion. We shall relate
it to the concept of trajectory cloning (branching) for killed
diffusion processes.

B. Path integration hints

Let us notice that by employing the identity ∇(bρ) =
(b∇)ρ + ρ(∇b) we can rewrite the Fokker-Planck operator
L∗, Eq. (2), as follows:

L∗ = 1
2� − b∇ − (∇b) = 1

2 (∇ − b)2 − V, (6)

where V has been previously defined in Eq. (5), cf. Ref. [12].

It is known [2,11,12] that the transition probability densi-
ties of the diffusion processes in question, actually coincides
with the integral kernel of the motion operator exp(tL∗):

p(	y, s, 	x, t ) = [eL∗(t−s)](	y, 	x). (7)

Moreover [11], Fokker-Planck transition probability den-
sity functions and probability densities, for diffusions with
(non)conservative drifts, are known to be amenable to
Feynman’s path integration routines. In case of conservative
drifts, this can be achieved by means of a multiplicative
(Doob-like) conditioning of the related (strictly positive)
Feynman-Kac kernels, [1,3,7,8,11,12,16], provided the exis-
tence of stationary pdfs is granted.

The path integral context for drifted diffusion processes has
been revived in Refs. [2,11,12], through the formula “for the
propagator associated with the Langevin system” (1) [e.g., the
integral kernel of the operator exp(tL∗)]:

p(y, 0, x, t ) = exp(L∗t )(y, x)

=
∫ x(τ=t )=x

x(τ=0)=y
Dx(τ ) exp

[
−

∫ t

0
dτL(x(τ ), ẋ(τ ))

]
,

(8)

where the τ -dynamics stems from the (actually Euclidean)
Lagrangian L:

L(x(τ ), ẋ(τ )) = 1
2 [ẋ(τ ) − b(x(τ ))]2 + 1

2∇b(x(τ ))

= 1
2 ẋ2(τ ) − ẋ(τ )b(x(τ )) + V (x(τ )), (9)

with V (x) given by Eq. (5).
Remark 1: We recall that the “normal” (e.g., non-

Euclidean) classical Lagrangian would have the form
L = T − V with T = ẋ2/2 and V (ẋ, x, t ) = V − ẋb. The
diffusion-induced Lagrangian (9) clearly has the Euclidean
form L = T + V .

Let us consider the action functional (e.g., minus exponent)
in Eq. (8), in association with the drift field b = −∇φ =
∇ ln ρ

1/2
∗ . We readily infer that the term ẋ(τ ) b(x(τ )) in the

Lagrangian (9) contributes∫ t

0
ẋ[−∇φ(x(τ ))]dτ = −

∫ t

0

d

dτ
φ(x(τ ))dτ

= φ(x(0)) − φ(x(t )) (10)

to the action functional.
Therefore, the related probability density function [path

integral kernel of exp(tL∗)] can be rewritten in the form

p(y, 0, x, t ) = eφ(y)−φ(x) k(y, 0, x, t ), (11)

where the new function k(y, 0, x, t ) is no longer a transition
probability density (does not integrate to one) but an inte-
gral kernel of another motion operator [actually exp(−tH ),
cf. Eq. (4)]:

k(y, 0, x, t ) =
∫ x(τ=t )=x

x(τ=0)=y
Dx(τ ) exp

[
−

∫ t

0
dτLst (x(τ ), ẋ(τ ))

]
,

(12)
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where

Lst (x(τ ), ẋ(τ )) = 1
2 ẋ2(τ ) + V (x(τ )), (13)

and V is given by Eq. (5).
On the operator level, the passage from the transition

kernel p of Eq. (8) to k of Eq. (12) amounts to the similarity
transformation [1,2,10,12]:

H = eφL∗e−φ = − 1
2� + V, (14)

which in fact “stays behind” the transformation (3), map-
ping the Fokker-Plack equation into the generalized heat
(Schrödinger-type) equation. The outcome can be readily
verified by resorting to the operator identity eφ∇e−φ =
∇ − (∇φ).

Accordingly, we have [exp(−tH )](y, x) = k(y, 0, x, t ),
whose path integral evaluation reduces to the Feynman-Kac
formula (12) [3,4,16].

Concerning the generalized diffusion equation (4), we
clearly have �(x, t ) = [e(−tH )�](x) with H , Eq. (14). It is
useful to mention that for an undisputable validity of the
formalism, we need to impose some assumptions upon the
potential function V: to be continuous and bounded from
below function, plus an implicit technical assumption that
H is not merely Hermitian, but a selfadjoint operator [3,4].
Then, we know that k(y, 0, x, t ) = k(x, 0, y, t ) is positive sym-
metric integral kernel of the semigroup operator exp(−tH ),
given by the Feynman-Kac formula with an explicit V entry,
cf. Refs. [4,6–8]. We emphasize that V may take negative
values, while being bounded from below.

C. What does the Feynman-Kac formula tell us about
the trajectories fate and destiny?

While in the path integral vein, we recall that the Feynman-
Kac formula can be redefined as a weighted integral over
sample paths of the Wiener process (colloquially, the free
Brownian motion), with the conditional Wiener path measure
μ(y,0,x,t )(ω) being involved [3,4,6]:

k(y, 0, x, t ) = [exp(−tH )](y, x)

=
∫

exp[−
∫ t

0
V (ω(τ ))dτ ] dμ(y,0,x,t )(ω). (15)

Here paths ω originate from y at time t = 0 and their destina-
tion is x to be reached at time t > 0). In passing we note that
in contrast to the kernel function k(y, 0, x, t ), transition pdfs
p(y, 0, x, t ) are not symmetric functions of x and y.

We may here try to imagine a pictorial view of the
Brownian motion in potential energy landscapes, as set by
Feynman-Kac potential spatial profiles. The Wiener path mea-
sure in Eq. (15) refers to paths of the free (undisturbed)
Brownian motion, and it is the exponential factor which rep-
resents [4] “the distortion of the distribution of free-particle
paths, introduced by the potential.” Thus, a possible pathwise

interpretation of the Feynman-Kac formula can be given in
terms of a random mover in a potential V (x), which acts as
a mechanism that reinforces or penalizes the random mover
tendency to reside or go into specific regions of space. A
“responsibility” for a weighted redistribution of random paths
in a given time interval, is here transferred from drift fields of
Eq. (1) to the spatial variability of potentials V (x) of Eq. (5),
specifically to their curvature and steepness.

There is, however, a problem. For the validity of the above
pictorial view, we should presume that once released from
y at t = 0, a bunch of continuous sample trajectories should
be in existence (survive) up to the terminal point x at time t .
There should be no loss or gain of the “probability mass,” like,
e.g., changes in the overall number of involved sample paths,
or surplus and deficit contributions from a priori admissible
paths with random starting and terminal times [5,17–20].

Essentially, if one accepts the realistic particle propaga-
tion ansatz, then in the quantum mechanical contexts (the
pseudo-Schrödinger equation (5) being tentatively included)
nonrelativistic particle paths in a field of a potential should
never be terminated [4]. We point out that while taking the
“random mover” concept seriously, the killing picture de-
scribed above might be appropriate when one relates the
average to a diffusion process in a medium capable of absorp-
tion, like, e.g., the diffusion of neutrons in a nuclear reactor
with active moderator materials.

1. Killing alternative

However, we may invoke the killing alternative, favored in
Refs. [5–20]. Then, the Feynman-Kac formula is interpreted
as a weighted average over the Wiener process with weight
exp[− ∫ t

0 V (ω(τ ))dτ ] for each sample path. Let us tentatively
assume, [4,5], that V (x) � 0, departing for a while from the
generic property of the (a priori) confining potential V (x) to
be bounded from below [that in principle allows V (x) to take
negative values in bounded subdomains in R].

We may picture a set of Wiener paths in the (x, τ ) space
in terms of a random killing mechanism inflicted by V (x).
Namely, we admit that a particle following one of sample
paths gets killed at a point x, in the time interval δτ (infinites-
imally dτ ) with the probability V (x)δτ .

The killed path is henceforth removed from the ongo-
ing (surviving) ensemble of Wiener paths. That modifies the
statistics of paths-in-existence to the extent, that at the final
time t , the Feynman-Kac average is taken exclusively with re-
spect to paths, which survive the full period [0, t] to complete
their travel from y to x.

The factor exp[− ∫ t
0 V (ω(τ ))dτ ] in Eq. (18) is a probabil-

ity that a particle (random mover) completes its path from
(y, 0) to (x, t ), cf. Ref. [4].

Denoting W (τ ) the Wiener process, cf. Eq. (1), we can
write a formal stochastic differential equation for the diffusion
process with the killing rate V (x) � 0:

X (τ + dτ ) =
{ ∅ with probabilityV (X (τ ))dτ,

X (τ ) + dW (τ ) with probability [1 − V (X (τ ))dτ ].
(16)

014127-3
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Since the operator H = −(1/2)� + V is the generator of
the diffusion process with killing, we recognize Eq. (4),
with �(x, t ) = [exp(−Ht )�](x), as the appropriate motion
rule (generalized diffusion equation) following directly from
Eq. (16) [13]. Surely, �(x, t ) does not conserve probability,
and for V > 0 asymptotically approaches 0.

2. Branching alternative

We emphasize, that the V > 0 ansatz temporarily excludes
from considerations bounded from below potentials, which
are negative-valued on finite open subintervals in R.

We shall abandon this restriction below, thus enforcing a
compensation of killing via cloning of trajectories, and ulti-
mately by introducing branching diffusion processes in the
context set by Eqs. (4), (5), and (15). To this end we shall
accomplish the pathwise construction of such processes, in
conjunction with simple Hamiltonian model system, naturally
associated with Eqs. (1)–(5) and subsequently with Eqs. (8),
(12), and (15).

For further analysis, we select exemplary potentials V (x)
for the Hamiltonian (14), in the form of Eq. (5) deriving from
the Fokker-Plack drift, b(x) = −∇φ = ∇ ln ρ

1/2
∗ :

(i) the downward shifted harmonic potential

V (x) = 1
2 (x2 − 1) = V (x) − 1

2 , (17)

where 1/2 is the bottom eigenvalue of the standard quan-
tum harmonic oscillator with V (x) = x2/2. The Feynman-Kac
potential V (x), which is negative in (−1, 1), derives from
b(x) = −x, related to ρ∗(x) = π−1/2 exp(−x2);

(ii) the downward shifted infinite well potential

V (x) =
{

−π2

8 , x ∈ (−1, 1),

∞, x ∈ R \ (−1, 1).
(18)

This constant potential is negative in (−1, 1), and can be ob-
tained by shifting down (energy renormalization) the standard
infinite well potential by the lowest eigenvalue π2/8 of the
energy operator with potential bottom set at 0, cf. Ref. [1]
[the “standard” potential has the form of Eq. (18), but takes
the value 0 in (−1, 1)]. The emergent V (x) = −π2/8, x ∈
(−1, 1) derives from the Fokker-Planck drift for the process
confined in the interval forever, b(x) = −(π/2) tan(xπ/2),
with ρ∗(x) = cos2(πx/2); see, e.g., Ref. [1].

We note that our exemplary Hamiltonians have the bottom
eigenvalue 0, with ρ

1/2
∗ as the corresponding (ground-state)

eigenfunction; compare, e.g., also Refs. [3,6,15].
Our further discussion will refer to a less restrictive

conceptual setting, where the sample path notion will not
necessarily refer to realistic particle trajectories, but to more
abstract sample paths to be followed in the course of a
stochastic diffusion process (it is useful to remember that the
mathematical construct of Wiener paths may be safely termed
“unrealistic”). This will ultimately lead us to the “branching
alternative” as an appropriate diffusion scenario underlying
the dynamics (15) in case of Feynman-Kac potentials with
finite negativity domains.

A more detailed pathwise discussion of the branching alter-
native is relegated to Secs. II B, II C, and II D. Here, we extract
from the formulas (17) and (18) the respective branching rates,

born to action if x(t ) ∈ (−1, 1): (i) −V (x(t )) = 1
2 [1 − x2(t )],

and (ii) −V (x(t )) = +π2/8.
We recall that the nonegative Feynman-Kac potential

V (x(t )) � 0, has been interpreted as the killing rate in (16).
Accordingly, V (x(t ))δt is used as a killing probability if V
is positive, while −V (x(t ))δt is interpreted as the branching
probability if V is negative.

Technical Comment 1: We emphasize that the killing and
branching rates turn over into respective killing and branching
probabilities, only after multiplying them by properly tuned
time increments δt (ultimately infinitesimal, denoted dt). In
particular, in reference to the branching simulations, we re-
alize that the harmonic potential (17) has a minimum −1/2
for x ∈ (−1, 1), while the potential (18) takes the constant
value ∼ − 1.23 for x ∈ (−1, 1). Time increments involved
in our simulations are δt � 0.001. In the harmonic case, the
killing effect is to occur for |x| > 1, where V (x) > 0 and for
|x| >

√
3, we have V (x) > 1 → ∞. In computer simulations

we always impose a spatial cutoff on the admissible domain.
Then, the preselected xmax > 0 defines the local maximum
for the potential (17) in the domain [−xmax, xmax]. The value
of V (±xmax) = Vmax dictates the fine tuned choice of δt , al-
lowing to secure the consistent killing probability meaning of
V (x)δt � 1 for x ∈ (−xmax, xmax).

These reservations are actually observed in the killing and
cloning (trajectory bifurcation) and move-on scenarios em-
ployed in the direct pathwise analysis of Sec. III A.

II. DIFFUSION PROCESS WITH KILLING
AND CLONING (BRANCHING)

A. Killing can be tamed: Harmonic potential

Since we know [1,7,8] (see below) exact analytic formulas
for Feynman-Kac integral kernels with quadratic potentials,
we shall consider two options concerning the choice of the
potential in Eq. (15): (i) nonnegative, harmonic one V (x) →
V (x) = x2/2, and (ii) bounded from below V (x) = (x2 −
1)/2 = V (x) − 1/2, which is negative in (−1, 1) (e.g., the
“harmonic potential with subtraction”, [6]). We keep y = 0
as the initial t = 0 starting point for all trajectories.

This entails a visualization of the drastic difference in the
asymptotic t → ∞ behavior of k(0, 0, x, t ), while set against
k0(0, 0, x, t ), which is of major interest in our subsequent
discussion, and ultimately will lead us to the concept of
branching diffusion processes in the context of the dynamics
inferred from Eq. (15).

For clarity of discussion, we recall the analytic form of
the integral kernel of the motion operator for the killed dif-
fusion process: [exp(−tH0)](y, x), where H0 = −(1/2)� +
V (x) and V (x) = x2/2 is the standard harmonic potential. We
have [1,3,7,8]

k0(y, 0, x, t ) = exp(−tH0)(y, x)

= 1

(2π sinh t )1/2
exp

[
− (x2 + y2) cosh t − 2xy

2 sinh t

]
.

(19)

On the analytic level of description, the integral
kernel of [exp(−tH )](y, x) with the renormalized harmonic
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potential V (x) = 1
2 (x2 − 1) has the form looking trivially dif-

ferent from the previous formula, since the tamed killing
effect is obtained via a multiplication by exp(+t/2):

k(y, 0, x, t ) = exp(−tH )(y, x)

= exp(+t/2)k0(y, 0, x, t )

= [π (1 − exp(−2t ))]−1/2

× exp

[
1

2
(x2 − y2) − (x − e−t y)2

1 − e−2t

]
. (20)

Remark 2: We can here establish a direct relationship of
the above propagators with the transition probability density
p(y, 0, x, t ) of the familiar Ornstein-Uhlenbeck process in R.
Namely, we have

p(y, 0, x, t ) = k(y, 0, x, t )
ρ

1/2
∗ (x)

ρ
1/2
∗ (y)

= e+t/2k0(y, 0, x, t )
ρ

1/2
∗ (x)

ρ
1/2
∗ (y)

= (π [1 − exp(−2t )])−1/2 exp

[
− (x − e−t y)2

1 − e−2t

]
,

(21)

where the invariant pdf of the OU process reads ρ∗(x) =
(π )−1/2 exp(−x2).

Let us make a closer look at the integral kernel (20), which
refers to the tamed killing [1]. By its definition, at time t = 0,
all sample trajectories are being released from y = 0. Denot-
ing k(x, t ) = k(0, 0, x, t ) we get

k(x, t ) = 1√
π (1 − e−2t )

exp

[
x2

2
− x2

1 − e−2t

]
. (22)

For large-time values, and ultimately t → ∞, the kernel
k(x, t ) asymptotically approaches

K (x) = 1√
π

exp

(−x2

2

)
. (23)

We note a subtle difference, namely (π )−1/2 replacing
(π )−1/4, if compared with the asymptotic form of ρ

1/2
∗ , re-

covered in the OU process.
Let us integrate the kernel (22) over all locations x ∈ R:

K (t ) =
∫ ∞

−∞
k(t, x) dx =

√
2

1 + e−2t
. (24)

Clearly 1 � K (t ) �
√

2, and as t → ∞, the upper bound
K (t ) → K = √

2 ≈ 1.41421 is reached. We note that K (t )
is a monotonically increasing function, hence ∂t K (t ) > 0. To
the contrary, we infer from Eq. (20) that K0(t ) = e−t/2K (t ),
decays exponentially for large t . For completeness, let us add
that in the standard lore K0(t ) → 0, with K0(0) = 1, has the
interpretation of the survival probability for finite times t .

Below we shall give computer-assisted arguments to the
meaning of K (t ) as the quantitative measure of the overall
number N (t ) of alive sample trajectories, while set against
their initial numer N (0). Actually, we shall demonstrate that
K (t ) ≈ N (t )/N (0).

We point out, that this interpretation is a straightforward
generalization of the properties of k0(x, t ) in case of the
pure killing. We have verified that the survival probability
K0(t ) = ∫

R k0(x, t )dx provides a measure of the fraction of
initially released trajectories, which have survived until time
t . Obviously, in the pure killing case, we have N (t )/N (0) < 1
for all t > 0, followed by an asymptotic decay to 0

Effectively, as confirmed in simulations, the initial number
100 000 of released at t = 0 trajectories, in the course of the
branching diffusion with killing, increases up to ≈141 421.
This is encoded in the evolution of K (t ), which begins from
K (0) = 1 and approaches the limiting value K = 1.41421 =
141 421/100 000.

Thus, K (t ) is the relative measure of the “net trajectory
production surplus” in our branching process with killing.

B. Probabilistic detour: Killing and cloning (branching)
may saturate each other

We can legitimately consider K (t ) of Eq. (24) as the L(R)
normalization of the function k(x, t ), Eq. (22). Accordingly,
we get a legitimate probability density function

ρ(x, t ) = k(x, t )

K (t )
, (25)

whose evolution rule directly follows from the motion
rule for k(0, 0, x, t ) = [exp(−tH )](0, x), (22), where H =
(1/2)[−� + (x2 − 1)] and ∂t k = −Hxk. We have

∂tρ = 1

K (t )
∂t k(x, t ) − k(x, t )

∂t K (t )

K2(t )
= −1

2
�ρ − [V + K]ρ,

(26)

where we encounter a specific time-dependent killing-type
contribution K(t ) to the overall expression for the potential
term on the right-hand side of Eq. (26), which is positive-
valued for all t > 0:

K(t ) = ∂t ln K (t ) = + 1

e2t + 1
. (27)

We note that ρ(x, t ) is a monotonically increasing func-
tion toward the asymptotic shape K (x)/K . The “probability
mass”

∫
R ρ(x, t )dx remains conserved and equals 1 for all

times t � 0.
If we interpret the positivity domain of the original po-

tential V (x) = (1/2)(x2 − 1) as responsible for killing, while
the negativity domain as responsible for birth (cloning) of
trajectories, then we need to interpret the negative-valued
“corrector” K(t ) in Eq. (26) as an additional killing term,
which reduces the surplus of cloned trajectories. This secures
that there is no “probability mass” excess, we have observed
in connection with the large-time asymptotic of K (t ) → √

2,
cf. Eq. (24).

We remind that V (x) is negative in (−1, 1) and nonegative
in R \ (−1, 1). Thus the compensating term K increases the
overall killing effect on R against that of cloning alone in
(−1, 1). As a consequence, the random motion ρ(x, t ) not
only preserves the “probability mass” but sets down at the
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PIOTR GARBACZEWSKI AND MARIUSZ ŻABA PHYSICAL REVIEW E 110, 014127 (2024)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

k 
(x

,t)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

k 
(x

,t)

FIG. 1. Left panel: Diffusion with the harmonic V (x) = x2/2 killing rate. An asymptotic decay down to 0; follow the maxima of
depicted curves k(0, 0, x, t ) = k(x, t ) for times t = 0.1, 0.2, 0.5, 1, 2, 5. Right panel: Relaxation process with the Feynman-Kac potential
V (x) = V (x) − 1/2 = (x2 − 1)/2 for the same time instants as in the left panel. The asymptotic curve is K (x) = (π )−1/2 exp(−x2/2), with a
maximum π−1/2 ∼ 0, 5641.

asymptotic stationary pdf,

ρ(x, t ) → ρ∗(x) = K (x)

K
= 1√

2π
exp

(
−x2

2

)
, (28)

which is a normalized Gaussian, with a maximum (2π )−1/2 ∼
0.3989. This should be compared with the π−1/2 ∼ 0.5641
outcome mentioned in the caption of Fig. 1.

We note that the limiting behavior (28) has close links
with the concept of quasi-stationary distributions and related
Yaglom-type limits [21–28].

C. Direct hint toward the branching scenario

In below we shall give a computer-assisted pathwise argu-
ment that by integrating k(x, t ) and eventually K (x) over R,
we get a quantitative (relative) measure of the number of alive
trajectories, if compared with their initial population at t = 0.

Surely, the integrals (23) and (24) have no meaning of the
“survival” or “whatsoever” probability. Nonetheless, Eq. (24)
admits a direct interpretation in terms of the ratio of the
number of actually alive trajectories, while set against the
initial number 100 000 of released trajectories at time t = 0.
In the harmonic case, an overall number of alive trajectories
increases up to a saturation limit, roughly about 141 421.

This conjecture is easily verifiable by means of our simu-
lation killing and branching and move-on algorithm (detailed
in below), for all times of interest. We can literally count all
trajectories crossing at t any predefined spatial subinterval
�x in R. For concreteness, we indicate that �x ≈ 0, 03 is
employed, while considering the interval of interest ([−3, 3]
for reference); see, e.g., Fig. 3. In fact, the coarse-graining of
the reference [−3, 3] needs a bit more meticulous approach,
which we shall explain below in Sec. III, in the subsection
devoted to the trajectory counting procedure.

Accordingly, the number of alive trajectories needs to grow
in the process in which killing (even if we regard it as tamed)
is admitted. And that we can justify only by introducing the
trajectory birth (cloning, branching) process. Ultimately, the
stable balance between killing and branching (“probability
mass generation”) is achieved when we reach (approximately)

the “saturation” number of alive trajectories (like 1.4 × 105,
against the initial number 105 at t = 0).

However, we can expand K (t ) defined in Eq. (24) into
power series for small t ,√

2

1 + e−2t
= 1 + t

2
− t2

8
+ O(t3). (29)

The coefficient 1/2 in the linear term may be interpreted as
the cloning and creation speed for new trajectories appearing
in the branching events, soon after the trajectory release form
y = 0 at t = 0. To justify this interpretation, we note that
for small t , all trajectories are still concentrated in the close
vicinity of (y = x(0) = 0), and they are effectively cloned
(alternatively, given birth) with the probability

−V (x(t ))δt = 1

2
(1 − x2(t ))δt ≈ δt

2
. (30)

We recall that in the interval (−1, 1) our potential V (x) =
(x2 − 1)/2 takes negative values, whose sign inversion leads
to the above probability notion.

For completeness, let us mention that the potential (18)
induces the appropriately modified version of the birth
(branching) probability (30):

−V (x(t ))δt = +π2

8
δt, (31)

which stands for the the birth (cloning, branching) probability
for trajectories in the interior (−1, 1) of the interval with
absorbing ends. The above mentioned trajectory counting pro-
cedure, in this case involves a coarse-graining of the interval
(−1, 1).

D. Interval with absorbing boundaries

Let us consider the interval (−1, 1) as a model arena for
the diffusion process with absorbing boundaries at points ±1,
cf. Refs. [1,7,8,29] (we recall that we assign the value 1/2 to
the diffusion coefficient). We reinterpret the original diffusion
problem through a useful quantum-like artifice of the infinite
well potential, and subsequently a related one, whose well
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FIG. 2. Left panel: Diffusion with killing (absorption) at the boundaries of the interval (−1, 1). An asymptotic decay to 0; follow the
maxima of depicted curves k(0, 0, x, t ) = k(x, t ) for times t = 0.1, 0.2, 0.5, 1, 2, 5. Right panel: Relaxation process with the Feynman-
Kac potential (cloning rate) V (x) = +π 2/8 in (−1, 1), for the same time instants as in the left panel. The asymptotic curve is K (x) =
cos(πx/2), x ∈ (−1, 1). with a maximum 1.

bottom is shifted down on the energy scale to the negative
value V (x) = −π2/8 for all x ∈ (−1, 1). We note that +π2/8
actually is the ground-state eigenvalue of the original quantum
infinite well spectral problem, with the well bottom set at 0.

The Feynman-Kac integral kernel corresponding to the
related (tamed killing) dynamics has the form [1]:

k(y, 0, x, t ) = exp(π2t/8) k0(y, 0, x, t ), (32)

and like in the harmonic case, differs from the standard
killing kernel k0(y, 0, x, t ) by the killing taming factor (here,
exp(π2t/8):

k0(y, 0, x, t ) =
∞∑

n=1

exp(−n2π2t/8) sin
nπ (x + 1)

2

× sin
nπ (y + 1)

2
. (33)

Since sin nπ (y+1)
2 for y = 0 equals sin nπ

2 , which van-
ishes for n even, the kernel k(0, 0, x, t ) = k(x, t ) can be
rewritten as

k(x, t ) =
∞∑

l=0

(−1)l exp[(1 − (2l + 1)2)π2t/8]

× sin

(
(2l + 1)π (x + 1)

2

)
, (34)

or equivalently,

k(x, t ) =
∞∑

l=0

(−1)l exp[(−l2 − l )π2t/2]

× sin

(
(2l + 1)π (x + 1)

2

)
. (35)

For large times k(x, t ) approaches the asymptotic shape

K (x) = sin
π (x + 1)

2
= cos

(
πx

2

)
, (36)

with x ∈ (−1, 1).

Let us integrate k(x, t ) over x, and interpret the outcome as
the quantitative description of the a fate (destiny) of a bunch
(population) of random trajectories, while propagated from
t = 0 to some t > 0. We have∫ 1

−1
sin

(
(2l + 1)π (x + 1)

2

)
dx = 4/[(2l + 1)π ], (37)

and therefore

K (t ) =
∫ 1

−1
k(x, t )dx =

∞∑
l=0

(−1)l4

(2l + 1)π
exp[−(l2 + l )π2t/2].

(38)

For large t (t → ∞) only the l = 0 term survives in K (t ) and
we have

lim
t→∞ K (t ) = K = 4

π
≈ 1.2732. (39)

Clearly,
∫ +1
−1 cos(πx/2)dx = 4/π . Therefore, we can pro-

ceed analogously to the discussion of Sec. II B and introduce
the legitimate probability density function, see, e.g., Eq. (25),
with the relaxation behavior manifested as t → ∞:

ρ(x, t ) = k(x, t )

K (t )
−→ ρ∗(x) = K (x)

K
= π

4
cos(πx/2), (40)

where ρ∗(x) has a maximum at π
4 ≈ 0.7854.

If we turn back to the untamed killing case, i.e., consider
the interval with absorbing ends, then a direct consequence
of Eqs. (32) and (33) is an exponential decay of the sur-
vival probability K0(t ) = e−tπ2/8K (t ) ≈ (4/π )e−tπ2/8 → 0
with t → ∞. For the record, we infer from Eqs. (32) and (33)
the large-time behavior of k0(x, t ) → e−tπ2/8 cos(πx/2) → 0,
cf. the left panel of Fig. 2.

In line with the conclusion of Sec. II A, we tentatively
interpret the asymptotic K value of K (t ) as a quantitative
measure of the overall amount of killed and (re)born paths,
that ultimately survive. We encounter the same as before sig-
nature of the trajectory number increase, due to the excess
of cloning (branching) against killing. Would we have begun
with the number 100 000 of initially released trajectories, their
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FIG. 3. Effects of the pure killing rate V (x) = x2/2 in terms of the counting of surviving trajectories [we depict the recorded numbers
N = N (t )]. Note that scales along the vertical axis change from panel to panel. Time labels stay in correspondence with vertical scales. If read
in the decreasing order of scale upper bounds (left to right and next downwards), then we have: t = 0, 1; N = 99 766, t = 0.2; N = 98 981,
t = 0.5; N = 94 085; t = 1; N = 80 462, t = 2; N = 51 472, t = 5; N = 11 565. Here N (0) = 105. We realize that K0(t ) = (cosh t )−1/2 ≈
N (t )/N (0) → 0.

net number should increase to about 127 323 as t → ∞. In
terms of K (t ) that is encoded in a monotonic growth of K (t )
from K (0) = 1 to K = (4/π ) ≈ 1.2732.

The necessary condition for the validity of the pathwise
diffusive implementation of this result, is that (i) the killing (at

the boundaries) is hereby (over)compensated by the trajectory
cloning (birth, branching) within the interval (−1, 1), (ii) for
large times the killing and cloning rates saturate each other, so
that the stable “survival probability” profile k(x, t ) → K (x) is
reached.
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A computer-assisted analysis, which confirms the validity
of the above killing versus branching trajectory interpretation
will be given in below.

III. DIFFUSION WITH KILLING AND BRANCHING:
DIRECT PATHWISE ANALYSIS

A. Trajectory generation

The trajectory (sample path) picture stems from the
standard Brownian motion {X (t ), t � 0} (e.g., the Wiener pro-
cess) as introduced in Sec. I, and next incorporating killing via
the stochastic differential equation (16). As yet, we have left
aside the cloning (branching) scenario.

To implement a computer-assisted trajectory interpretation
of the killed diffusion process with branching, as outlined
in Secs. I and II, we need to pass from the lore of con-
tinuous nowhere differentiable trajectories, to their space
and time discretized approximants. The simulation proce-
dure, enabling the trajectories counting, is based on standard
assumptions.

Let t ∈ [0, T ], we set δt = T/n for a predefined value of
n ∈ N . The notation δt is fairly informal, but presupposes that
any finite time interval δt of interest can be made arbitrarily
small (we thus bypass the usage of dt). The Brownian walk
is defined according to x(t + δt ) = x(t ) + √

δt × u, where u
is the random variable sampled from the normal distribution
N (0, 1), x(0) = 0.

Our aim is to construct a specific version of the diffusion
process (with a link to the broad subject of branching random
walks and processes [21–28]), where in the course of time we
may have allowed random killing accompanied by random
cloning (branching event, giving birth to the, not yet killed
trajectory, offspring) of sample paths. Our primary motivation
stems form the Feynman-Kac formula, known to be valid
for confining potentials V (x), which may not necessarily be
nonnegative (the essential restriction is that V (x) is bounded
from below and continuous in the area of interest).

Our construction involves the random cloning (branching)
option for all sample trajectories in existence, provided they
visit (any time) the potential V (x) negativity area (−1, 1). If
the trajectory visits the complement of (−1, 1) in R, then it
may be killed (terminated) at random. Trajectories are never
killed in (−1, 1).

We discretize time, as mentioned before (while properly
adjusting n � 1 for different test runs). If the simulated ran-
dom trajectory takes the value x(t ) = x for some t ∈ [0, T ],
then its subsequent “behavior” admits three instances: killing,
cloning, and moving on, whose realization in each simulation
step [t, t + δt ) depends on the concrete value of the potential
V ((x(t )) = V (x), where the sign of V (x) is of particular im-
portance.

We adopt the following killing and cloning and move-on
scenarios:

(1) If V (x(t )) � 0, then we interpret p(t ) = min
(1, δtV (x(t )) as the probability of the killing event at x(t ) = x
(no cloning is allowed in this regime). Depending on the
killing outcome we admit two options for the step [t, t + δt ):

(a) the trajectory is killed at x(t ) = x with the probability
p(t ), and thence removed from the trajectory statistics at the

time t + δt . [For the interval with absorbing endpoints, each
trajectory entering the complement of (−1, 1) is killed with
the probability one].

(b) if the trajectory is not killed, then it moves-on, by fol-
lowing the evolution rule x(t + δt ) = x(t ) + √

δt × u, where
u a random variable sampled from the normal distribution
N (0, 1) [the trajectory survival probability at time t is given
by (1 − p(t ))].

(2) If at x(t ) = x the potential is negative-valued, then
we consider |V (x)| = −V (x(t )) as the probability defining
factor, while setting q(t ) = min(1,−δtV (x(t ))). No killing is
allowed in (−1, 1), and we are left with two options:

(a) the cloning (branching) event—the trajectory clones
itself (produces an offspring) at x(t ) = x with the probability
q(t ), subsequently both the clone and the parent trajectory in-
dependently move on from the branching point, in accordance
with the adopted universal rule x(t + δt ) = x(t ) + √

δt × u,
up to time t + δt . At t + δt we thus need to handle two
trajectories instead of one.

(b) no offspring—the trajectory follows the evolution x(t +
δt ) = x(t ) + √

δt × u, [that with the probability (1 − q(t ))].
Technical Comment 2: The above killing versus branch-

ing scenarios go beyond the reservations of the Technical
Comment 1, and can be adopted to more general confining
potentials, bounded from below but admitting negative values.
Let us choose a priori a certain (small) reference time interval
δt . If for some x we have V (x) > 1 and δtV (x) > 1, then we
may retain a probabilistic interpretation by assuming per force
that p = min(1, δtV (x)) is the probability of the killing event.
In that case the trajectory is killed with the probability 1. Anal-
ogously, if V (x) < −1 and δt |V (x)| > 1, then we (again and
per force) assume that q = min(1, δt |V (x)|) is the branching
probability, the trajectory bifurcates (gives birth to a clone)
with the probability 1.

We emphasize that killing and branching options are mu-
tually exclusive in our procedure. In the branching literature,
cf. Refs. [21–26], one may meet trajectories in which killing
and branching occur at the same space-time point. As well,
one may consider the option of a multiple offspring (not
merely a bifurcation of a trajectory into two) at each branching
instant. This is never the case in our procedure. Ultimately,
after each simulation time step, we deal with a statistics of all
yet alive trajectories.

B. Trajectory counting

In Figs. 3, 4, and 5 we display the outcomes of an explicit
trajectory counting for the considered before harmonic vari-
ants of the Feyman-Kac potential V (x). In below we describe
the adopted counting and display procedure:

(1) We coarse-grain the spatial axis (x label) by divid-
ing the reference interval of interest into small segments of
length �x.

(a) the reference interval (say [−3, 3] in the harmonic case,
or (−1, 1) for killing at boundaries) is selected as follows. At
a given time t , for all alive trajectories we choose a minimal
value xmin of a trajectory location, and likewise a maximal
value xmax;

(b) the obtained interval [xmin, xmax] is divided into 100
segments, with length �t x = (xmax − xmin)/100. We point
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FIG. 4. Effects of the (tamed) killing rate V (x) = (x2 − 1)/2 in terms of counted alive trajectories [we depict the recorded numbers N =
N (t )]. In depicted rows, time labels are encoded in the increasing order from left to right, and further downwards. Note that scales along the
vertical axis change in first four panels. The envelope (continuous curve) has an exact analytic form k(x, t ), as given by Eq. (22). Compare,
e.g., the right panel of Fig. 1.

out that �t x is specific for each chosen time instant
t = 0.1, 0.2, 0.5, 1, 2, 5 and varies from time to time,
cf. Figs. 3 and 4.

(2) Once a time instant is selected, for each consecu-
tive segment �x covering [xmin, xmax], we count the number
n(�x) of simulated trajectories, which reach the pertinent
subinterval.

(3) To obtain the relative measure of the trajec-
tory number increase or decrease, we evaluate h(�x) =

n(�x)/(�x × 105), which is a quantitative measure of the
fraction of counted in a segment �x trajectories, while set
against their initial number 105, per length of the subinterval.
The number h(�x) corresponds to the height of the respective
vertical bar in Figs. 3 and 4.

(4) We note that h(�x) × �x, is the relative number of
alive trajectories in �x at time t , and summing up over all
h(�x) covering [xmin, xmax] gives N (t )/N (0) of Fig. 3, with
N (0) = 105.
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FIG. 5. Left panel:A comparative display of K0(t ) (exponential decay) against K (t ) (relaxation). We point out that K0(t ) = ∫
R k0(x, t )dx

integrates to N (t )/N (0) ≈ K0(t ) = (cosh t )−1/2, cf. Fig. 3. Right panel: A comparison of the analytic formula for K (t ) = e(+t/2)(cosh t )−1/2

(black curve), while set against the numerically retrieved curve N (t )/N (0) (red).

(5) The envelope in each drawing of Fig. 3 is given by an
exact analytic expression for k0(x, t ), cf. Eqs. (19) and (20),
at indicated instants of time. The envelopes in Fig. 4 are given
by the analytic expression for k(x, t ), Eq. (22).

Remark 3: In our simulations, we choose the reference
time T = 5 and n = 50 000, hence δt = 0.0001. The initial
number of released trajectories equals 100 000. All simulated
trajectories are started at t = 0 at the point x(0) = 0. The
outlined above trajectory counting recipe allows to estimate
that in Figs. 3 and 4, the spatial coarse-graining subinterval
�x size varies between 0.01 and 0.05.

C. Harmonic killing versus branching

In Fig. 3 we visualize the pure killing case with the killing
rate V (x) = x2/2. We follow the trajectory generation recipe
of Sec. III A.

In Fig. 3 the envelope (continuous curve) has an exact
analytic form k0(x, t ) = exp(−t/2) k(x, t ), with k(x, t ) given
by Eq. (22).

The pathwise description of the interplay between killing
(not allowed in [−1, 1]) and branching (omnipresent in
(−1, 1) is comparatively provided in Figs. 4 and 5, by means
of computer-assisted arguments (numerical simulation of tra-
jectories, according to Secs. III A and III B). We consider the
Feynman-Kac potential V (x) = (x2 − 1)/2.

In connection with Fig. 5, we point out that K (t ) ≈
N (t )/N (0), at the corresponding time instants. In particular,
K (t ) asymptotically approaches

√
2, and accordingly N (t ) →

105
√

2 ≈ 141 421.
We point out that in the harmonic case, there is no killing

in the closed interval [−1, 1]. The killing rate gradually in-
creases from 0 to ∞ beyond this interval. The smoothness
of the potential results in the perfect agreement of analytic
formulas and simulation (pathwise killing versus branching)
data in Figs. 4 and 5.

D. Killing versus branching for the interval with absorbing ends

The smoothness of the harmonic potential at ±1 will be
lost for the diffusion in the interval with absorbing ends.

There, each trajectory hitting the boundaries ±1 is abruptly
killed, and the branching alternative becomes operational
merely in the open set (−1, 1), where due attention needs to
be paid to the close vicinity of the endpoints of the interval.

We begin from the visualization of the pure killing case,
e.g., diffusion process in the interval (−1, 1) with absorbing
ends ±1. In case of t = 5, the number of alive trajectories
is too small to produce a reliable statistics (compare, e.g.,
t = 5 harmonic killing data in Fig. 3. Note that scales along
the vertical axis change from panel to panel. The envelope
(continuous curve) has an exact analytic form k0(x, t ) given
by Eq. (33). For large times the envelope curve scales down
exponentially to 0, while preserving its functional shape:

k0(x, t ) ≈ e−tπ2/8 cos(xπ/2) → 0, (41)

cf. also the left panel of Fig. 2.
The taming input of branching upon killing is visualized

for the branching rate choice V (x) = −π2/8 in Note that
scales along the vertical axis, except for the first panel are the
same. The envelope (continuous curve) has an exact analytic
form k(x, t ), as given by Eq. (35). Compare, e.g., the right
panel of Fig. 2.

We note that K (t ) ≈ N (t )/N (0) asymptotically approaches
4/π ≈ 1.27, and accordingly N (t ) → 105(4/π ) ≈ 127 000,
which is a definite branching surplus effect, if compared with
N (0) = 105.

In case of the interval with absorbing ends, all simulation
runs are accomplished in the open interval (−1, 1), where
there is no killing, while branching is allowed at a constant
rate. All trajectories passing (reaching) the endpoints ±1
of the interval are abruptly killed. At the boundaries, we
must overcome the singularity of the model (QM by prove-
nance) infinite well potential and the killing versus branching
“abruptness” issue for the diffusion problem.

We have found necessary to allow trajectory cloning,
which is actually admitted in (−1, 1) with a constant probabil-
ity (π2/8)δt , in the slightly reduced domain [−1 + ε, 1 − ε],
instead of (−1, 1) proper. Told otherwise, we do not admit
cloning in the ε vicinity of the endpoints ±1.
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FIG. 6. Effects of the pure killing for the interval with absorbing ends in terms of the counting of surviving trajectories. We depict the
recorded numbers N = N (t ). In all rows, time labels are encoded in the increasing order from left to right and next downwards. We have
t = 0, 1; N = 99 732, t = 0.2; N = 95 138, t = 0.5; N = 69 086; t = 1; N = 37 535, t = 2; N = 11 081, t = 5; N = 258. We note that at
t = 5, the number of available trajectories is insufficient for the reliable statistics.

To have some control over the obvious loss of some
branching trajectories in the overall trajectory statistics, we
test a number of the parameter ε adjustments, to get the best fit
to the analytical data of Sec. II. We have found that the value
of ε can be significantly lowered only in strict correlation

with the improving finesse of the timescale coarse-graining
(δt = T/n with n increasing).

We have comparatively displayed in Figs. 7 and 8 the
analytic and computer-retrieved trajectory counting data for
the interval with absorbing ends, with the cloning rate
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FIG. 7. Effects of the(tamed) killing rate for the interval problem with killing and branching: relaxation with the branching rate V (x) =
−π 2/8 in terms of alive trajectories counting. Time labels are encoded in the increasing order from left to right, and next downwards, like
in Fig. 6.

V = −π2/8. In Fig. 8 the analytic curve K (t ) (black) satis-
factorily agrees with the computer-assisted data, if the best
fit for ε is found, given the value of δt . With the choice of
δt = 10−5 the best fit is ε = 0.0005, cf. the right panel of
Fig. 8.

One can see in both panels of Fig. 8, how slight changes
of ε, which enlarge or diminish the noncloning area (and thus
affect the reproduction of trajectories), lead to quite serious
deviations from the analytic prediction K (t ). Specifically, we
cannot freely minimize ε, with δt predefined and fixed.
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FIG. 8. Interval with absorbing ends. Branching relaxation in terms of K (t ), Eq. (38), black curve, set against numerically retrieved
data for N (t )/N (0) ≈ K (t ), with the predefined choice of δt . Left panel: δt = 0.0001. The best fit corresponds to the noncloning threshold
ε = 0.0015 (green curve). We display results of the enlargement of this fit to the value 0.005 and its minimization to 0.001. Right panel:
δt = 0.00001. By decreasing 10 times the previous δt we pass from ε = 0.0015 to ε = 0.0005 (red). We demonstrate that the best fit
cannot be arbitrarily minimized with δt predefined and fixed. We display deviations of N (t )/N (0) from K (t ), for test thresholds 0.0001
and 0.00005.

In the left panel of Fig. 8, the optimal fit of the noncloning
threshold ε = 0.0015 has been set for δt = 0.0001. In the
right panel of Fig. 8, where δt = 0.00001 allows to minimize
the optimal threshold value down to ε = 0.0005. We expect
that with further lowering of δt , the threshold value of ε would
go down as well, thus increasing the accuracy with which
N (t )/N (0) approximates the analytic outcome K (t ), Eq. (38).

We have verified what might happen if the noncloning area
is narrowed below the optimal value ε = 0.0005, while pre-
serving δt = 10−5. By selecting ε = 0.0001 and ε = 0.00005,
we obtain a definite increase of the number of finally recorded
trajectories. This trajectories surplus is clearly identifiable
beginning from t ≈ 0.5, once compared with the analytically
known behavior of K (t ). We find convincingly confirmed,
that the optimal N (t )/N (0) ≈ K (t ) curve corresponds to ε ≈
0, 0005, albeit some (hyper)fine tuning might still be possible.

IV. OUTLOOK

The above discussion, both analytic and computer-assisted,
of the branching versus killing pathwise scenario for a contin-
uous passage from y at t = 0 to x at t > 0 (clearly realizable
along the admissible, with dead ends bypassed, branching
trajectory) has been motivated out of curiosity. Namely, while
the renormalized Hamiltonians, [3,6], with a conspicuous
shift-down of the potential function on the energy scale, have
been often employed in the literature, due to the inflicted
“tamed killing effects” [1] in the behavior of kernel functions
exp(−tH )(y, x), somewhat unexpectedly nothing has been
said about the intrinsic stochastic background of that behavior.

Relaxing (conditioned) diffusion processes are described in
terms of Fokker-Planck transition probability densities, whose
main building blocks acually are the associated Feynman-Kac
path integral kernels. These kernels share the relaxation prop-
erty as well, and that quite often due to the presence in the
Feynman-Kac exponent, of killing rate (potential) functions

with subtraction [1,6]; check, e.g., Ref. [15] for an alternative
viewpoint.

Here, if a nonnegative V (x) would imply a standard
killing scenario [4,6], then by performing a potentially triv-
ial subtraction we induce quite nontrivial (branching picture)
consequences. The main point here is that H = −(1/2)� +
[V (x)] → H = −(1/2)� + [V (x) − E0] places H in the con-
sidered before (much broader) family H = −(1/2)� + V of
Hamiltonian operators with the vanishing (equal 0), isolated
ground-state eigenvalue, cf. Ref. [15].

In passing we note, that we have extended the original
idea of the reconstruction of a random dynamics from the
sole eigenstate (ground state) of the Schrödinger Hamiltonian
[16,19,30], in a new rather unexpected direction (that, in view
of the branching admixture).

We have quite intentionally skipped routine introduc-
tory phrases, with a message about an overall relevance
and unquestionably broad significance of (i) the killing and
mass creation in the Brownian motion [5–20], (ii) branching
stochastic processes, (iii) quasistationary distributions, (iv)
links with the Feynman-Kac formalism, all that within physics
or beyond physics (social sciences, biology etc.), since these
can be found in Refs. [2–6] and furthermore in Refs. [21–29].

The trajectory picture we have described in the present
paper, effectively reduces each branching event to the tra-
jectory bifurcation at a random time instant. This, to some
extent, may be interpreted in terms of the metaphor, [31],
concerning an uncontrollable multitude of ways allowing to
reach a predefined destiny (here a terminal point x at t), from
a predefined beginning (starting point y at t = 0), along a con-
tinuous path, with branching versus killing events happening
randomly on the way. We note that a continuity property of
the ultimate (uninterrupted) path, is nonetheless preserved and
the terminal point of the trajectory can be always reached by
meticulously avoiding path segments with dead ends (“pruned
branches”).
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