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Self-diffusion coefficient as a function of the thermodynamic factor
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Much effort has been put into developing theories for dense fluids; as a result of these efforts many theories
work for a certain type of particle or in a certain concentration regime. Rosenfeld proposed a dependence of the
self-diffusion coefficient on the excess entropy. Our proposal is similar to Rosenfeld’s in that it also attempts
to describe diffusion in terms of a thermodynamic function but, instead of the excess entropy, we use the
thermodynamic factor or the excess chemical potential. Simulations were taken for hard spheres and our model
was fitted with two free parameters. Simulations were then carried out for a Lennard-Jones gas and our model
correctly described the new data with the value of the free parameters that we had obtained for hard spheres.
This is a feature of our model that we wish to emphasize, since the usual situation is that parameters have to
be readjusted for different interaction potentials. An experimental xenon self-diffusion data set was used as an
example of where the model can be applied, especially in the high-density regime.
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I. INTRODUCTION

Since the development of the Boltzmann theory, and the
Chapman-Enskog method [1], that permits the evaluation of
transport coefficients in a dilute gas, many efforts have been
devoted to extend the theory to dense fluids. An early attempt
was the Enskog theory for a dense gas of hard spheres ([2];
see also [3, Sec. 9.3.1]); it reproduces transport coefficients for
moderate concentrations, in the so-called Eskong regime (spe-
cially accurate for viscosity and heat conductivity for reduced
concentrations up to 0.4 or 0.5). Considering that the trans-
port mechanisms in real fluids do not essentially differ from
those in hard spheres, the modified Enskog theory extends the
previous results to real gases [4]. Other approaches involve an
effective hard sphere diameter [5–9] (the softness of a repul-
sive potential is accounted for by an effective diameter that
depends on temperature and possibly also on density, so that
the properties of a fluid can be calculated by the corresponding
hard sphere model), functions of the free volume [10–15], or
of the excess entropy [16–18]. Perturbation theories are based
on the separation of the repulsive and attractive effects of the
intermolecular interaction potential. The hard sphere model is
often used to describe the repulsive part and the effect of the
attractive forces is regarded as a perturbation. Hard spheres
with a temperature dependent size, combined with the van
der Waals theory, have been also used to reproduce transport
properties of real fluids [19–21].

Rosenfeld [16,17] studied the effect of attractive forces by
comparing results for purely repulsive potentials and Lennard-
Jones (LJ) systems and found that the self-diffusion coeffi-
cient against excess entropy on a logarithmic scale lies on
nearly the same line (see also [3, Sec. 9.3.7]). The exponential
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dependence on the excess entropy was verified for several
substances at moderate and large concentrations [18]. Never-
theless, Rosenfeld observed that this exponential dependence
cannot be extended to the small concentration regime for hard
spheres [22].

The results of these efforts are a set of theories that hold
for a specific kind of particle or for different concentra-
tion regimes and that usually require the adjustment of free
parameters.

Our proposal is similar to Rosenfeld’s in that it also at-
tempts to describe diffusion in terms of a thermodynamic
function but, instead of the excess entropy, we use the thermo-
dynamic factor or the excess chemical potential. The proposal
is based on two recent results. The first one applies to a general
particle system divided into small cells; each cell is in local
thermal equilibrium and interactions between cells are ne-
glected. Interactions at the macroscopic level are represented
by the excess chemical potential μex. It has been shown [23]
that the average transition rate between two neighboring cells
with n1 and n2 particles is given by

Wn1,n2 = ν
e−β(μex,n2 −μex,n1 )/2√

�n1�n2

, (1)

where the index order in Wn1,n2 indicates that the jump is from

cell 1 to cell 2, �ni = 1 + βni
∂μex,n1

∂ni
is the thermodynamic

factor, and ν is the jump attempt frequency that depends
on the features of the substratum; β = 1/(kBT ) with T the
temperature and kB the Boltzmann constant. Equation (1)
reproduces the Darken equation [24] (see [23]) that gives
a relationship between the self-diffusion and the collective
diffusion coefficients; it also has been generalized to quantum
systems of noninteracting particles [25]. Since Wn1,n2 is an
average transition rate for any of the n1 particles in cell 1,
it does not provide the transition rate of a tagged particle,
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which is necessary to calculate the self-diffusion coefficient.
Nevertheless, it suggests that, if the self-diffusion coefficient
depends on a thermodynamic function, this function can be
the thermodynamic factor or the excess chemical potential.

The second result is the numerical verification that, in
fact, D/D0 is a thermodynamic function, where D is the self-
diffusion coefficient and D0 is its value at small concentration.
This has been verified for pseudohard spheres and for the
Lennard-Jones potential, with a Langevin thermostat in both
cases [26].

Here, we propose a specific form for this thermodynamic
function, with two free parameters, that has the following
features. It correctly describes numerical results of D/D0 for
hard spheres (HS) for the whole concentration range. The
same parameters fitted for HS are also valid to approxi-
mately represent numerical results for the Lennard-Jones (LJ)
potential.

The paper is organized as follows. The model is introduced
in Sec. II. Our model fit for HS and the simulations and
model fit for LJ gas are included in Sec. III. The example of
xenon experimental data and our model fitting are included in
Sec. IV. Conclusions are presented in Sec. V.

II. MODEL

We introduce a general expression for the self-diffusion
coefficient D. Numerical results of D for hard spheres and for
the Lennard-Jones potential are used in the next section in or-
der to verify the validity of the proposal. As mentioned in the
Introduction, in a previous work [23] we were able to obtain
an expression for the transition rate adopting a coarse grained
picture, where microscopic details are lost. The system is
divided into cells, each cell contains many particles, and it can
be demonstrated that the transition rate per particle between
cells depends on the excess chemical potential, μex, and the
thermodynamic factor, �. This thermodynamic analysis was
used to obtain the self-diffusion coefficient in systems without
memory effects [23] (typically, in a lattice gas with many
particles per lattice site). Memory effects prevent the appli-
cation of Eq. (1) to self-diffusion for particles with hard core
or Lennard-Jones interactions. Nevertheless, the hypothesis
that D/D0 can generally be obtained from a thermodynamic
analysis was numerically verified in Ref. [26]. Then, we are
proposing that D/D0 is a thermodynamic function, but we
do not know it. Equation (1) suggests that the information
needed to obtain the departure of D from its ideal value at
small concentration, D0, is somehow encoded in the excess
chemical potential, μex, or its derivative, included in the ther-
modynamic factor, �. We propose the following expression
for the self-diffusion coefficient:

D/D0 = exp
[
a(� − 1) + bρ σ 3

HS

]
, (2)

where a and b are parameters to be adjusted; the number den-
sity is ρ = n/V and ρ σ 3

HS is a dimensionless number density,
with σHS equal to the particle diameter for hard spheres (HS),
or an equivalent hard-sphere diameter in other cases, and n and
V are particle number and volume, respectively. In the limit of
small concentration we have that � → 1 and D → D0.

Let us analyze the model for a repulsive interaction
potential. Self-diffusivity should decrease as concentration
increases due to system clogging. The term bρ σ 3

HS in the
exponential can be interpreted as a simplification of a free-
volume (Vf ) theory with exponential dependence on Vf for
small concentration [14,27], with b negative. This exponen-
tial decay with density is not enough for an appropriate
description. The information regarding specific features of
the interaction is represented by the term that includes the
thermodynamic factor in the exponential in (2): a(� − 1).
The excess chemical potential increases for increasing con-
centration, since interaction is repulsive, and � = 1 + βρ

∂μex

∂ρ

becomes greater than 1. In this case, parameter a is negative.
The motivation for including the thermodynamic factor is,
as mentioned before, the dependence of transition probabil-
ities on �; see Eq. (1). It is expected that the combination
of both terms provides a satisfactory description of self-
diffusivity in the whole range of concentration. Equation (2) is
equivalent to

D/D0 = exp
(
aβρ μ′

ex + bρ σ 3
HS

)
, (3)

where μ′
ex = ∂μex

∂ρ
.

The information needed to calculate the thermodynamic
factor, or the excess chemical potential, is provided by the
equation of state (EOS), usually represented by the com-
pressibility factor, Z = βp/ρ, where p is the pressure. The
thermodynamic factor is given by (see Appendix A)

� = Z + ρ
∂Z

∂ρ
. (4)

The Carnahan-Starling EOS is frequently used due to its
simplicity and sufficient accuracy to derive thermodynamic
properties of the fluid HS system [28]. Its analytical expres-
sion is

Z = 1 + ϕ + ϕ2 − ϕ3

(1 − ϕ)3
, (5)

where ϕ = ρσ 3
HSπ/6 is the packing fraction.

For the Lennard-Jones system, we use the EOS obtained by
Pieprzyk et al. [29]; see Appendix B. The results derived from
this EOS for the thermodynamic factor are similar to the ones
that can be calculated from other approximate equations for
the Lennard-Jones system as, for example, the EOS of Ree
[30], Kolafa and Nezbeda [31], and Mecke [32].

The self-diffusion coefficient at small concentration is
calculated from the kinetic theory formula based upon the
Boltzmann equation:

D0 = 3

8ρσ 2

(
kBT

πm

)1/2 1


(1,1)∗ , (6)

where 
(s,l )∗ are dimensionless collision integrals obtained
by dividing them by their corresponding HS values and
σ is a characteristic distance parameter between colliding
molecules. For the HS system, σ is the sphere diameter and

(s,l )∗ becomes unitary.
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FIG. 1. Self-diffusion coefficient, relative to the small concentra-
tion value, D/D0, against the packing fraction, ϕ, for hard spheres.
The simulation data (black dots) was taken from Pieprzyk [33]. The
blue continuous curve corresponds to Eq. (2) with a = −0.0336 and
b = −0.958 (and with ρσ 3

HS = ϕ 6/π ). Results of Enskog (green
dashed curve), Eq. (8), and Rosenfeld (red dots), Eq. (10), are in-
cluded for comparison.

III. RESULTS

For the HS system, we used the numerical results obtained
by Pieprzyk [33]. The parameters a and b of the model given
by Eq. (2) were adjusted using the least squares method. The
thermodynamic factor, �, was calculated using the Carnahan-
Starling EOS, Eq. (5). The values obtained for the parameters
are

a = −0.0336, b = −0.958. (7)

Figure 1 shows that the model successfully represents the data
with an accuracy similar to the dot size. For comparison, we
included in the figure the approximations of Rosenfeld [22]
and Enskog [2]. The Enskog diffusion coefficient, DE , for a
dense hard sphere system is

DE

D0
= 1

g(σ )
, (8)

where g(σ ) is the radial distribution function at contact; it
can be shown, using the Carnahan-Starling EOS, that it is
given by (1 − ϕ)3/(1 − ϕ/2). It is well known that, as can
be seen in Fig. 1, the Enskog prediction for the diffusivity
of hard spheres does not appropriately agree with the numer-
ical results; however, Enskog’s theory was quite successful
in describing the viscosity and thermal conductivity of hard
spheres at moderate concentrations (see Chap. 9 in [3]). On
the other hand, Rosenfeld used a dimensional analysis based
on the mean free path and the mean thermal velocity to pro-
pose the following dimensionless diffusion coefficient; see
Eq. (3) in Ref. [22]:

D∗
R = DR

ρ1/3

(kBT/m)1/2
. (9)

In the case of hard spheres, we can use (6) to obtain

DR

D0
= 8

3
√

π
(ρσ 3)2/3D∗

R. (10)

FIG. 2. Our simulations of a Lennard-Jones system are shown in
dark points compared to those of Meier [36] in lighter stars for four
different temperatures T ∗ = 0.8, 1.3, 2.5, and 4. The lack of data
for ρ∗ approximately between 0.1 and 0.7, and T ∗ = 0.8, is because
there is a phase coexistence in that region, whose description would
require a different theoretical approach.

The result of Rosenfeld for the dimensionless diffusion coef-
ficient for hard spheres is

D∗
R � 0.6 e−0.65 s, (11)

where s = −sex/kB, with sex the excess entropy per particle.
The excess entropy can be obtained from the Carnahan-
Starling EOS; the result is

sex = 3 ϕ2 − 4 ϕ

(1 − ϕ)2
. (12)

In Fig. 1 we can see that DR/D0 gives a good approxi-
mation for the hard sphere diffusion coefficient for large
concentrations, but there is a large departure from numerical
results at small concentration. One of the main advantages of
Rosenfeld’s approach is that the diffusion coefficient at large
concentration can be estimated for several different substances
[22] using a factor 0.8 (instead of 0.65) in the exponential of
Eq. (11); see [18] for a variant of the approach.

For the Lennard-Jones fluid, simulations were performed
for the diffusion coefficient for four different temperatures.
Figure 2 shows the results of our simulations in dark dots
for D∗ρ∗ against ρ∗ for T ∗ = 0.8, 1.3, 2.5, and 4; simulation
results of Maier [34] in lighter stars are also included for
comparison. The asterisk superscript indicates dimensionless
quantities; for the LJ system they are defined as

ρ∗ = ρσ 3, T ∗ = kBT

ε
, D∗ = D

1

σ

√
m

ε
, (13)

where ε is the depth of the well of the LJ potential, m is the
mass of the particles, and σ is given by the distance at which
the interaction potential is equal to zero. LAMMPS software
[35] was used for the molecular dynamics simulations. The
parameters used for the simulations are the following. Num-
ber of particles: 3200; thermalization time with a Langevin
thermostat: 50 000 steps; time step 0.001; data gathering time:
100 000 steps; cutoff radius for the Lennard-Jones interaction:
2.5. The Green Kubo formula was used, for the different
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temperatures over the entire density range, to calculate the dif-
fusion coefficient as an integral of the velocity autocorrelation
function:

D = 1

3

∫ ∞

0
〈vi(0) · vi(t )〉dt . (14)

Let us notice that, for interactions other than hard spheres,
we have to specify an effective hard-sphere diameter, σHS,
in order to evaluate Eq. (2) or (3). There are several op-
tions. The form of the radial distribution function is primarily
determined by repulsive forces, while attractive interactions
play a secondary role. This promoted the development of
the perturbation approaches for dense fluids, which usually
combine hard spheres as a first approximation, for the ma-
jor excluded volume and packing effects, with an effective
diameter dependent on temperature and possibly on density.
The essential assumption of the effective hard sphere diam-
eter (EHSD) method is that the properties of a fluid can be
calculated by the corresponding HS model, if the molecu-
lar diameter is replaced by an EHSD, σHS. Various EHSD
equations have been proposed in the literature. Barker and
Henderson published the first successful analysis, adopting
the HS and LJ systems as the unperturbed and perturbing
potentials; this EHSD is only temperature dependent. An-
other milestone in the perturbation theory is the work of
Weeks, Chandler, and Andersen who split up the LJ po-
tential into a reference part containing all repulsive forces
and a perturbing part containing all forces of attraction. The
WCA perturbation theory yields an EHSD dependent on
both temperature and density. We use an expression only
temperature dependent; other expressions from the literature
were tested with similar results. The following expression
for the effective hard sphere diameter, proposed in Ref. [37],
was used:

σHS

σ
= 2

1
6

[
1 + (2T ∗)

1
2

]− 1
6
. (15)

See also Eq. (9.55) in Ref. [3].
Figure 2 shows a good agreement between simulations

results and the model of Eq. (2) with parameters a and b given
by (7), that is, the same parameters used for the fitting of the
HS results.

IV. EXPERIMENTAL DATA

We use self-diffusion experimental data of Peereboom
et al. [38,39] for the 129Xe isotope for four different tem-
peratures: 248 K, 273 K, 298 K, and 343 K; the first two
are below the critical temperature Tc = 290 K. A description
of the xenon system based on the LJ model is used. The
parameters σ = 0.3924 nm and ε/kB = 257.4 K, reported in
[39], were used to go to reduced Lennard-Jones units.

Figure 3 shows the mentioned experimental data and also
the theoretical curve from Eq. (2), for D∗ρ∗ against ρ∗. It is
known that there are some discrepancies when the Lennard-
Jones model is used to describe xenon [36, p. 114]. The
most remarkable is that the isotherm close to and above the
critical temperature (T = 298 K; green dots in Fig. 3) shows
a maximum near the critical density (ρc = 1120.8 kg/m3 or
ρ∗

c = 0.32), while isotherms in the Lennard-Jones model do

FIG. 3. Experimental results, taken from [39], for the scaled self-
diffusion times density, D∗ρ∗, against density, ρ∗, for temperatures
T = 248 K (blue dots), 273 K (orange), 298 K (green), and 343 K
(red). The curves correspond to the model of Eq. (2), where the
Lennard-Jones EOS was used.

not have such pronounced maxima (see Fig. 2). As a conse-
quence, our model also shows that discrepancy in the same
region. On the other hand, there is a good agreement between
model and experiments for large density, in the liquid region.
Parameters a and b are, again, the ones obtained from the HS
system (7).

V. CONCLUSIONS

In a dynamic mean field approximation, where it is as-
sumed that the transition rate for one particle is approximately
equal to the average transition rate of the particles in a cell,
we can obtain, using (1), that the self-diffusion coefficient is
D = D0/� and the collective diffusion coefficient is Dc = D0

[23]; combining both results we have the Darken relationship,
D = Dc/�, that has been successfully applied to diffusion in
solids [40] but, in general, this approximation does not hold
for dense fluids. In the derivation of Eq. (1) it was assumed
that cells are large enough to be taken as thermodynamic
systems and the excess chemical potential is evaluated at the
thermodynamic limit. Further studies are required to verify
this assumption, since small size systems introduce correc-
tions to the chemical potential that may be relevant to the
diffusion process.

There are several factors to be taken into account in order
to arrive to an accurate and general description of diffusion
in dense systems. At large densities, an important correlation
effect is backscattering, whereby a sphere closely surrounded
by a shell of neighboring spheres becomes increasingly locked
in and reverses its velocity on collision, which decreases
diffusion. On the other hand, Alder and Wainwright [41]
showed that the velocity autocorrelation function has a slower
than exponential decay (long time tails), generated by the
presence of vortices, that, instead, enhance diffusion. If the
hypothesis (partially verified in Ref. [26]) that D/D0 is a
thermodynamic function is correct, then the information con-
cerning the influence of correlations on diffusion is already
contained in the EOS. This is a result that represents an
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important simplification for the description of diffusion in
dense fluids.

In this paper, we propose a specific form for that thermo-
dynamic function with two adjustable parameters. The model
(2) includes an exponential function of the thermodynamic
factor that is motivated by the form of the transition rates
(1); the exponent includes also a term proportional to the
density. The model provides an accurate description of the
self-diffusion for hard spheres in the whole density range. The
same parameters, a and b, that were used to fit the model to the
hard sphere data were used for the Lennard-Jones potential,
giving also a satisfactory description of the numerical data.
This is a feature of our model that we wish to emphasize, since
the usual situation is that parameters have to be readjusted for
different interaction potentials.

A set of experimental data of self-diffusion in xenon
was used as an example to which the model (2) can
be applied. The EOS for the Lennard-Jones potential was
used to describe xenon, but it is known that this descrip-
tion is not completely accurate. Nevertheless, the model
approximately matches the experimental results for large
densities.

Additional validation of Eq. (2) using the parameters a
and b from (7), with different interaction potentials, remains
necessary and desirable to strengthen the validity of the
model. Investigation into diffusion utilizing other common
short-range interaction potentials, such as Yukawa or Morse
potentials, will be undertaken in forthcoming research. In
particular, we expect that self-diffusion of particles interact-
ing with the hard-core Yukawa potential (see, for example,
Ref. [42]) will be suitably characterized by Eq. (2), ow-
ing to the dominance of the hard sphere term at short
distances.
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APPENDIX A

In this Appendix we derive the relationship between the
EOS and thermodynamic factor [see, for example, Eqs. (9)
and (11) in [31]]. Let us consider a cell of volume V , number
of particles n, and temperature T . If F is the free energy, the
pressure is p = − ∂F

∂V |n,T and the chemical potential is μ =
∂F
∂n |V,T . The free energy per particle is f = F/n, a function of
density ρ = n/V and temperature. The pressure and chemical
potential are p = ρ2 ∂ f

∂ρ
and μ = f + p/ρ. Knowing that the

compressibility factor is Z = βp/ρ, the thermodynamic factor
can be written as

� = βρ
∂μ

∂ρ
= βρ

(
∂ f

∂ρ
+ ∂ (p/ρ)

∂ρ

)
= βp/ρ + ρ

∂ (βp/ρ)

∂ρ

= Z + ρ
∂Z

∂ρ
. (A1)

APPENDIX B

For completeness, we reproduce here the EOS of Pieprzyk
et al. for the Lennard-Jones potential [29]:

P(ρ, T )

= ρT + ρ2
(

x1T + x2

√
T + x3 + x4

T
+ x5

T 2

)

+ ρ3
(

x6T + x7 + x8

T
+ x9

T 2

)
+ ρ4

(
x10T + x11 + x12

T

)

+ ρ5x13 + ρ6
(x14

T
+ x15

T 2

)
+ ρ7 x16

T
+ ρ8

(x17

T
+ x18

T 2

)

+ ρ9
(x19

T 2

)
+

[
ρ3

(x20

T 2
+ x21

T 3

)
+ ρ5

(x22

T 2
+ x23

T 4

)

+ ρ7
(x24

T 2
+ x25

T 3

)
+ ρ9

(x26

T 2
+ x27

T 4

)

+ ρ11
(x28

T 2
+ x29

T 3

)
+ ρ13

(x30

T 2
+ x31

T 3
+ x32

T 4

)]
e−3ρ2

,

(B1)

where ρ and T are scaled dimensionless quantities in which
the asterisk was omitted to lighten the notation. See Table I in
Ref. [29] for the values of parameters xi, i = 1, . . . , 32.
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