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Stochastic reaction-diffusion models are employed to represent many complex physical, biological, societal,
and ecological systems. The macroscopic reaction rates describing the large-scale, long-time kinetics in such
systems are effective, scale-dependent renormalized parameters that need to be either measured experimentally
or computed by means of a microscopic model. In a Monte Carlo simulation of stochastic reaction-diffusion
systems, microscopic probabilities for specific events to happen serve as the input control parameters. To match
the results of any computer simulation to observations or experiments carried out on the macroscale, a mapping
is required between the microscopic probabilities that define the Monte Carlo algorithm and the macroscopic
reaction rates that are experimentally measured. Finding the functional dependence of emergent macroscopic
rates on the microscopic probabilities (subject to specific rules of interaction) is a very difficult problem,
and there is currently no systematic, accurate analytical way to achieve this goal. Therefore, we introduce a
straightforward numerical method of using lattice Monte Carlo simulations to evaluate the macroscopic reaction
rates by directly obtaining the count statistics of how many events occur per simulation time step. Our technique
is first tested on well-understood fundamental examples, namely, restricted birth processes, diffusion-limited
two-particle coagulation, and two-species pair annihilation kinetics. Next we utilize the thus gained experience
to investigate how the microscopic algorithmic probabilities become coarse-grained into effective macroscopic
rates in more complex model systems such as the Lotka-Volterra model for predator-prey competition and
coexistence, as well as the rock-paper-scissors or cyclic Lotka-Volterra model and its May-Leonard variant that
capture population dynamics with cyclic dominance motifs. Thereby we achieve a more thorough and deeper
understanding of coarse graining in spatially extended stochastic reaction-diffusion systems and the nontrivial
relationships between the associated microscopic and macroscopic model parameters, with a focus on ecological
systems. The proposed technique should generally provide a useful means to better fit Monte Carlo simulation

results to experimental or observational data.
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I. INTRODUCTION

Reaction-diffusion systems, which describe the dynamical
evolution of different species through local reactions that alter
their identity and that propagate diffusively (in the contin-
uum) or through hopping (among discrete lattice sites), arise
in many descriptive models of (bio-)chemical, nuclear, and
particle reactions, population evolution in ecological systems,
spreading of contagious diseases in epidemiology, the physics
and materials science of pattern formation, and evolutionary
game theory in mathematics, computer science, economics,
and sociology [1-17]. However, complete exact analytical
solutions are seldom obtainable for theoretical formulations of
such systems due to the presence of many degrees of freedom,
nonlinear interactions, and the underlying stochasticity. Thus
a statistical approach is often more suitable for investigat-
ing these systems quantitatively. Reactive particle models are
frequently simplified rather drastically by employing a “mass-
action” factorization approximation which ignores the effects
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of stochastic fluctuations such as demographic noise and the
presence of spatio-temporal correlations [13,14,16,18-26].
Consequently, these mean-field-type approximations fail for
systems that exhibit strong correlations between its con-
stituents as can in fact be induced by the reaction processes
themselves, and may entail the emergence of spatial patterns,
coherent oscillatory dynamics, etc. In addition, it is well es-
tablished that even in situations where a reaction-diffusion
system can be modeled qualitatively by means of coupled
mean-field rate equations, often the associated macroscopic
reaction rates that enter as basic parameters in these de-
terministic ordinary or partial differential equations differ
from the corresponding microscopic reaction probabilities per
unit time. Indeed, the macroscopic rates represent effective
scale-dependent, “renormalized” quantities that may become
functions of the elapsed time or reactant particle densities
[27].

“Individual-" or “agent-based” Monte Carlo lattice simu-
lations are commonly used as an efficient numerical tool to
study the properties of reaction-diffusion systems quantitavily
[11,13-16,28,29]. They fundamentally sample the gain-loss
balance master equation that defines the stochastic time evo-
lution for the configurational probability of the system under
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consideration. Their crucial input parameters are microscopic
probabilities that ultimately determine the emergent macro-
scopic long-time behavior of the system, namely, its stationary
properties, if applicable; possible large-scale correlated spatial
structures; as well as the average relaxation time it takes to
reach the steady state; or other important timescales such as
characteristic oscillation frequencies. These simulations are
straightforward to implement and as output generate expecta-
tion values of relevant observables and correlation functions.
Other pertinent quantities, e.g., correlation lengths, charac-
teristic timescales, scaling exponents, etc., may subsequently
be extracted from the correlation functions by means of
various data analysis techniques [11,30-34]. For certain, typ-
ically comparatively simple systems, analytical techniques
including field-theoretic methods may also accomplish the
computation of these observables [12,13,27,35-57].

A large set of various models have been studied exten-
sively using Monte Carlo simulations. We just mention a
small selection here, relevant to our investigations. In binary
coagulation and annihilation models, the strong fluctuation
corrections that drastically alter the scaling behavior of the
particle density relative to the mean-field approximation in
the asymptotic long-time region were confirmed numerically
[27,58-64]. In these pair interaction models, ultimately the
system can still be effectively described by a modified rate
equation but with an effective density-dependent reaction rate,
i.e., a scale-dependent “running” coupling that encodes the
emergence of strong particle anticorrelations and depletion
zones in low dimensions d < 2 [27,45,46,53,63,65-70]. In
the literature, when Monte Carlo simulations are utilized to
investigate these systems, the effective macrosopic reaction
rate was inferred indirectly from measurements of the den-
sity decays. To our knowledge, no attempt has been made
to directly obtain the macroscopic reaction rate by compu-
tational means. In their detailed experiments on the binary
quenching kinetics of laser-induced excitons in quasi-one-
dimensional carbon nanotubes, Allam et al. measured the
effective time- and density-dependent annhiliation rate [71].
Monson and Kopelman [59] eperimentally confirmed the
considerably slowed-down density decay in diffusion-limited
two-species annihilation processes in dimensions d < 4 ow-
ing to species segregation and confinement of reactions to
narrowing reaction zones localized at the interfaces between
the inert single-species clusters [52,54,55,61,63,72,73].

The Lotka-Volterra predator-prey model represents per-
haps one of the simplest reaction-diffusion systems relevant
for ecology that displays unexpectedly rich macroscale fea-
tures [12,14,22,23,30,47,74-76]. This model exhibits both an
active-to-absorbing phase transition, namely, an extinction
threshold for the predator species, and the emergence of dy-
namical spatial patterns in the two-species coexistence phase.
Both these phenomena are probed by calculations of the static
and dynamic correlation functions using Monte Carlo simu-
lations [11-13,30-34,47]. Stochastic fluctuations connected
with the activity or evasion-pursuit fronts continually travers-
ing the system modify its characteristic parameters such as the
population oscillation frequency and damping, the diffusivity,
and the reaction rates and nonlinear couplings. Regardless,
investigations of the connection between microscopic and
macroscopic rates are scarce in the literature. Lastly, three-

species population dynamics models that implement cyclic
dominance motifs such as the cyclic Lotka-Volterra or “rock-
paper-scissors” model, and its May-Leonard variant where
predation and reproduction processes are decoupled, were
also studied extensively by means of Monte Carlo simu-
lations [26,77-98]. Crucially, for the cyclic Lotka-Volterra
model the total particle number is conserved, which causes
its large-scale features to drastically differ from the similar
May-Leonard realization, where this conservation law does
not apply: In contrast to the rock-paper-scissors variant, the
cyclic May-Leonard model displays the spontaneous forma-
tion of spiral spatial patterns.

In this paper we focus on utilizing Monte Carlo simulations
to investigate the functional dependences of the macroscopic
reaction rates on microscopic system parameters as well as
elapsed time and/or reactant densities. The effective coarse-
grained reaction rates can be directly computed by obtaining
the count statistics of the number of reactions occurring of
a specific type at each simulation time step. Numerically
calculating the macroscopic rates thus generates the desired
mapping between the microscopic parameters in the Monte
Carlo algorithm and the effective large-scale reaction rates.
These macroscopic rates may then be plugged into the corre-
sponding rate equations, which constitute a concise and fairly
simple representation of a complex stochastic system. We
shall demonstrate that at least for some models, this technique
18 consistent with known results in the literature, and hence
offers a viable means to effectively include subtle fluctuation
and correlation effects. However, we will also point out that in
other situations, the mere replacement of “bare” microscopic
with effective coarse-grained rates leaves distinct renormal-
ization effects unaccounted for and therefore cannot fully
capture the system’s complex cooperative dynamics.

The article is organized as follows: In Sec. II the typical
Monte Carlo algorithms and our notations are introduced.
Next our method for calculating the macroscopic reaction
rates is outlined. Section III applies this technique to re-
stricted birth processes, wherein the overall population growth
is controlled by on-site restrictions or finite local carrying
capacities. The ensuing macroscopic reaction rates obtained
from the stochastic simulations are used to characterize the
behavior of the system as its density restrictions become per-
tinent, and are compared specifically with the logistic model
for restricted growth. Our method is then implemented for the
well-studied models of diffusion-limited single-species pair
coagulation and two-species binary annihilation in Sec. IV.
Applying our technique to these irreversible binary reac-
tions confirms its consistency with the established scaling
behavior for the renormalized reaction rates. The utility of
our method is highlighted by showcasing that the macro-
scopic rate calculation may be employed to test whether the
system has in fact reached the asymptotic universal scaling
regime. Subsequently, we proceed with a study of the seminal
Lotka-Volterra model for predator-prey competition and coex-
istence in Sec. V. Here the numerically extracted macroscopic
rates are employed to probe the accuracy of the mean-field
rate equations, utilizing the renormalized rate parameters, for
modeling this system. Finally, we apply our technique to the
rock-paper-scissors (cyclic Lotka-Volterra) and May-Leonard
models for cyclic dominance of three competiing species
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in Sec. VI, and investigate the modification stemming from
coarse graining the microscopic Monte Carlo parameters to
effective macroscopic reaction rates. Concluding remarks and
a brief summary are provided in Sec. VIL

II. MONTE CARLO SIMULATION METHODS

In this section we present the algorithm used to perform
the Monte Carlo simulations, and the method of computing
the effective, coarse-grained macroscopic reaction rates. The
models considered in this paper comprise individual particles
of multiple species A;, i € {1,2,...,S}, where S is the total
number of distinct species. The particles are placed on a
regular cubic lattice in d spatial dimensions (with d = 2 if not
explicitly stated otherwise), subject to periodic boundary con-
ditions. They may propagate diffusively via nearest-neighbor
hopping or by producing offspring on neighboring sites. Inter-
actions are described by chemical reactions in the following
manner:

N ® N

in < out
E C; Ai — E C; A,‘ s
i=1 i=1

where ¢i" and ¢ denote the integer stoichiometric coeffi-
cients for species A; as reactants and products, respectively, in
the reaction scheme. In the lattice model, the stoichiometric
coefficients ¢! in fact determine the specified conditions for a
reaction to happen. For example, if ¢ = 2, then the reaction
can occur only if two particles meet on the same lattice site
(“on-site” reactions), or if they encounter each other on neigh-
boring sites (“off-site”). R, represents the reaction probability
per unit time for the reaction labeled with e. Throughout this
paper we shall use Greek letter symbols for reaction rates,

R. =0, 1, A, .... The microscopic reaction rates as imple-
mented in the numerical algorithm shall be interpreted as
propensities.

The (fictitious) time in a Monte Carlo simulation is mea-
sured in units of Monte Carlo time steps (MCSs), which in
an ecological context may be understood as approximately
amounting to a generation, if all pertinent rates are of order
unity. For each MCS, the following algorithmic steps are
performed:

(1) Each site is assigned a propensity value which is the
sum of the microscopic rates of the particles residing in
that site.

(2) A random site is picked based on its propensity value.

(3) A random individual of any species on that site is
picked based on its propensity value.

(4) The chosen particle then performs one of its allowed
reactions based on the propensity value of each process, pro-
vided the prescribed conditions for that process are satisfied.

(5) These steps are repeated as many times as there are
number of particles present in the system at that instant.

Macroscopic reaction rates are then calculated at each
MCS by counting how many stochastic processes (of a spec-
ified type) occur at this time step. The number of reactions is
then divided by the number of particles of the species perform-
ing that given reaction at the start of the MCS. Of course, one
then needs to accumulate sufficient statistics over an appro-
priate number of independent simulation runs. We generally

found that in order to obtain accurate measurements of the
macroscopic rates in the predator-prey models of Secs. V and
VI, anywhere between 20 and 100 independent simulation
runs were sufficient. However, to properly determine the scal-
ing exponents in the pair annihilation models in Secs. IV A
and IV, we required the statistics over 1000 simulation runs.
The ensuing statistical error bars for our simulation data are
smaller than the symbols and hence not visible in the fig-
ures presented below. To clarify this procedure, consider the

simple (unrestricted) birth reaction A 2, 24, with the particles

also performing a hopping reaction A(x;) L A(x;11); here
X;+1 1s to be understood to indicate one of the nearest neigh-
bors of x; (with the lattice constant set to unity). One of the
allowed reactions is always attempted once a particle has been
picked; i.e., a reaction fails only if the prescribed conditions
for that reaction are not met. Therefore, if oy and Dy denote
the microscopic propensities of the birth and hopping reac-
tions, respectively, then the probabilities for these reactions to
occur are given by oy /(op + Dy) and Dy/(op + Dy). Had we
chosen the probabilities for each reaction such that they do not
sum up to unity, then we would need to account for a probabil-
ity p, for nothing to occur. However, one can easily show that
for large systems this just results in an overall time rescaling
by a factor (1 — ps)~" (we have checked and confirmed this
assertion in our simulations). The average number of birth re-
actions occurring per time step is then (N, ) = oo (Na) /(o0 +
Dy). Furthermore, since each reaction increases the number
of particles by one, and there is no other process that alters
the particle number, we can immediately write the exact rate
equation describing the time evolution of the system:
d(Ns(1)) 09

di o0+ Dy (Na(®)) -

This confirms that mean-field rate equations become exact
for linear stochastic reactions, namely, processes that require
only the presence of a single particle. We also note that the
average number of reactions occurring per time step and per
particle is just o = oy/ (09 + Do), which could be set equal to
oy via rescaling time by the factor (oo + Do)~

For nonlinear reactions such as 24 2> A (with additional
hopping transport as before), this calculation becomes an-
alytically intractable (beyond one dimension) due to the
implied condition that two particles need to meet for the
coagulation process to happen. Therefore the average num-
ber of reactions occurring per time step is (N,) = [Lo/(Ao +
Dy)](N4) x prob(two particles meet), where Ay and Dy are
the microscopic propensities for pair coagulation and hop-
ping. The conditional probability of two particles to meet
(on site or in their immediate vicinity) cannot be analyti-
cally evaluated; the mean-field approximation resides in the
assumption of a uniform density of A particles, such that
prob(two particles meet) o a, where a is the mean A density;
this directly leads to the standard coagulation rate equation

d
Z?) ~ —hoa(t)’. (1)

In this study, all models are simulated on regular cubic
lattices with equal side lengths L. We apply periodic boundary
conditions, i.e., set a toroidal topology to eliminate boundary
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FIG. 1. Ratio of effective macroscopic to implemented microscopic birth rates o /oy for restricted birth processes on a square lattice with
side length L = 100, initial density a(0) = 1, and (local) carrying capacity K = 500, plotted (a) as function of time ¢ (in MCSs) and (b) of
the particle density a/K, for various values of oy = 0.05, 0.1, and 1, as indicated. The curves were generated by averaging the data from 20

independent simulation runs.

effects. As mentioned above, the input parameters for the
Monte Carlo simulation are the prescribed microscopic rates,
measured in units of inverse MCSs, and hence the probability
for a reaction to occur is given by the ratio of that rate to the
sum of the rates for all possible processes. If nearest-neighbor
hopping is implemented, it is always chosen to take place,
with a microscopic rate Dy = 1.

II1. SITE-RESTRICTED BIRTH PROCESSES

In this section we first consider the simple example of
a single species of particles that can diffuse and reproduce
on a two-dimensional square lattice. The nonlinearity of the
system is introduced via an on-site restriction parameterized
through the local carrying capacity K, which represents the
maximum number of particles allowed at each site. Therefore

the individuals undergo branching reactions A 2, 24, where
the offspring are generated on a randomly picked nearest
neighbor selected from the von Neumann neighborhood. Birth
reactions succeed with a certain microscopic probability p,,
but only if the chosen adjacent site holds a particle occupation
number below the carrying capacity n < K. We are interested
in measuring the macroscopic reaction rate o, which we de-
fine as the number of reactions occurring per MCS and per
particle: Thus, we take o to be the coarse-grained per-capita
reaction rate that effectively incorporates emerging correla-
tions induced by successively filling the lattice sites as time
progresses and the overall particle density increases. Conse-
quently, the macroscopic reaction rate will become reduced as
function of time and density. This rather elementary example
illustrates the usefulness of Monte Carlo simulations to de-
termine effective macroscopic rates, capturing nontrivial cor-
relation effects. Figure 1(a) shows the effective macroscopic
rate o relative to the microscopic birth rate oy as a function of
time ¢. Of course, initially, when the particle density is low, the
macroscopic rate is equal to the microscopic one, o (t = 0) =
0p. Yet once the lattice starts filling up, we observe a rapid de-
crease in the macroscopic rate o . The time it takes to reach this
point diminishes for larger microscopic oy. These results in-
dicate that the system can be described through unconstrained
linear birth kinetics right until the lattice becomes almost sat-

urated. Since the crossover between these two regimes is quite
abrupt, we can extract a well-defined characteristic timescale
t. for the lattice to fill up and the local carrying capacity
restrictions to impede further growth. Later in this section,
we shall describe a more convenient method to compute this
relevant timescale for the macroscopic dynamics. The coarse-
grained effective rate as a function of the increasing particle
density a is displayed in Fig. 1(b). This plot demonstrates that
while o (a = 0) = oy for low densities, the macroscopic birth
rate o decreases drastically with the mean density a, as one
would expect. We note that the graphs for low microscopic
rates op = 0.05 and 0.1 are very close, and the correlation-
induced reduction of the macroscopic rate begins at almost
the same filling fraction a/K > 0.6. We found the decrease
in o(a/K) to not be described by a simple exponential: A
log-linear plot of this function does not yield a straight line.

To gain a better understanding of the kinetics of this sys-
tem, in Fig. 2 we plot the macroscopic rate o /oy against the
lattice filling ratio a/K, as in Fig. 1(b), but now for different
values of (a) the carrying capacity K and (b) the initial densi-
ties a(0). These results show that the filling fraction at which
the macroscopic rate o begins to markedly diminish depends
nontrivially on K. Furthermore, the function o (a) does not
simply follow the standard linear logistic model behavior, ac-
cording to which o (a) = op(1 — a/K). Only asymptotically,
as the density approaches the carrying capacity, may one
apply a linear fit to the macroscopic rate as function of a.
For low carrying capacity K = 2, our chosen initial density
a(0) = 1 implies that the system is half-filled at the outset
of the simulation. Indeed, in this case the asymptotic lin-
ear regime has already been reached, and a straightforward
data fit yields o (a) = 0.067 — 0.033 a. Consequently, the ef-
fective birth rate becomes renormalized from oy = 0.05 to
o, = 0.067. In contrast, the carrying capacity does not acquire
any renormalization, and the slope of this linear fit in fact
equals half of the y intercept, as predicted by the logistic
equation with K = 2. We found this to be a general feature
for the long-time asymptotic behavior for other K values as
well, as will be discussed below.

The growth function in the logistic model does not depend
on the initial density. This is not true for our lattice birth model
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FIG. 2. Ratio of macroscopic and microscopic birth rates o /oy for restricted birth processes on a square lattice with side length L = 100
and oy = 0.05 as function of the density a/K, for (a) fixed initial density a(0) = 1 and various values of carrying capacity (site occupation
restriction) K = 100, 10, and 2; and (b) fixed carrying capacity K = 500 and various initial densities a(0) = 100, 10, 1, and 0.1. The data were

averaged over 20 independent simulation runs.

with on-site restriction, as demonstrated in Fig. 2(b). Simula-
tions with larger values of a(0) show that the macroscopic rate
o begins to decrease only at higher lattice fillings. While this
observation might appear counterintuitive at first glance, it is
due to the initialization of the simulation runs with a Poisso-
nian particle number distribution. Since the different sites are
initially uncorrelated, it takes some time for mutual correla-
tions to develop and for some lattice sites to reach maximum
capacity. Hence, by the time that a simulation with an initially
lower a(0) value reaches a high overall density a, some sites
are already full, and the growth is restricted to the boundaries
of filled zones. Indeed, if we had instead graphed the time-
dependent macroscopic birth rate o (¢), the systems initialized
with higher a(0) start filling up sooner, as one would expect.
Measuring the macroscopic birth rate o can be utilized to ac-
curately compute the characteristic time 7. it takes the system
to be affected by the on-site restrictions. This method relies on
the fact that the logistic model features a “conserved” quantity,
H({)=a(t)/K+o0(t)/oyp = 1. However, H(t) is no longer
constant in time in the lattice model; as shown in Fig. 3, this

2 H{t) +

o(t)/og x

1.5 a(tyK =
1
0.5
0

0 100 200 300 400 500
t (MCS)

FIG. 3. The functions H(t) = a(t)/K 4+ o(t)/oy, o(t)/0y, and
a(t)/K vs time ¢t (in MCS) for restricted birth processes on a square
lattice with side length L = 100, initial density a(0) = 1, birth rate
oo = 0.05, and carrying capacity K = 500. The data were averaged
over 20 independent simulation runs.

quantity reaches a maximum when the macroscopic rate starts
to decrease as a consequence of emerging local occupation
restrictions and correlations. Hence, locating the maximum
of H(t) in time provides a refined scheme to calculate z..
Applying this prescription, the characteristic crossover time
t. for the lattice to fill up is plotted against the carrying
capacity K in Fig. 4. Our measurements yield a logarithmic
dependence of 7. with respect to K, which indicates that the
mean density a grows exponentially up to z.. Furthermore,
the density at t+ = ¢, sets a characteristic value a, = a(z.) at
which the birth restrictions in the appreciably filled lattice
begin to affect the growth kinetics. One might hypothesize
that a, represents a universal filling fraction, regardless of the
system parameters. However, investigating the dependence of
a. on K demonstrates that a, also depends logarithmically
on K. This can be explained by noting that for higher K
values, the local occupation numbers may grow on more sites
before the on-site restrictions take effect. Therefore, by the
time that a single site has reached maximum occupancy, the
density correlations have already expanded to a larger distance
than would have been possible for smaller carrying capacity.
Hence, at the instant z. when H (¢) reaches its maximum, the
typical lattice filling will be higher for larger values of K.
In summary, the initial kinetics of the restricted birth model
can be characterized as follows: The density a grows expo-
nentially with time, until it reaches the critical lattice filling
a./K, beyond which the growth rate rapidly drops to zero.
This critical lattice filling ratio is logarithmically dependent
on the prescribed carrying capacity K. In order to probe the
long-time behavior of this system, we ran simulations with
small birth rates op, such that enough data points at the
end of the simulation were available. Figure 5 confirms that
the asymptotic regime can be modeled using a decreasing
linear fit for the function o (a), which matches the logistic rate
equation. The fact that the appropriate linear fit function has
equal y intercept and slope suggests that the emerging effec-
tive carrying capacity value is identical with the implemented
on-site restriction K. In contrast, the reaction rate o, = Z oy
attains a multiplicative renormalization factor Z. Therefore,
the asymptotic long-time kinetics for the restricted birth pro-
cesses can be represented well by da/dt = Z oy a(l — a/K),
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FIG. 4. Characteristic crossover time ¢. for the lattice to become
saturated vs carrying capacity log,, K in the restricted birth model
on a two-dimensional square lattice with side length L = 100, initial
density a(0) = 1, and oy = 0.05. The data were averaged over 20
independent simulation runs.

where K is the microscopic on-site restriction. We have indeed
tested and confirmed this hypothesis for different K values.
Fort < t., we found the growing density to be nicely fitted by
an exponential a(z) ~ e'’, with a value for the parameter r that
is close to . This allows us to fully characterize the restricted
birth model as follows: The density a grows exponentially
with the microscopic rate value oy for# < .. In the asymptotic
region ¢ > t., the dynamics can be described by a logistic rate
equation with renormalized effective rate Zoy. Near ¢t 2 1. the
kinetics interpolates between these two distinct regimes.

IV. DIFFUSION-LIMITED BINARY
ANNIHILATION REACTIONS

We next address measuring the drastic rate renormaliza-
tions induced by the emerging intrinsic dynamical correlations
in the diffusion-limited binary reaction processes A +A — A
andA+ B — 0.

0.14
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FIG. 5. Asymptotic long-time behavior of the ratio of macro-
scopic and microscopic birth rates o /oy as function of the density
a/K for restricted birth processes on a square lattice with side length
L = 100, initial density a(0) = 1, small birth rate oy = 0.0001, and
carrying capacity K = 10. The data were averaged over 100 indepen-
dent simulation runs.

A. Single-species pair coagulation

In dimensions below the upper critical dimension, d <
d. = 2, the density decay in the single-species binary coag-

ulation reaction 24 2> A with diffusively spreading particles
is known to deviate from the mean-field scaling a(t) ~ =
with @ = 1, which directly follows from the rate equation (1)
[27,45,46,53,63,65-70]. In the long-time asymptotic region,
the system is then no longer controlled by the reactivity o A,
but by the gradually diminishing chance for pairs of particles
to meet. In this asymptotic diffusion-limited regime, the char-
acteristic distance scale is set by the diffusion length £ (z) ~
(D1)'/? with diffusivity D, whence the long-time decay of
the density a ~ E;d is governed instead by the exponent
o = d/2 [58-64]. In this paper, we also specifically focus on
the scaling of the effective macroscopic coagulation rate with
time A(z) ~ t~# and the mean particle density A(a) ~ a’. The
scaling exponents « and 6 are intimately related, while 8 is
fixed by the definition of the macroscopic reaction rate A.
Therefore a single independent scaling exponent fully char-
acterizes the diffusion-limited pair coagulation model, which
we shall employ to showcase the applicability of our algo-
rithm in determining the strongly renormalized scaling of the
macroscopic reaction rate and its consistency with the correct
asymptotic density decay.

Before discussing the detailed simulation results, we ad-
dress the relationship between the exponents « and 6, and
determine the value of the exponent 8. As mentioned in
Sec. II, we define the macroscopic per-capita reaction rate as
the number of reactions occurring per time step, relative to
number of particles then present in the system. Thus, we can
write the temporal evolution of the mean particle density as an
ordinary differential equation in the following manner [99]:

da
dt

where the nontrivial function A(a) incorporates fluctuation
and correlation effects on a macroscopic scale.

Consequently, the coarse-grained per-capita reaction rate is
A = —dlIna/dt; with a(t) ~ t~, we obtain A ~ o/t ~ al’e,
and hence

= —\a)a, 2)

p=1,

The exponents o and 6 describe the asymptotic correlated
dynamics of the system, whereas measuring the exponent 8
is indicative of deviations from the scaling regime, namely,
when B # 1. The mean-field rate equation approximation
predicts @ = 6 = 1, whereas an exact analysis of the long-
time asymptotic scaling gives « = d /2 and therefore 6 = 2/d
for d < d. = 2. Above the critical dimension, the mean-field
power laws are recovered, while at d., the mean-field scal-
ing is modified by logarithmic corrections. In the following,
we shall address the kinetics in dimensions d = 1, 2, and 3
separately.

For our numerical investigations of this model, we consid-
ered two distinct algorithmic variants, namely, (1) an on-site
implementation where multiple site occupancy is permitted,
and the coagulation reaction occurs if two particles meet on
the same lattice site; and (2) an off-site implementation where
a maximum occupancy of one particle per site is enforced, and

0=1/a. 3)
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FIG. 6. Single-species pair coagulation kinetics 2A % A on a one-dimensional lattice of size L = 1500000 with initial density a(0) =1,
for different microscopic reaction rates Ao = 0.1, 1, and 10, as indicated: Double-logarithmic plots of (a) the particle density decay with time
a(t); the macroscopic effective reaction rate (b) as function of time A(z), and (c) as function of density A(a). The resulting effective scaling
exponents o, 8, and 0 are listed. The data were averaged over 1000 independent runs.

the reaction occurs if two particles encounter each other on
nearest-neighbor sites. For densities much bigger than unity,
the on-site implementation behaves differently than the off-
site variant, which follows the above description: When many
particles are present on the same location, the condition for
a coagulation reaction to happen is actually always satisfied,
which means that the system is effectively subject to the
single-particle death reactions A — ¢ rather than binary pro-
cesses, leading to exponentially fast temporal decay. Hence,
in this work we restrict ourselves to the off-site implementa-
tion, which does not display such algorithmic artifacts even
at high densities. For a large one-dimensional closed chain,
Fig. 6 depicts double-logarithmic graphs for the temporal de-
cay of the mean particle density a(¢) and the time and density
dependencies of the effective macroscopic coagulation rate
A, which allows us to measure the three associated scaling
exponents «, B, and 6. These power laws were numerically
determined by applying linear fits to the double-logarithmic
graphs in the long-time asymptotic region; the latter was
determined via appropriately discarding early-time data that
produced an effective exponent 8 # 1 and retaining the late-
time regime where 8 was closest to unity. We have performed
this analysis here for Ay values in the reaction-limited regime
(Lo = 0.1), deep in the diffusion-limited regime (Ao = 10),
and at the intermediate scale, where nearest-neighbor hops
and binary reactions are implemented with the same proba-
bility (Ao = 1). Simple mean-field scaling can obviously not
adequately describe the coagualation kinetics. For 1y = 1, we
measure B = 1 already after 100 MCS, indicating that the
system has perfectly reached the scaling regime. Correspond-
ingly, we find clean values « = 1/2 and 6 = 2 adequate for
diffusion-limited scaling with a strongly renormalized reac-
tion rate, indicative of strong particle anticorrelations and the
presence of depletion zones. For small Ay, we mostly observe
the reaction-limited regime where the particles remain rather
well mixed, generating effective exponents « and 6 in our
data that approach the diffusion-limited regime, but are still
situated between the mean-field predictions « =6 =1 and
the above asymptotic values. If an adequately large lattice
were afforded sufficient longer simulation time, the kinet-
ics would ultimately cross over fully to the diffusion-limited
regime. However, for Ag = 10, the effective scaling exponents
determined during our simulation time window also differ
slightly from the expected numbers, but are of course well

distinct from the rate equation predictions. For such extreme
discrepancies between hopping and reaction rates, one would
have to run the simulation significantly longer to arrive at
more reliable estimates for the asymptotic scaling exponents.

Two dimensions constitutes a special situation for
diffusion-controlled pair coagulation as the boundary di-
mension between mean-field scaling with « =6 =1 for
d > d. =2 and strongly renormalized scaling exponents o =
1/6 =d/2 for d <d,. At d. =2, the mean-field scaling
behavior becomes modified by logarithmic corrections: Ac-
cording to the renormalization group analysis, the particle
density in the long-time asymptotic regime decays accord-
ing to a(t) ~ Int/t* (with ¢ = 1 here) that in turn implies
A() ~ (1 —a/Int)/t. One could also compute A(a) in terms
of the Lambert W function, yet this results in a complicated
functional dependence, which would be difficult to accurately
confirm in Monte Carlo simulation data. The density scaling
for pair coagulation at d. =2 is explored in Fig. 7 for a
square lattice. The density decay exponent a(¢)/Int ~t=¢ is
found to be close to the predicted value « = 1; as in d = 1,
it shifts towards smaller values for Ay = 10. As for the effec-
tive renormalized reaction rate decay A(z), we discern small
deviations from the expected behavior, which indicates that
prevalent internal reaction noise in our finite system precludes
perfect agreement of the simulation data with the anticipated
asymptotic scaling.

The mean-field density decay a(t) ~ 1/t that follows from
the rate equation (1) is recovered for a three-dimensional
cubic lattice, since for d > d. = 2 fluctuations do not al-
ter the scaling exponents. Rather, stochastic fluctuations and
still present particle anticorrelations merely renormalize the
microscopic parameters implemented in the Monte Carlo sim-
ulation. Figure 8 demonstrates that the scaling behavior is
indeed governed by the mean-field exponentse = g =6 = 1,
since their measured values nicely agree with these predic-
tions. As suggested by the data shown in Fig. 8(b), the closer
the system is to the asymptotic scaling regime, the nearer
the associated exponent values are to unity. In summary,
our Monte Carlo simulations for diffusive pair coagulation
processes in d = 1, 2, and 3 dimensions demonstrate that our
algorithm successfully generates the correct long-time scaling
properties for the macroscopic reaction rate A, but in addition
allows the investigation of nonuniversal crossover features
before the asymptotic regimes are reached. This indicates
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FIG. 7. Single-species pair coagulation kinetics 2A 2 A on a two-dimensional square lattice of linear size L = 256 with initial density
a(0) = 1, for different microscopic reaction rates Ao = 0.1, 1, and 10, as indicated: Double-logarithmic plots of the time dependence of (a) the
particle density a(t)/Int and (b) the macroscopic effective reaction rate A(z)/s(¢), with s(t) = (1 — «/ Int), where the value of « obtained
from the simulations was used. The resulting effective scaling exponents « and § are listed. The data were averaged over 1000 independent

simulation runs.

that counting the number of events, normalizing properly,
and collecting adequate statistics provides an accurate means
to estimate reaction rate renormalization effects for physical,
(bio-)chemical, ecological, and epidemiological systems sub-
ject to nonlinear stochastic reactive processes.

B. Two-species pair annihilation

Two-species (e.g., particle-antiparticle) pair annihilation
is commonly described as a reaction-diffusion system with

the single binary reaction A + B % ¢. Since A and B
particles are simultaneously removed from the system during
any annihilation reaction, their particle number difference
c =a(t) — b(t) is a locally conserved quantity, implying that
one only needs to study the behavior of, say, b(¢), and the
conservation law can be used to directly infer a(z). The system
exhibits different behavior depending on whether ¢ = 0 or
¢ # 0. For unequal initial species numbers ¢ > 0, the minority
population density decays according to In b(¢) ~ —t, where
o =d/2 yielding a stretched exponential for d < d, =2,
while o =1 above the critical dimension, and with
logarithmic corrections appearing at d. = 2. The majority
species approaches its asymptotic density in a similar manner,
Ina(t) — ¢ ~ —t*. Yet in this work, we focus on the special

situation ¢ = a(t) — b(t) = 0; then the (stretched) exponential
behavior is replaced by power laws a(r) =b(t) ~t7“
[52,54,55,61,72,73]. In this symmetric “critical” situation, the
system is governed by a single macroscopic rate equation (2)
for both A and B particle densities.

The macroscopic rate is calculated by counting the number
of reactions occurring at each time step divided by the total
particle number N4 + Np then present, since the annihilation
process may be initiated by either an A or B individual in the
simulation. This prescription of determining the macroscopic
rate A is consistent with the rate equation (2). Again we imple-
ment an off-site algorithm here, to avoid artifacts at initially
high densities.

As the rate equation for A+ B — § is identical with
the one for 2A — A, the ensuing long-time scaling may be
described by the same exponents «, 8 =1, and 6 = 1/a.
However, these exponents assume different values for single-
species pair coagulation and two-species annihilation. While
the renormalizations describing depletion zones still apply in
dimensions d < d. = 2, the two distinct species may now
segregate into two separate A and B domains, wherein no
reactions take place. Annihilation processes are thus con-
fined to the boundaries of the A- and B-rich zones, which
leads to a further drastic slowing of the decay dynamics in

0 —— 0 O M 7gmor o100 —
X X % Ao=1, 6=1.02 x
4 L -1 Ao=10, 6=1.05 -
T = <
%5 <2 <2
> =Y >
S o k)
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FIG. 8. Single-species pair coagulation kinetics on a three-dimensional cubic lattice of linear size L = 100 with initial density a(0) =1,
for different microscopic reaction rates Ao = 0.1, 1, and 10, as indicated: Double-logarithmic plots of (a) the particle density decay with time
a(t); the macroscopic effective reaction rate (b) as function of time A(¢), and (c) as function of density A(a). The resulting effective scaling
exponents o, 8, and 0 are listed. The data were averaged over 1000 independent runs.
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FIG. 9. Two-species pair annihilation kinetics A + B % ¢ on a one-dimensional lattice of size L = 100000 with equal initial densities
a(0) = b(0) = 1, for different microscopic reaction rates Ao = 0.1, 1, and 10, as indicated: Double-logarithmic plots of (a) the particle density
decay a(t); the macroscopic effective reaction rate as function of (b) time A(¢), and (c) density A(a). The resulting effective scaling exponents
o, B, and 6 are listed. The data were averaged over 1000 independent simulations.

dimensions d < d; = 4 [17,59,63]. The resulting density de-
cay exponents induced by species segregation are o = d /4
and 8 = 4/d. For d > d; = 4, the mean-field exponents o =
B = 6 = 1 apply. It should be noted that species segregation is
an asymptotic effect that can be observed only at sufficiently
long times; at intermediate time regimes, the system may
show the diffusion-limited depletion scaling.

For two-species pair annihilation, here we focus on only
the one-dimensional case, since the scaling regime is more
difficult to access in higher dimensions, and our principal aim
in this section is to demonstrate the viability of our technique
for reactive dynamics involving multiple species. Figure 9
demonstrates that our simulation data reproduce the expected
scaling behavior for Ay = 1 or bigger. For small 1o = 0.1, we
find effective exponents that are still in the crossover inter-
val between the diffusion-limited depletion and segregation
values.

V. LOTKA-VOLTERRA PREDATOR-PREY
COMPETITION AND COEXISTENCE

In the previous sections, we have demonstrated that ex-
tracting the statistics for the number of reactions in a Monte
Carlo simulation produces the expected behavior for the
coarse-grained macroscopic reaction rates. Next we consider a
system where in contrast little is known about the relationship
between the microscopic and macroscopic parameters. The
paradigmatic Lotka-Volterra model for predator-prey compe-
tition and coexistence comprises two species: the predators A
and prey B. Left alone, the predator population is subject to

spontaneous death processes A % % and hence would decay
exponentially over time with the rate u. By themselves, the
prey reproduce according to the linear branching or birth
reaction B 2> 2B that would cause a Malthusian population
explosion with rate o. The nonlinear binary predation reaction

A+B A 2A, whereupon predators immediately reproduce
after a successful “hunt,” replacing a prey individual with
a predator offspring, controls the prey density and opens
the possibility of coexistence for both species [6,8,11,13—
17,22,23,29-34,47,74-76]. In order to prevent an exponential
divergence of the prey density in the absence of predators,
in our lattice simulations we prescribe an on-site restriction

on the total particle number Ny (x, t) + Np(x, t) < K, which
globally translates to a finite carrying capacity for the to-
tal population a(t) 4+ b(t) < K that holds also for the local
mean species densities [100]. Correspondingly, in mean-field
approaches the prey population constraint is typically repre-
sented through a logistic term in their rate equation. Yet as we
have shown in Sec. III, this is adequate only in the long-time
limit. The stochastic processes in our lattice Monte Carlo
simulations consist of the above death, birth, and predation
reactions, in addition to nearest-neighbor hopping for both
species. We employ the off-site implementation for repro-
duction and predation processes. Hence the prey offspring
production happens on one of the neighboring sites, and the
predation reaction occurs if a predator finds a prey on an ad-
jacent site [101], which effectively induces hopping transport
via proliferation [13,29,47,75].

Furthermore, we let a predator attempt a predation reaction
for each prey individual located on the chosen neighboring
site. Consequently, we compute the macroscopic prey birth
rate by dividing the number of branching events in the MCS
by the total prey number Np at that instant, and the macro-
scopic predator decay rate by dividing the number of death
events by the total predator number N4. For the binary pre-
dation reaction, we instead calculate the more appropriate
effective coarse-grained “coupling” A as the ratio of the num-
ber of predation events in each MCS and the product Ny Np.
The above algorithm motivates us to write the associated
macroscopic reaction-diffusion equations for the local preda-
tor and prey densities a(x,?), b(x,t) in the Lotka-Volterra
model in the form

0

8_? = D,(a, b) Via+ Ma,b)ab — u(a, b)a, (4a)
ab 2

o =Dy(a,b)V°b+o(a,b)b— A(a,b)ab. (4b)

In the mean-field rate equation approximation A and p are
taken to be constants, whereas o (a, b) = oy[1 — (a + b)/K].
The resulting coupled system of ordinary differential
equations has three stationary solutions (fixed points). (1)
Total extinction, where both predator and prey populations
decay to zero. This configuration is always unstable in the
mean-field approximation. (2) Predator extinction and thus
prey fixation, where the predator population disappears,
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and the prey fill out the entire lattice (up to the carrying
capacity K). Note that in any finite stochastic system, either
of these absorbing configurations is ultimately attained,
namely, (1) or (2) if either the prey or predators happen to
go extinct first. (3) Species coexistence, where both species
ultimately survive at nonzero density values. If a finite
(prey or total) carrying capacity K > 0 is implemented,
there appears an active-to-absorbing phase transition that
occurs at some critical predation rate A.: If the predators
are not able to predate quickly enough, they will die out
and the system goes into prey fixation (2). Above this
critical A, value, the more efficient predators are able to
reproduce sufficiently fast to coexist alongside the prey. The
resulting mean-field dynamical system also exhibits nonlinear
population oscillations as there emerges a periodic cycle
of growing number of prey, followed by an increase in the
predator population, leading to a decrease in the number of
prey, and in consequence of the predators as well as their
food resources becoming sparse, and then the cycle repeating
as for low predator prevalence, the prey reproduce fast again.
In this coexistence phase, the spatially extended mean-field
reaction-diffusion equations allow for propagating wave
solutions of the form a(x, t) = a(x — vt), b(x,t) = b(x — vt)
with wavefront speed v. These waves are induced by
the prey attempting to evade the predators by effectively
reproducing at a safe distance from them, and the predators
pursuing their prey as they can reproduce effectively only
in regions of high prey concentration. However, mean-field
theory predicts that those wave solutions are unstable and
decay, leaving the homogeneous population distribution as
the only stable solution. This qualitative picture remains
intact in the stochastic lattice system, yet with drastic
quantitative deviations [6,8,9,11-16,29-34,47,74-76]. In
a nonspatial setting, intrinsic multiplicative reaction and
demographic noise in the two-species coexistence state
effectively maps to additive white noise driving the nonlinear
population oscillations through a resonant amplification
mechanism [20]. In spatially extended systems, the inevitable
dynamical correlations generated by the stochastic reaction
processes induce a dependence of the macroscopic rates on the
population densities. Indeed, the Lotka-Volterra predator-prey
model exhibits pronounced spatial correlations that are
manifest in persistent pursuit and evasion waves that originate
from randomly distributed prey survivors following sweeps
of predation events: The stochastic “kicks” in the system
are now sufficiently strong to render the wave solutions
stable in the long-time limit. In addition, and in accord with
general expectations, the continuous active-to-absorbing
phase transition is found to be governed by the directed
percolation universality class [13,14,30-34,47,76], with
universal critical exponents that deviate from the mean-field
values in dimensions d < d. = 4. For a more thorough review
of stochastic spatially extended Lotka-Volterra systems, we
refer to the overview in Ref. [13]. In this model, the sole
reaction that can occur without any restrictive conditions is
predator death. Hence its behavior can be predicted a priori
as follows: The expected number of death reactions occurring
in a single MCS is (number of death events) = (N4 + Np)
p(pick predator)p(death reaction | predator is picked).  But
the (average) probabilities for selecting a predator and

then picking a death reaction are given by their relative
propensities, which are easily obtained:

Ny(Do + 1o + Ao)

p(pick predator) = ,
Ny(Dg + o + Ao) + Np(Do + 09p)
. .. Mo
death reaction | predatoris picked) = ————.
M Ip P ) Do + o + Ao

As mentioned in Sec. II, we set Dy = 1; thus we obtain

= (Na + Np)uo
Na(1 + po + o) + Ng(1 + 09)

)

Here we may of course replace the particle numbers Ny and
Np by the predator and prey densities a and b. The macro-
scopic reaction rate p is then fully determined by Eq. (5).
Intuitively, the death reaction constitutes a linear stochastic
process, and therefore its macroscopic rate should not depend
on the other microscopic propensities Ag and op. However, due
to our chosen normalization with all propensities adding up to
unity, the linear death processes pick up dependencies on the
other rates; this could be avoided by choosing a different algo-
rithm or parametrization. Regardless, employing normalized
rates that sum to unity is computationally convenient. One
may interpret the denominator in Eq. (5) as a multiplicative
time step rescaling factor that could be absorbed into all ex-
tracted rates. Consequently, calculating the mean macroscopic
death rate p after this rescaling, we expect that it should
match precisely with its microscopic value po. Henceforth,
all reported macroscopic rate values are divided by this factor,
unless otherwise specified.

Figure 10 shows how the effective macroscopic rates u,
o, coupling A, and diffusivities D,, D, vary with time ¢ and
the predator and prey densities a, b in our Monte Carlo simu-
lations on a two-dimensional lattice (with periodic boundary
conditions). The temporal evolution of the coarse-grained
parameters tracks the dynamics one would observe for the
population densities, consistent with the macroscopic rates
being density-dependent functions. In the species coexistence
regime, the macroscopic parameters all settle down to station-
ary values, as seen in Figs. 10(a). The macroscopic predator
death rate p displays no noticeable dependence on either
population density, remaining constant in time and equal to its
microscopic value 1. Note that even though the rates appear
to be multivalued as a functions of the predator and prey
densities separately in Figs. 10(b) and 10(c), this is an artifact
of them actually being functions of both a and b: Plotting
the macroscopic parameters in a three-dimensional plot as
functions of a and b reveals their single-valuedness. Although
the coarse-grained rates do not represent the system’s degrees
of freedom, these graphs of the macroscopic parameters as
functions of the population densities are reminiscent of phase
space plots.

The stationary values of the macroscopic rates u, oy and
coupling A, can be used to predict the densities’ “fixed-point”
values a; and b;. Examining Eqgs. (4) and setting the time
derivatives to zero we obtain, akin to simple mean-field the-
ory, a; = oy/As and by = u/As. Recall that the macroscopic
prey birth rate incorporates the carrying capacity restriction
through its nontrivial density dependence, similar to the re-
stricted birth model of Sec. III; consequently, o implicitly
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FIG. 10. Macroscopic reaction rates u, o, coupling A, as well as diffusivities D,, D), for the stochastic Lotka-Volterra predator-prey model
on a two-dimensional square lattice (with periodic boundary conditions) with length L = 150, initial population densities a(0) = b(0)=0.5,
microscopic propensities o = oo = 0.5, Ao = 0.8, Dy = 1, and carrying capacity (on-site occupation restriction) K = 1, displayed as
functions of (a) time ¢ (in MCS); (b) predator density a; and (c) prey density b. The data were averaged over 20 independent Monte Carlo

simulation runs.

becomes a function of K. This is confirmed in Fig. 11,
where the stationary population densities are determined di-
rectly from the simulations and then compared against the
numerically computed rate ratios o,/A; and p,/A,. Intrigu-
ingly, this comparison yields almost perfect agreement be-
tween the rate equation formulas and the actual stationary den-
sity values. We discern marked deviations of the actual value
for b, from the ratio u/A, only in the vicinity of the predator
extinction threshold: Stochastic fluctuations and critical corre-
lations become prominent near the active-to-absorbing phase
transition, and their effects are not fully accounted for by mere
renormalizations of the effective parameters.

Extracting the macroscopic rates and coupling over the
course of the Monte Carlo simulations allows us to inves-
tigate in a straightforward manner their dependence on the
microscopic input parameters Ao, K, op, and po, as depicted
in Fig. 12. Figure 12(a) shows that o and D), are continuous
at the predator extinction/prey fixation critical point, while
A, u, and D, exhibit a jump discontinuity there. In the ab-
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FIG. 11. Long-time stationary population densities a,, b, and
corresponding macroscopic rate ratios o, /A, (/A for the stochastic
Lotka-Volterra predator-prey model on a square lattice with length
L = 150, initial densities a(0) = b(0) = 0.5, and microscopic rates
set to o = oy = 0.5, Dy = 1, with carrying capacity K = 1, plotted
as a function of the microscopic predation rate Ao. The black vertical
line indicates the location of the active-to-absorbing state transition
that constitutes a predator extinction/prey fixation threshold. The
data were averaged over 20 independent simulation runs.

sorbing state where the lattice is completely filled with prey,
all reactions cease. As anticipated, the macroscopic death
rate p is not altered from its microscopic value py. The
macroscopic prey birth and hopping rates o and D, become
diminished as the absorbing state transition is approached,
and the lattice increasingly saturated with the B species, much
like in the restricted birth model of Sec. III; indeed, the ra-
tio o /Dj, remains constant. Generally, our simulation results
yield mostly monotonic dependences of the macroscopic rates
on the microscopic parameters. The exception is the func-
tional dependence of A on oy, shown in Fig. 12(c), which
displays a maximum. This feature can be explained by noting
that as oy is raised, the prey number increases, in turn causing
an enhancement in A; yet past a certain value, the predators
quickly consume most of the prey, such that once the system
reaches its stationary state, fewer prey remain available, lead-
ing to a decrease of the effective predation coupling 1. As seen
in Figs. 12(a) and 12(b) an increase in either Ay or K induces
faster reactions. In contrast, raising oy causes a decrease in the
renormalized diffusivities D, and Dy, shown in Fig. 12(c), as
there are fewer lattice vacancies available for hopping. Simi-
larly, as depicted in Fig. 12(d), increasing o slows diffusion
and reduces the branching rate o, since the prey population
is more likely to reach saturation as the predators die away
fast. We can also utilize our technique to test the mean-field
formula for the location of the critical active-to-absorbing
transition point. For fixed values of p and o, the rate
equations predict a predator extinction and prey fixation
threshold at A.nf = /K. In Fig. 13 we compare the “mi-
croscopic” transition point A., given by the microscopic
predation probability used to perform the Monte Carlo sim-
ulations, with the numerically determined actual threshold
location A. obtained from our event statistics in the Monte
Carlo simulation data, and additionally the value Ay pre-
dicted by the mean-field rate equations with the renormalized
macroscopic rates, for a series of different carrying ca-
pacities K =1,...,10. We find that A.y,s is closer to the
actual transition point A, than XA.y. Interestingly, these curves
can be approximately fit with power laws: The microscopic
transition scales according to A ~ K04, whereas the
numerically determined ‘“macroscopic” predator extinction
threshold behaves as A. ~ K99, closer to the mean-field
rate equation dependence ~K ~!. This indicates that the actual
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FIG. 12. Macroscopic reaction rates i, o, coupling A, as well as diffusivities D,, D), for the stochastic Lotka-Volterra predator-prey model
on a square lattice with length L = 150, initial densities a(0) = b(0) = 0.5, as functions of the microscopic input parameters: Dependence
(a) on A, with fixed g = 09 = 0.5, K = 1; (b) on K, with 1,y = 0.8, o = g9 = 0.5; (¢) on oy, with Ly = 0.8, o = 0.5, K = 3; and (d) on
Mo, With Ay = 0.8, 09 = 0.5, K = 3. The vertical black line in figure (a) marks the predator extinction/prey fixation threshold. The data were

averaged over 20 independent simulation runs.

control parameter determining the critical point is more ade-
quately captured by the macroscopic predation rate X than the
microscopic probability Ay implemented in the Monte Carlo
simulation algorithm. It is well established that the pop-
ulation oscillation frequency in the two-species coexistence

0.7

T
?\,Co—-l—‘
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. * +
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¥
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FIG. 13. Predator extinction/prey fixation threshold for the
stochastic Lotka-Volterra predator-prey model on a square lattice
with length L = 150 and initial densities a(0) = b(0) =0.5 as a
function of the local occupation restriction (carrying capacity) K, for
fixed microscopic rates o = op = 0.5. A, denotes the microscopic
threshold; A.ns = /K = wo/K is the threshold value predicted by
the mean-field rate equations; and A, represents the corresponding
macroscopic value obtained from the Monte Carlo simulations. The
data were averaged over 20 independent simulation runs.

phase of the Lotka-Volterra predator-prey system exhibits
strong fluctuation corrections relative to its mean-field value
[12,13,76]. Using our Monte Carlo simulations, we have de-
termined the actual oscillation frequency w from the peak
location in the Fourier transform of the population density
time tracks. In Fig. 14 this numerically extracted frequency is
compared against the “microscopic” and “macroscopic” rate
equation oscillation frequencies wmf and wps, respectively,
graphed as functions of the predator death rate py. Here wpo
was computed through integrating the rate equations (4) by
means of a fourth-order Runge—Kutta scheme and employing
the microscopic system parameters, whereas for wys we in-
stead inserted the effective macroscopic rates using our Monte
Carlo algorithm, without implementing the time rescaling of
Eq. (5). The data shown in this plot indicate that solving
the mean-field equations with the macroscopic rates yields
population oscillation frequencies that are considerably closer
to the actual frequencies measured in the stochastic lattice
simulations. However, some residual discrepancies remain,
highlighting that fluctuation corrections to the characteristic
oscillation frequency extend beyond mere parameter renor-
malizations [12].

VI. THREE-SPECIES CYCLIC DOMINANCE

In this section we discuss cyclic predation models, ap-
plied prominently in evolutionary game theory, where we
restrict ourselves to three competing species Aj, A,, and
A3 [10,26,48,77-98]. Individuals from species A; predate on
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FIG. 14. Characteristic population oscillation frequency  for
the stochastic Lotka-Volterra predator-prey model on a square lattice
with length L = 150 and initial densities a(0) = b(0) =0.5 as a
function of the predator death rate o, with fixed parameters oy =
0.5, 2o = 0.8, and K = 10. For comparison, the oscillation frequen-
cies wpp and wy as determined by numerically solving the nonlinear
coupled rate equations (4) using respectively the microscopic and
macroscopic rate parameters are depicted as well. The data were
averaged over 10 independent simulation runs.

Ay, Ay in turn predate on Az, and A3 on A;, completing
the dominance cycle. Specifically, we study and compare
two popular variants: In the “rock-paper-scissors” (RPS)
model, the nonlinear predation reaction is represented using
the usual Lotka-Volterra prey-to-predator replacement, and
hence the total particle number remains strictly conserved.
As a consequence, spatially extended RPS systems are pro-
hibited to spontaneously generate spatio-temporal patterns
and merely display species clustering [48,81,87,89,91]. The
second model version separates the predation and reproduc-
tion processes, thus lifting the total population conservation
law. In such May-Leonard models, provided their spatial ex-
tension is sufficiently big, one observes the emergence of
spiral patterns in a parameter regime where solutions with
uniform particle distributions become unstable against small
inhomogeneous perturbations. In the following, we apply our
technique for measuring the macroscopic reaction rates to
both cyclic dominance model variations. In this paper, we
address only symmetric cyclic model realizations, in which
the various rates for all three species are chosen the same;
therefore, the system features a discrete Z3 permutation
symmetry.

A. Rock-paper-scissors (RPS)/cyclic Lotka-Volterra model
The RPS or cyclic Lotka-Volterra model consists solely of

the predation processes A; + A, A 2A;, where i€ 1,2,3
and the index i is cyclic, i.e., i =4 is to be identified with
i = 1. This model is implemented as a set of stochastic pro-
cesses on a lattice, as before; however, no on-site restrictions
are needed due to the conservation law. We implement particle
transport via nearest-neighbor exchange reactions, and initial-
ize the lattice with each site holding precisely one particle.
Since no on-site restrictions apply, the exchange processes
are linear and therefore remain unaltered by fluctuations and
correlations; we set the microscopic exchange rate to Dy = 1.

0.65 slope=0.85 —

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
log1(ho)

o =~ N W A oo N
o5t

o

1 2 3 4 5 6 7 8 9 10
Ao

FIG. 15. Macroscopic predation coupling A vs its microscopic
counterpart A, in the stochastic rock-paper-scissors/cyclic Lotka-
Volterra model on a two-dimensional square lattice (with periodic
boundary conditions) of length L = 150, with equal initial densities
a;(0) = 1/3. The inset displays the same data in double-logarithmic
form, demonstrating an algebraic functional dependence with
power-law exponent x ~ 0.85. The data were averaged over 100
independent runs.

Thus, we need not investigate the dependence of the effec-
tive particle exchange rates on the microscopic parameters,
but explore only how the macroscopic reactive coupling A
depends on its microscopic counterpart Ag. The prescribed
Zs symmetry is of course preserved under coarse graining;
consequently all three species will be governed by identical
macroscopic parameters (this assertion was explicitly checked
in our simulations). The measured macroscopic coupling con-
stant is multiplied by the time rescaling factor (1 + (), which
ensures that D = 1 regardless of the value of Ag.

In Fig. 15 the resulting macroscopic predation coupling A
is plotted against its microscopic counterpart, the propensity
Ao. We observe that always A < Ag, indicating that spatial
correlations reduce the effective predation rate. Each of the
three competing species organize in inert clusters, as in two-
species pair annihilation (Sec. IV), and predation reactions
can occur only at their interfaces. It turns out that the function
A(Ao) ~ A5 can be fitted to a power law (ignoring the first
40 data points), as shown in the figure inset, with exponent
k ~ 0.85.

B. May-Leonard model

The May-Leonard model variant for three-species cyclic
competition breaks the RPS local conservation law for the
total population number by splitting the predation and re-
production reactions into independent stochastic processes:
A+ Ay 2 A;and A; 5 2A;. We again implement a single-
particle per-site constraint to control the birth reactions with
rate oy. Since empty sites can be created by the predation
reaction, explicit diffusion is incorporated through nearest-
neighbor hopping processes rather than particle exchange
reactions. Yet hopping transport is of course limited by the
on-site single-particle occupation restriction. Our symmetric
spatially extended stochastic May-Leonard model thus com-
prises three coarse-grained parameters, o, A, and D. As in
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FIG. 16. Macroscopic predation coupling X, birth rate o, and diffusivity D for the stochastic May-Leonard model on a two-dimensional
square lattice (with periodic boundary conditions) of length L = 150 and equal initial densities a;(0) = 0.3 as functions of the microscopic
parameters (a) Ao, with fixed oy = 1; (b) oy, with fixed A = 1. The data were averaged over 20 independent simulation runs.

the RPS model, we set the microscopic hopping propensity
Dy = 1, and all macroscopic parameters are rescaled by the
temporal adjustment factor (1 + Ag + 0p).

Figure 16 shows the dependence of the macroscopic non-
linear coupling A, birth rate o, and diffusivity D on the
microscopic parameters A (a) and oy (b). Since both hopping
and birth processes are conditioned on the chosen neigh-
boring site to be empty, their macroscopic rate ratio o /D
remains constant, precisely as for the prey population in the
Lotka-Volterra system of Sec. V. As we set op = Dy = 1 in
Fig. 16(a), the graphs for o (Ao) and D(A¢) coincide. One ob-
serves nontrivial functional dependences of the macroscopic
rates on the microscopic parameters: Raising the predation
propensity A increases the density of empty sites, which in
turn enhances o and D, as seen in Fig. 16(a). Similarly, larger
values of op tend to generate more predator-prey neighbor
pairs, which is why the coarse-grained predation coupling A
increases as a function of oy. In contrast, increasing oy causes
the lattice to saturate and therefore diminishes the density
of vacancies and consequently the effective diffusivity D. As
for the RPS model, A(1y) < Ao and likewise o (0g) < 0p; in
fact both renormalized macroscopic rates are much smaller
than their microscopic counterparts in the May-Leonard sys-
tem. Akin to the RPS model, the macroscopic rates o, A,
and D for the May-Leonard system as functions of the mi-
croscopic input parameters oy and Ao can be approximately
fitted to power laws. The values of the six resulting effective
scaling exponents « are listed in Table I. We note that the
exponent for the function A(Ay) comes out much smaller for

TABLE 1. Approximate scaling exponents obtained by power-
law fits (ignoring the first 40 data points) of the macroscopic
parameters o, A, and D (matrix rows) for the stochastic May-Leonard
model on a square lattice as functions of the microscopic predation
rate Aq and birth rate oy (columns).

K (o4} )\0

o 0.17 0.33
A 0.17 0.41
D —0.83 0.33

the May-Leonard as compared to the RPS model, suggesting
that the emerging spiral patterns protect each species against
predation more effectively than clustering. Since their ratio
is preserved under coarse graining, both o and D exhibit
identical power laws as functions of Aq. Surprisingly, our
results indicate that also X and o show the same dependence
on op. To explain this feature, we recall that the macroscopic
rate equations for the symmetric May-Leonard model yield
the stationary densities a; = o /A. However, as oy increases
past a certain point, the stationary densities a; must saturate
at the value 1/3, owing to the prescribed on-site restrictions.
As a consequence, once a; ~ 1/3, we find that A = 3¢ and
both macroscopic parameters obey the same scaling, and in-
deed, their ratio 3 is confirmed in Fig. 16(b). Finally, since
the (anti-)correlations induced by the on-site restrictions pre-
serve the ratio D(oy)/o (09) = Dy/op = 1/0y, the associated
power-law exponents should differ by 1, as is indeed borne out
nicely by the data in Table I. It should be noted that these scal-
ing exponents are not universal, as we found that simulating
stochastic May-Leonard models with different microscopic
rates (and spatial dimensions) produces different power laws.
However, we checked that the exponents k do not depend on
the system size (provided it is sufficiently large).

VII. SUMMARY AND CONCLUSIONS

Reaction-diffusion systems are often approximately rep-
resented through mean-field ordinary or partial differen-
tial equations that largely ignore the effects of stochastic
fluctuations and spatial and temporal correlations. While cer-
tain systems may qualitatively still be modeled by means
of such coupled rate equations, e.g., in sufficiently high di-
mensions or on strongly connected networks, the effective
coarse-grained continuum rates appearing in these nonlinear
dynamical equations are hardly ever given by the density-
or scale-independent microscopic system parameters. In this
article, we have proposed a computational technique that em-
ploys agent-based stochastic Monte Carlo lattice simulations
to extract the effective renormalized macroscopic reaction
rates. The results numerically obtained by this method were
first tested for simple restricted birth processes, subject to
on-site restrictions on the lattice. We saw that the system is
initially described by the growth equation with the micro-
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scopic rate value, whereas (only) the long-time asymptotic
is described by a logistic equation with a modified effective
birth rate. We then compared our simulation data against the
well-known results for diffusion-limited single-species binary
coagulation and two-species pair annihilation models, thus
validating the effects of particle (anti-)correlations on the
long-time scaling properties of the macroscopic annihilation
rates, as a function either of time or the diminishing parti-
cle densities. Furthermore, the usefulness of computing the
macroscopic rates was highlighted by providing a straight-
forward metric tool for whether the system has reached its
asymptotic scaling regime. This was accomplished by probing
the temporal scaling of the macroscopic annihilation rate.
Next, we applied our technique to the paradigmatic
stochastic Lotka-Volterra model for predator-prey compe-
tition and coexistence on a square lattice, for which we
measured various effective rates for the involved stochastic
processes. We found that representing the system through the
coupled mean-field rate equations with the measured macro-
scopic parameters instead of the original microscopic ones,
leads to a much improved agreement with the lattice simula-
tion data. Yet we also detected clear renormalization effects
caused by fluctuations in the system that are not captured
by mere rate or coupling constant renormalizations. In cyclic
dominance models of three competing species, our numerical
method was used to compare the effects of correlations on the
macroscopic rate values in the cyclic Lotka-Volterra (RPS)
and May-Leonard models. In both systems, one may fit the
emergent coarse-grained effective rates to algebraic power-
law dependences on the microscopic rate parameters. In the

May-Leonard model, the effective macroscopic rate exhibits a
sharper decrease as a function of its microscopic counterpart
as compared to the RPS variant, which we attribute to the
presence of spiral spatio-temporal patterns that stabilize each
species against predation events. Finally, we were able to
derive relationships between several rate scaling exponents.

The present work demonstrates the possibility of utilizing
agent-based Monte Carlo simulations to compute effective
macroscopic rates in stochastic reactive many-particle mod-
els, which in some situations can markedly improve fits to
rate equation solutions. Hence the technique proposed in this
article may serve as a refined alternative to fitting data to rate
equations with constant parameters, as our method allows the
implementation of coarse-grained scale-dependent rates that
incorporate the time or density dependence due to emerg-
ing correlations in the involved stochastic reaction processes.
In addition, one may directly probe the large-scale features
emerging in complex interacting many-particle systems owing
to the interplay of stochastic reaction processes with time-
dependent intrinsic constraints.
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