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Emergence of biconnected clusters in explosive percolation
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By introducing a simple competition mechanism for bond insertion in random graphs, explosive percolation
exhibits a sharp phase transition with rich critical phenomena. We investigate high-order connectivity in
explosive percolation using an event-based ensemble, focusing on biconnected clusters, where any two sites
are connected by at least two independent paths. Our numerical analysis confirms that explosive percolation
with different intracluster bond competition rules shares the same percolation threshold and universality, with
biconnected clusters percolating simultaneously with simply connected clusters. However, the volume fractal
dimension d ′

f of biconnected clusters varies depending on the competition rules of intracluster bonds. The
size distribution of biconnected clusters exhibits double-scaling behavior: large clusters follow the standard
Fisher exponent derived from the hyperscaling relation τ ′ = 1 + 1/d ′

f , while small clusters display a modified
Fisher exponent τ0 < τ ′. These findings provide insights into the intricate nature of connectivity in explosive
percolation.
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I. INTRODUCTION

Explosive percolation (EP), proposed by Achlioptas et al.
[1], has become a prominent topic in percolation theory and
network science [2–4]. The core mechanism of EP is the sup-
pression of large cluster growth when new bonds are inserted,
a process known as the Achlioptas process [1]. A typical
example is the product rule [1]: starting with a null graph, two
potential bonds are chosen at each time step, and the bond that
minimizes the product of the sizes of the clusters it connects is
inserted, while the other is discarded. This can be generalized
to the best-of-m rule or min-cluster-m rule [5], where more
than two potential bonds are considered, and various criteria
can be used for bond selection [2].

The most intriguing finding in EP models is the abrupt,
first-order-like percolation transition. Although later studies
confirmed that this transition is actually continuous [6–9], the
intense scientific debate it sparked has significantly advanced
percolation theory and network science [2–4]. Methods de-
veloped to verify the discontinuity of EP, such as gap scaling
[10,11] and cluster-size heterogeneity [7], have been ap-
plied to characterize the critical behavior of various systems
[12–17]. The mechanisms underlying explosive phenomena
have also proven useful in network structure analysis [18–20]
and immunization strategies [21].

Despite EP being widely recognized as a continuous phase
transition, numerous studies have reported anomalous finite-
size behaviors that deviate from standard finite-size scaling
(FSS) theory [5,8,11,15,22,23]. A recent study introduced
a dynamic ensemble called the event-based ensemble [24],
where EP adheres to standard FSS theory. This approach
explains the anomalous finite-size behaviors observed in
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conventional ensembles with fixed bond density as a result of
multiplex scalings induced by large fluctuations of the pseud-
ocritical point, where clean FSS can be consistently observed.

The study of EP still faces unresolved issues and con-
tradictions, particularly regarding the impact of intracluster
bond insertion on critical phenomena. On one hand, inserting
an intracluster bond, where both ends belong to the same
cluster, does not directly affect cluster sizes but increases bond
density, as depicted in Fig. 1. Thus, if potential bonds include
intracluster ones, these might be preferentially inserted to
curb cluster growth, aligning with the core mechanism of the
Achlioptas process. On the other hand, adhering strictly to the
product rule involves calculating size products without regard
to whether the bond is intracluster, leading to a preference for
inserting bonds between smaller clusters. These differences in
bond insertion are illustrated in Fig. 1 by visually defining the
size product P of an intracluster bond in a cluster of size s as
P = s2, P = s, or P = 0, which we refer to as square, linear,
and zero rules, respectively.

In Fig. 2, we illustrate the FSS of the critical order param-
eter C1/V for various competition rules of intracluster bonds,
where C1 is the size of the largest cluster and V is the total
number of sites. It appears that linear and zero rules yield
an asymptotic behavior of C1/V for increasing V , which was
interpreted as an indication of a discontinuous percolation
transition [25]. Conversely, employing the product rule with-
out differentiation between intracluster and intercluster bonds,
i.e., square rule, results in a vanishing order parameter in an
infinite system, akin to standard percolation.

Note that at criticality, the probability that a randomly
chosen bond is an intracluster bond vanishes as the system
volume V increases. This probability can be estimated as

V −1
C1∑

s=1

s2n(s,V ) ∼ V d f (3−τ )−1 ∼ V −2(1−d f ). (1)
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FIG. 1. A sketch of bond insertion rule in Achlioptas process,
particularly for the differences between inter- and intracluster bonds.
Here, circles, solid lines, and dashed lines represent sites, existing
bonds, and potential bonds, respectively. A bond eab whose ends
a and b are in the same cluster is called intracluster bond, while
a bond ecd whose ends c and d are in different clusters is called
intercluster bond. The size s of a cluster is the number of sites in
it. For sites a, b, c, and d , the sizes of corresponding clusters are
sa = sb = 4, sc = 3, and sd = 2. For the intercluster bond ecd , the
size product is Pcd = sc × sd = 6. For the intracluster bond eab, there
are three typical definitions of the size product: Pab = sa × sb = 16,
Pab = sa = sb = 4, and Pab = 0, which we refer to as square, lin-
ear, and zero rules, respectively. Consequently, ecd is inserted when
square rule is applied, and eab is inserted for linear and zero rules.

Here, n(s,V ) is the cluster number density, defined as the
number of clusters with size s normalized by the system
volume. Therefore, s2n(s,V )/V represents the probability that
two randomly chosen sites belong to the same cluster of

FIG. 2. The order parameter C1/V at the infinite-volume critical
point Tc is plotted as a function of the system volume V for EP
under product rule. Here, C1 represents the size of the largest cluster.
For square rule, the order parameter C1/V decreases as the system
volume increases, and seems likely to vanish for infinite systems.
Conversely, for linear and zero rules, where the insertion of intr-
acluster bonds is prioritized, C1/V appears to approach a constant
value for infinite systems. In simulations, the critical point is set to
Tc = 0.8884491 [24], which is defined as the total number of bonds
at the percolation threshold normalized by the system volume.

size s. At criticality, the cluster number density scales
as n(s,V ) ∼ s−τ , where τ is the Fisher exponent. In
random graphs, where there is no concept of side
length, the fractal dimension d f is defined by the sys-
tem volume relationship C1 ∼ V d f , known as the vol-
ume fractal dimension, and the hyperscaling relation re-
duces to τ = 1 + 1/d f , which is used in Eq. (1). Since
d f < 1, it is evident that the probability given by Eq. (1)
vanishes for large V . This indicates that no intracluster bonds
can be chosen as potential bonds in the infinite-volume limit,
so that, the numerical results of Fig. 2, which are similarly pre-
sented in Ref. [25], cannot be used as effective evidence that
systems of different competition mechanisms for intracluster
bonds have different infinite-volume critical behaviors.

Furthermore, the insertion of intracluster bonds is crucial
for the organization of high-order structures. A typical exam-
ple of such structures is biconnected cluster (BC), where sites
are connected by at least two independent paths. In standard
percolation on random graphs, BC percolates at the same
threshold as a connected cluster (CC) but exhibits different
fractal dimensions [26,27]. Moreover, on low-dimensional
hypercubic lattices [27–29] and complex networks [30–35],
the nontrivial organization of high-order connectivity has un-
veiled significant geometric properties of percolation systems
that cannot be captured by simple connections alone. For
example, structures like the k core, consisting of compact
clusters, can exhibit hybrid transitions involving both a jump
of the giant cluster and a critical singularity at the percolation
threshold [30,35–40]. Additionally, the critical behaviors of
high-order structures of percolation clusters have also been
demonstrated by the so-called backbones [41–44].

In this paper, our focus lies on exploring the high-order
organization of critical clusters in EP. We reveal that EP of
different competition rules for intracluster bonds share the
same percolation threshold and universality, while the fractal
dimension of BCs is rule dependent. Additionally, the cluster
number density of BCs shows a double-scaling behavior, also
depending on the competition rule of intracluster bonds.

The remainder of this paper is organized as follows.
Section II shows the details of the model, algorithm, and
observables. In Sec. III, we show the simulation results of the
EP under three competition rules of intracluster bonds. The
FSS behaviors of BCs are studied in Sec. IV. We include a
short discussion in the final section.

II. MODEL, ALGORITHM, AND OBSERVABLES

The Achlioptas process initiates with a null graph of vol-
ume V , then proceeds by inserting bonds step by step. At each
time step, two potential bonds, denoted as eab and ecd , are
randomly selected from all unconnected pairs of sites. Here,
a, b, c, and d denote the sites. Subsequently, the size products
Pab = sa × sb and Pcd = sc × sd are computed, where si de-
notes the size of the cluster that site i belongs to. If Pab < Pcd ,
bond eab is inserted, and bond ecd is discarded. In the case
of Pab = Pcd , one bond is randomly chosen for insertion. This
mechanism defines the product rule of EP [1].

For intracluster bonds, sites at the two ends belong to the
same cluster (see Fig. 1), thus, a specialized definition for
the size product P is necessary. Generally, three approaches
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are considered: P = s2, P = s, and P = 0, where s represents
the size of the cluster to which the intracluster bond belongs.
For convenience, we refer to them as square, linear, and zero
rules, respectively. In zero rule (P = 0), intracluster bonds
are prioritized for insertion, leading to the system tending to
form large dense clusters. Conversely, with square rule (P =
s2), intracluster bonds are hardly inserted into large clusters,
due to their significantly larger size product. The linear rule
(P = s) represents an intermediate scenario between these two
scenarios.

To apply the event-based ensemble effectively, we need
to define a dynamic pseudocritical point for each individual
realization, where all quantities are sampled and averaged.
We propose two such critical points based on the sizes of the
largest CC and BC, respectively. In each run of the Achlioptas
process, we monitor the size of the largest CC, denoted as
C1(t ), at each time step t . Then, we calculate the one-step in-
cremental size of the largest CC as �(t ) = C1(t + 1) − C1(t ).
The dynamic pseudocritical point TV for a single realization
is defined as TV = tmax/V , where tmax represents the time step
at which �(t ) reaches its maximum value. Similarly, another
dynamic pseudocritical point T ′

V can be defined based on
the one-step incremental size of the largest BC, denoted as
�′(t ) = B1(t + 1) − B1(t ), where B1 represents the size of
the largest BC.

In our simulations, we employ the Newman-Ziff algorithm
to track the growth of C1 during the bond-insertion process
[45], as it allows for real-time updates of evolving clusters
using a data structure known as disjoint set [46]. However, it is
worth noting that a site can belong to multiple BCs simultane-
ously. Therefore, the Newman-Ziff algorithm, which relies on
disjoint sets, is not suitable for storing information about BCs.
To maintain dynamic BCs, we employ a data structure, called
block forest [47]. The block tree is constructed by identifying
blocks (BCs) and their articulation points, resulting in a tree
structure where each node represents either a BC or an artic-
ulation point. An articulation point is a site whose removal
increases the number of CCs in the graph, and edges in this
tree represent the inclusion of articulation points within these
BCs. When a newly inserted bond bridges two nodes (BCs or
articulation points), the block tree is updated by condensing a
chain of nodes between the two nodes into a new node (BC).
This dynamic update allows for real-time recording of BC
information. Hence, this data structure can be readily adapted
to the EP model, enabling real-time tracking of the one-step
incremental size of the largest BC.

In each realization of EP, we first identify the pseudocriti-
cal points TV and T ′

V , then at the two dynamic pseudocritical
points, we sample and calculate the following observables:

(1) The mean pseudocritical point TV ≡ 〈TV 〉 and T ′
V ≡

〈T ′
V 〉, and their fluctuations σ (TV ) ≡

√
〈T 2

V 〉 − 〈TV 〉2 and
σ (T ′

V ) ≡
√

〈T ′2
V 〉 − 〈T ′

V 〉2.
(2) The size of the nth largest CC, Cn ≡ 〈Cn〉, and the size

of the nth largest BC, Bn ≡ 〈Bn〉, where Cn and Bn refer to the
values in a single realization.

(3) The cluster number density of BCs, n(s,V ) ≡ 〈Ns〉/V ,
where Ns is the number of BCs with size s in a single
realization.

Here, the brackets 〈·〉 denote the average of different real-
izations in the event-based ensemble.

FIG. 3. The FSS of EP for different competition rules of intra-
cluster bonds. (a) The asymptotic behavior of the pseudocritical point
TV versus system volume V . Although for finite V , the three scenarios
show different pseudocritical points TV , they are convergent to the
same value Tc ≈ 0.888 449 for large systems indicated by the dashed
line. The fit results for these asymptotic behaviors are listed in Ta-
ble I. (b) The plots of the dynamic pseudocritical point fluctuation
σ (TV ) versus system volume V . The fit results in Table I suggest
that all three scenarios have the same FSS σ ∼ V −1/2 indicated by
the solid line. (c) The size of the largest CC sampled at the dynamic
pseudocritical point, C1 ≡ 〈C1〉, as a function of system volume V .
The solid line represents the fit result df = 0.9346 in Table I.

III. PERCOLATION OF CONNECTED CLUSTERS

In this section, we study the percolation of CCs under dif-
ferent competition rules of intracluster bonds. The data shown
in this section is extracted at the dynamic pseudocritical point
TV identified by the largest one-step increment size of the
largest CC.

In Fig. 3(a), we observe the asymptotic behavior of the
pseudocritical point TV plotted against the system volume
V . For zero rule, the system exhibits the largest pseudocrit-
ical point among the three scenarios, due to the preferential
insertion of intracluster bonds, which decays the onset of
percolation. Conversely, EP under square rule demonstrates
the smallest pseudocritical point due to its blind bond inser-
tion approach, where intracluster bonds are not given special
preference. Nevertheless, with the increasing of system vol-
umes, these pseudocritical points approach the same value, as
indicated by the dashed line in Fig. 3(a).
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TABLE I. The fit results of the infinite-volume critical point Tc,
the reciprocal value of the correlation-length exponent 1/ν, the expo-
nent θ to describe the fluctuation of TV , and the fractal dimension df

of the largest CC for different competition rules of intracluster bonds.
Here, the data are all sampled at the dynamic pseudocritical point TV ,
where the one-step increment size of C1 reaches its maximum value.
Within error bars, the three scenarios suggest the same percolation
threshold, and critical exponents.

Rule Tc 1/ν θ df

Square 0.888 449 3(3) 0.74(5) 0.499(1) 0.9346(2)
Linear 0.888 449 3(4) 0.741(6) 0.495(5) 0.9347(1)
Zero 0.888 449 0(2) 0.741(1) 0.49(2) 0.9346(3)

To quantify these asymptotic behaviors, we fit the Monte
Carlo data of TV to the FSS ansatz

TV = Tc + V −1/ν (a0 + a1V
−ω + · · · ). (2)

Here, Tc denotes the infinite-volume critical point, ν is the
critical exponent of the correlation length, and the term V −ω

is a correction to the FSS. If the correction term is excluded,
i.e., (a1 = 0), the fitting results are sensitive to the changes
of the lower cutoff Vmin on the data points admitted in the fit.
With all the terms of the FSS ansatz Eq. (2) free, we estimate
the stable fit for Tc and 1/ν as listed in Table I. Choosing the
optimal fit for the FSS ansatz typically involves identifying the
smallest value of Vmin for which the χ2 per degree of freedom
is close to unity. Specifically, χ2 is calculated as the sum
of the squared differences between observed values and the
fitting curve, each normalized by the errors of observations.
Moreover, further increases in Vmin should not result in signif-
icant reductions in the χ2 value beyond one unit per degree of
freedom.

The results presented in Table I demonstrate that, within
the error margins, the pseudocritical points for all three
scenarios converge to the same percolation threshold, Tc =
0.888 449, aligning with the percolation threshold of EP re-
ported in the previous studies [7,24]. It indicates that the
percolation threshold in EP remains consistent regardless
of competition rules governing the insertion of intracluster
bonds. Furthermore, the critical exponent ν is also consistent
across all three scenarios within the error margins, suggesting
that the percolation transitions of CCs for different competi-
tion rules of intracluster bonds belong to the same universality
class. It is worth noting that simulations in the conven-
tional ensemble of fixed bond densities might erroneously
suggest variations in percolation thresholds among different
rules [25].

Further, we can estimate the volume fractal dimension d f

from the observable C1 sampled at the dynamic pseudocritical
point, by fitting the data to the FSS ansatz

C1 = V d f (a0 + a1V
−ω1 + a2V

−ω2 + · · · ), (3)

where ωi(i = 1, 2) denotes the correction exponents. The sta-
ble fit can be obtained by including only one correction term
(a2 = 0) in Eq. (3), and the results are listed in Table I. The
consistency of the fractal dimension across all three scenarios
further emphasizes the independence of the EP nature from
the competition rule of intracluster bonds, which is visually

TABLE II. The fit results of the infinite-volume critical point Tc,
the reciprocal value of the correlation-length exponent 1/ν, the expo-
nent θ to describe the fluctuation of T ′

V , and the fractal dimension d ′
f

of the largest BC for different competition rules of intracluster bonds.
Here, the data are all sampled at the dynamic pseudocritical point
T ′

V , where the one-step increment size of B1 reaches its maximum
value. Within error bars, Tc, 1/ν, and θ take the same value as those
obtained by CC (Table I), which is independent of the competition
rules of intracluster bonds. However, the fractal dimension d ′

f varies
across different rules.

Rule Tc 1/ν θ df d ′
f

Square 0.888 449 4(3) 0.74(2) 0.49(2) 0.9347(2) 0.511(1)
Linear 0.888 449 3(5) 0.74(1) 0.50(9) 0.9363(5) 0.560(5)
Zero 0.888 449 0(4) 0.74(1) 0.4(2) 0.9367(8) 0.575(8)

displayed by the nearly complete overlap of the FSS of C1 for
the three scenarios, as depicted in Fig. 3(c).

The discrepancy between the finite-size behaviors ob-
served at the dynamic pseudocritical point TV and the
infinite-volume critical point Tc, as depicted in Figs. 2 and 3,
highlights an intriguing aspect of the EP dynamics. This con-
trast is further elucidated by studying the fluctuation σ (TV ) as
a function of system volume V [24], as shown in Fig. 3(b).
The well-defined scaling behavior σ (TV ) ∼ V −θ , where θ <

1/ν, indicates that the pseudocritical point of EP can deviate
significantly from Tc in some realizations, leading to distinct
finite-size behaviors at TV compared to Tc.

Moreover, it is proposed that the scaling window is effec-
tively defined around TV rather than Tc [24]. Consequently,
the FSS extracted at Tc encompasses a mixture of behaviors
observed over a wide range of bond densities, potentially
spanning both super- and subcritical phases. This mixture
effect under different competition rules of intracluster bonds
gives rise to the anomalous finite-size behaviors depicted in
Fig. 2, highlighting the nuanced nature of the EP dynamics.

To determine the value of θ , we fit the data of σ (TV ) to the
scaling ansatz Eq. (3), where the exponent d f is replaced by
−θ . Including one correction term, the stable fit results sug-
gest a consistent exponent θ = 1/2 for various competition
rules of intracluster bonds (Table I). This finding supports the
argument that the distribution of TV in EP follows the central
limit theorem and obeys a normal distribution [24,48], which
could be a universal property for EP of various rules.

IV. PERCOLATION OF BICONNECTED CLUSTERS

In this section, we study the percolation transition of BCs
in EP under different competition rules of intracluster bonds.
The data shown in this section is extracted at the dynamic
pseudocritical point T ′

V identified by the largest one-step in-
crement size of the largest BC.

A. Asymptotic behavior of the pseudocritical point T ′
V

In Fig. 4(a), we plot the pseudocritical point T ′
V versus the

system volume V . It is evident that T ′
V varies for different com-

petition rules of intracluster bonds. Because BCs are always
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FIG. 4. The asymptotic behaviors of the pseudocritical point T ′
V

identified by the one-step incremental size of the largest BC for dif-
ferent competition rules of intracluster bonds. (a) The pseudocritical
point T ′

V is plotted as a function of system volume V . Although
for finite V , the three scenarios show different pseudocritical points
T ′

V , they are convergent to the same percolation threshold T ′
V =

0.888 449 for large systems, which is consistent with the percolation
threshold of CCs. The fit results for these asymptotic behaviors are
shown in Table II. (b) The distance between the pseudocritical points
TV and T ′

V for different competition rules of intracluster bonds. All
three lines represent the power-law decay with exponent 0.74, which
is just the reciprocal value of the correlation-length exponent 1/ν

listed in Tables I and II. (c) The plots of the fluctuation of the dynamic
pseudocritical point σ (T ′

V ) versus system volume V , indicating that
all the three scenarios have the same scaling σ ∼ V −1/2.

formed out of CCs, a system with a large TV also has a large
T ′

V , as depicted in Fig. 4(a).
To capture the asymptotic behavior of the pseudocritical

point T ′
V , we conduct a least-square fit to the Monte Carlo

data of T ′
V using the scaling ansatz Eq. (2). Accounting for

systematic errors, we obtain estimates summarized in Table II.
The fit results reveal that the infinite-volume critical point
coincides with the percolation threshold of CCs (Table I),
indicating that CCs and BCs percolate simultaneously in EP,
irrespective of the competition rule of intracluster bonds.

Furthermore, within the margin of errors, the fit results
in Table II suggest identical exponents 1/ν and θ as those
for TV . This implies that the pseudocritical points identi-
fied by CCs and BCs exhibit the same asymptotic behavior,
corroborated by the power-law decay of T ′

V − TV ∼ V −1/ν

depicted in Fig. 4(b). The scaling behavior of the fluctuation

FIG. 5. The FSS of the size of the largest BC sampled at the
dynamic pseudocritical point T ′

V for different competition rules of
intracluster bonds. (a) The size B1 of the largest BC as a function of
system volume V . The fit results of Table II are indicated by lines.
(b) The ratio B1/V 0.511 as a function of system volume V . For square
rule, the fractal dimension is d ′

f = 0.511, thus, the ratio B1/V 0.511

approaches a constant for large V , indicated by the dashed line. For
the other two rules, the ratio B1/V 0.511 shows a power-law growth
for large V , and the exponent of the power-law growth is consistent
with the fit result in Table II. This suggests that the critical BC
has different fractal dimensions under different competition rules of
intracluster bonds.

σ (T ′
V ) ∼ V −θ with θ = 1/2 is also evident in Fig. 4(c). Im-

portantly, these scalings are independent of the competition
rule of intracluster bonds, which solely influences finite-size
corrections.

B. Fractal dimension of biconnected clusters

In Fig. 5(a), we observe the power-law growth of the size
B1 of the largest BC sampled at the dynamic pseudocritical
point T ′

V for different competition rules of intracluster bonds.
This growth behavior signifies the fractal nature of the critical
BC, with the fractal dimension d ′

f being dependent on the
competition rule of intracluster bonds.

To quantify the fractal dimension d ′
f of the critical BC,

we perform fits to the FSS ansatz Eq. (3) and summarize the
estimates in Table II. The differences between the d ′

f values
obtained in different scenarios are significant, compared to
the error bars, confirming distinct fractal dimensions of BCs.
For better visualization of these differences, we plot the ratio
B1/V 0.511 for all three scenarios in Fig. 5(b). Notably, for
square rule, where the fractal dimension is d ′

f = 0.511, the
ratio B1/V 0.511 tends to approach a constant for large V . How-
ever, for the other two rules, this ratio exhibits a power-law
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FIG. 6. The probability distribution F (x) of the size of the largest
BC sampled at the dynamic pseudocritical point T ′

V for (a) square,

(b) linear, and (c) zero rules. By defining x ≡ B1/V d ′
f with the fit

result of d ′
f in Table II, all the three scenarios show nice collapses

of data from different system volumes, confirming the unique d ′
f for

each scenario.

growth for large V , indicating different fractal dimensions
of BCs.

For comparison, we also sample the size C1 of the largest
CC at the dynamic pseudocritical point T ′

V . The fit results for
d f are listed in Table II, and within double error bars, these
values are identical. This indicates that the fractal dimension
d f of the critical CC at T ′

V is independent of the competition
rule of intracluster bonds and has the same value as the one
sampled at TV (Table I). This consistency arises naturally as
TV and T ′

V exhibit the same asymptotic behavior and is both
situated within the scaling window O(V −1/ν ).

To further confirm the unique fractal dimension of the
critical BC, we examine the probability distribution F (x) of
the size of the largest BC in Fig. 6. By defining x ≡ B1/V d ′

f

using the fit result of d ′
f from Table II, we achieve a well-

renormalized distribution, demonstrating a collapse of data
from different system volumes for all three scenarios. This
validates the distinct fractal dimensions d ′

f for different com-
petition rules of intracluster bonds.

C. Cluster number density

By utilizing the hyperscaling relation τ ′ = 1 + 1/d ′
f > 2

along with the fractal dimension d ′
f listed in Table II,

FIG. 7. The cluster number density of BCs for different compe-
tition rules of intracluster bonds. (a) Square rule. (b) Linear rule.
(c) Zero rule. Two scalings can be observed for finite BCs, sep-
arated by a characteristic size s0. The standard Fisher exponent
τ ′ = 1 + 1/d ′

f dominates the size distribution for s 	 s0, while the
size distribution for s 
 s0 shows a modified Fisher exponent τ0.
The part s < s0 decreases as a whole for increasing system volume
V . The insets show the rescaled cluster number density of BCs
n(s,V )V sτ0 as a function of s/V d ′

f , where the fit results of d ′
f in

Table II are used. The nice data collapse for s < s0 suggests that
n(s,V ) ∼ V −1 for all the three scenarios. In addition, the plots also
suggest τ0 ≈ 1, 0.7, and 0.75 for the three scenarios, respectively.

we can immediately determine the Fisher exponent τ ′ for
BCs. However, the size distribution of BCs cannot be fully
characterized by this standard Fisher exponent, instead, it
exhibits a double-scaling behavior, as depicted in Fig. 7.
Specifically, for linear and zero rules [Figs. 7(b) and 7(c)],
apart from the standard characteristic size sξ ∼ V d ′

f , another
characteristic size s0 emerges, which also grows as the system
volume increases. For s 
 s0, a modified Fisher exponent
τ0 < τ ′ is observed, while for s 	 s0, the size distribution
of BCs is predominantly governed by the standard Fisher
exponent τ ′, rapidly decaying for s > sξ . Moreover, the over-
all cluster number density n(s,V ) for s < s0 decreases with
increasing system volume V . From this viewpoint of double
scaling, systems of square rule correspond to an s0 that is
equal to or slightly smaller than sξ , resulting in a seemingly
pure power-law distribution governed only by τ0, see Fig. 7(a).
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FIG. 8. The total number of BCs N at the dynamic pseudocriti-
cal point T ′

V for different competition rules of intracluster bonds. For
square rule, N presents a logarithmic growth with increasing system
volume V . The line shows the function of N ∼ ln V . The straight
line of the same data in the semilog plot also confirms the logarithmic
growth of N , see the inset. For linear and zero rules, the growth of
N can neither be fitted by a power law function nor a logarithmic
function, which would have some intricate finite-size corrections that
are not represented by the used fit function.

From these observations, we propose an expression for the
cluster number density n(s,V ) of BCs as follows:

n(s,V ) =
{

As−τ0 , s 
 s0,

s−τ ′
ñ(s/sξ ), s 	 s0,

(4)

where A is a V -dependent parameter ensuring the normal-
izability of the cluster size distribution sn(s,V ) for τ0 �
2. The normalizing condition A

∫ s0

1 s1−τ0 ds + ∫ sξ

s0
s1−τ ′

ds ∼
O(1) yields A � O(sτ0−2

0 ), where τ0 < 2 and τ ′ > 2 from
the observation in Fig. 7. The insets of Fig. 7 demonstrate
n(s,V )V sτ0 as a function of s/V d ′

f , with data from various sys-
tem volumes collapsing well. This collapse indicates A ∼ V −1

for all three scenarios, regardless of τ0. It is worth noting that
for standard percolation on random graphs, n(s,V ) ∼ V −1 for
BCs as well [27,49].

To further understand the different n(s,V ) of the three
scenarios in Fig. 7, we study the FSS of the total number of
BCs, calculated as N = V

∑
s=1 n(s,V ). Calling Eq. (4), the

total number of BCs can be estimated as

N ∼ AV
∫ s0

1
s−τ0 ds + V

∫ sξ

s0

s−τ ′
ds. (5)

The FSS behavior of N is dependent on s0 and τ0. If s0

is absent, Eq. (5) yields N ∼ V , which corresponds to the
observation for CCs. However, the simulation results in Fig. 8
clearly demonstrate that for all three scenarios, N of BCs
diverges slower than ∼V , suggesting a nontrivial s0. For
square rule, the total number of BCs is well described by
the logarithmic function, i.e., N ∼ ln V . To account for this

behavior using Eq. (5), it requires τ0 = 1 in the first term, and
s0 ∼ sξ in the second term. This explains the scaling behavior
in Fig. 7(a), where all finite BCs exhibit a size distribution
with τ0 = 1.

The data collapse in the insets of Figs. 7(b) and 7(c) sug-
gest τ0 ≈ 0.7 and 0.75 for linear and zero rules, respectively.
For these τ0 < 1, both terms in Eq. (5) diverge as s0 → ∞
for V → ∞, and the leading behavior depends on the FSS
behavior of s0. Due to the lack of direct measurement for s0,
its FSS is unavailable in our phenomenological discussion.
From Fig. 8, where the divergence of N for linear and zero
rules cannot be captured by a simple logarithmic or power-law
function, it is suggested that the FSS of s0 should include
strong finite-size corrections.

From the preceding discussion, we ascertain that the mod-
ified Fisher exponent τ0 stems from the vanishing cluster
number density n(s,V ) for s < s0. Such vanishing cluster
number density phenomena have also been observed for leaf-
free and bridge-free clusters in high-dimensional percolation
[27] and holes in no-enclave percolation [50]. Here, the cluster
number density of BCs might exhibit a more intricate behav-
ior, contingent upon the competition rule of intracluster bonds.

V. CONCLUSION

In this study, we delve into the percolation transition of
high-order connectivity in EP through three specific compe-
tition rules of intracluster bonds in the Achlioptas process.
Extensive simulations corroborate that EP, regardless of com-
petition rules applied to intracluster bonds, conforms to the
same percolation threshold and universality class. This clar-
ifies that the competition rules of intracluster bonds do not
affect the critical behaviors of EP. However, the finite-size
behaviors of BCs are very sensitive to these rules, and we
provide strong numerical evidence demonstrating the rule-
dependent fractal dimensions of BCs. Additionally, BCs
exhibit unique properties, such as a double-scaling behavior
in size distribution, requiring a modified Fisher exponent to
describe the size distribution of small BCs.

Our findings contribute to resolving the debate regard-
ing the universality of EP in relation to the competition
rules of intracluster bonds, and demonstrate the superiority
of the event-based ensemble over the conventional fixed bond
density ensemble in accurately extracting the FSS behavior.
Building on these findings, we reveal the presence of nontriv-
ial high-order connectivity within percolation clusters, despite
EP focusing solely on simply connected clusters. Therefore,
it would be intriguing to explore the emergence of other
high-order connectivities in EP and investigate the potential
existence of a genuine discontinuous transition within the
Achlioptas process.
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