
PHYSICAL REVIEW E 110, 014121 (2024)

Machine learning for the identification of phase transitions in interacting agent-based systems: A
Desai-Zwanzig example

Nikolaos Evangelou ,1,2 Dimitris G. Giovanis,3,4 George A. Kevrekidis,2

Grigorios A. Pavliotis,5 and Ioannis G. Kevrekidis1,2,*

1Department of Chemical and Biomolecular Engineering,
Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA

2Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
3Department of Civil and Systems Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA

4Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
5Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

(Received 1 November 2023; revised 29 April 2024; accepted 17 June 2024; published 15 July 2024)

Deriving closed-form analytical expressions for reduced-order models, and judiciously choosing the closures
leading to them, has long been the strategy of choice for studying phase- and noise-induced transitions for
agent-based models (ABMs). In this paper, we propose a data-driven framework that pinpoints phase transitions
for an ABM—the Desai-Zwanzig model—in its mean-field limit, using a smaller number of variables than
traditional closed-form models. To this end, we use the manifold learning algorithm Diffusion Maps to identify
a parsimonious set of data-driven latent variables, and we show that they are in one-to-one correspondence with
the expected theoretical order parameter of the ABM. We then utilize a deep learning framework to obtain a
conformal reparametrization of the data-driven coordinates that facilitates, in our example, the identification of
a single parameter-dependent ordinary differential equation (ODE) in these coordinates. We identify this ODE
through a residual neural network inspired by a numerical integration scheme (forward Euler). We then use
the identified ODE—enabled through an odd symmetry transformation—to construct the bifurcation diagram
exhibiting the phase transition.

DOI: 10.1103/PhysRevE.110.014121

I. INTRODUCTION

Complex dynamic phenomena are ubiquitous in natural
sciences, social sciences, and engineering [1–4]. In many
cases, their study has been performed using agent-based
models (ABMs), also known as interacting particle systems
(IPSs). The dynamics of those models in the thermodynamic
(mean-field) limit undergo phase transitions—bifurcations in
nonlinear dynamics terminology [5,6]. The exploration of the
dynamics of these systems typically involves extensive nu-
merical simulation scenarios for a very large number, N , of
interacting agents that can be truly challenging and impedes
the widespread utilization of these models. Therefore, coarse-
graining methodologies become necessary in order to reduce
this complexity. Reducing the dimensionality of an ABM can
be achieved by defining collective variables that are capable of
accurately describing the full dynamics of such large systems
in terms of a relatively small number of observables [7–9], or
discovering those by data mining [10–12].

In our previous work [9], we developed and successfully
tested a model reduction approach based on the cumulants of
the single-agent probability distribution for such large ABM
systems. The proposed coarse-graining framework was based
on an analytical closure methodology of the infinite hierarchy
of equations for the moments or, equivalently, cumulants of

*Contact author: yannisk@jhu.edu

the probability distribution of the infinite-dimensional system.
The basic steps for building a reduced-order Desai-Zwanzig
(DZ) model are as follows: (i) Consider the mean-field ansatz
by writing the N-particle distribution function, the solution
of the N-particle Fokker-Planck equation, as the product of
one-particle distribution functions ρ(x, t) [13]. (ii) Represent
ρ(x, t) either in terms of its moments (DZ [14]) or in terms
of its Fourier coefficients (Smoluchowski/noisy Kuramoto
model [15]), thus obtaining an infinite system of ordinary
differential equations (ODEs) that is exactly equivalent to the
McKean-Vlasov partial differential equation (PDE). Truncat-
ing the equations for the moments (or the Fourier coefficients),
while choosing an appropriate closure scheme, gives the
reduced-order model described and analyzed in Ref. [9]. How-
ever, selecting the correct closure scheme for the truncated
moments’ system is the trickiest part of the coarse-graining
procedure.

This analytical approximation requires choosing the “cor-
rect” observable(s), the right level of observation/analytical
closure, and—importantly—the level at which we attempt the
closure. To overcome these constraints, this paper proposes
a data-driven framework for studying phase transitions
of ABMs by (i) discovering the coarse observables in a
data-driven fashion, (ii) determining the level of closure,
(iii) identifying the reduced dynamics directly from data,
and (iv) utilizing the data-driven reduced model and
applying an odd symmetry transformation to it for the
construction of the bifurcation diagram. To this end, we

2470-0045/2024/110(1)/014121(12) 014121-1 ©2024 American Physical Society

https://orcid.org/0000-0002-2349-5566
https://ror.org/00za53h95
https://ror.org/00za53h95
https://ror.org/00za53h95
https://ror.org/02ed2th17
https://ror.org/00za53h95
https://ror.org/041kmwe10
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.014121&domain=pdf&date_stamp=2024-07-15
https://doi.org/10.1103/PhysRevE.110.014121

NIKOLAOS EVANGELOU et al. PHYSICAL REVIEW E 110, 014121 (2024)

FIG. 1. Schematic of the overall workflow. (I) Sample data from the agent-based model (ABM) across multiple initial conditions and
parameter values. (II) Compute histograms for each snapshot of the ABM. (III) Apply the diffusion maps algorithm on the computed histograms
to discover a reduced latent embedding. (IV) Use a conformal autoencoder (AE) to find a conformal reparametrization of the latent space. (V)
Identify a data-driven ODE in terms of the latent coordinate ν2 of the AE. (VI) Construct the bifurcation diagram (enabled via a symmetry
transformation) in terms of the latent coordinate ν2.

employ Diffusion Maps [16], a manifold learning algorithm,
conformal autoencoders [17], and residual neural networks
inspired by numerical integrators of ordinary differential
equations [12,18–21]. This allows us to circumvent the
difficulties arising from the choice of an analytical model and
the selection of its closure. The main steps of our proposed
data-driven workflow are illustrated in Fig. 1.

As an example, we apply our data-driven framework to
the generalization of the DZ model with multiplicative noise
considered in [9]; this very well-studied ABM features a
second-order (continuous) phase transition, which enables us
to compare the performance of our data-driven approach with
well-known analytical and computational results. We empha-
size, however, that our method is quite general, since it does
not depend on the detailed features of the interaction, and it
can be applied to many different ABMs that exhibit phase
transitions in the thermodynamic limit.

II. THE AGENT-BASED MODEL

We consider a model describing an ensemble of N identical
interacting agents subject to multiplicative noise. For this
model, the agents are coupled via a mean reverting force,
and a second-order phase transition exists at a critical tem-
perature that can be calculated analytically ([9], Eq. (A12)).
This transition appears as a symmetric pitchfork bifurcation
of the mean-field dynamics. The dynamics of each agent, xi,
are described by a stochastic differential equation (SDE) of
the form

dxi = [− x3
i + (

α + νσ 2
m

)
xi − θ (xi − x)

]
dt

+
√

σ 2 + σ 2
mx2

i dWi, (1)

where σ is the bifurcation parameter, θ denotes the interaction
strength, α is a parameter characterizing the amplitude of the
multiplicative noise, ν corresponds to different mathematical
prescriptions of the SDEs (Itô, Stratonovich, etc.), and σm is
a rectifying parameter: when σm �= 0 the phase transition is
pushed to higher values of σ. The agents are coupled through
x̄, which denotes the center of mass of the system (equal to the
first moment M1). Furthermore, dWi, i = 1, . . . , N denotes
independent Brownian motions. The values of the parameters

were set to α = 1, θ = 4, σm = 0.8, ν = 1
2 , and N = 12 000

as in [9].
For this model, it was demonstrated in [9] that, away from

the phase transition at σ ∼= 1.890, the first moment, i.e., the
order parameter of the system, is sufficient for an accurate
description of the mean-field dynamics. As we get closer to
the phase transition/the bifurcation, more moments need to be
taken into account in order to accurately locate the bifurcation.
More specifically, it was numerically demonstrated that at
least a four-moment truncation is necessary in order to accu-
rately predict the bifurcation/phase transition. In this work, by
observing the eigenvalues of the Jacobian at the steady state
(based on the moments equation proposed in [9]), we confirm
that a clear separation of timescales prevails in the neighbor-
hood of the bifurcation, and that the long-term dynamics live
on a one-dimensional manifold. Our goal here, discussed in
the next section, is to find a data-driven parametrization of this
one-dimensional manifold, and identify the dynamics on it.

III. NUMERICAL RESULTS

A. Latent data-driven coordinates

We start by sampling data on an equidistant grid of 18 dis-
tinct values of the parameter σ in the interval σ ∈ [0.5, 2.2]. A
more detailed description of the sampling strategy is discussed
in Appendix A 1.

Given the sampled data from the ABM, we compute the
first four moments M1, M2, M3, M4 as Mk = 1

N

∑N
i=1 xk

i (t),
where xk

i denotes the ith agent at a fixed time raised in the
power k, and Mk is the kth moment of the population from
the sampled ABM data. The computation of the moments
serves as a comparison between our data-driven framework
and the one proposed in [9] where an analytical system of
ODEs based on the four moments is proposed. The choice
of four moment is also supported by studying the timescale
separation of the analytical reduced model proposed in [9]
between the four-moment truncation and higher-order
moment truncations of the dynamics; see Appendix 5. In
Fig. 2(a) we plot the first two moments M1 and M2 colored
with the parameter σ . Based on this, we argue that the data

014121-2

MACHINE LEARNING FOR THE IDENTIFICATION OF … PHYSICAL REVIEW E 110, 014121 (2024)

(a) (b) (c) (d) (e) (f)

FIG. 2. (a) The first two moments (M1, M2) estimated from the ABM simulations colored with the parameter value σ at which they were
obtained. (b),(c) Diffusion maps on histograms for a single value of the parameter σ : (b) one-to-one relation between leading histogram moment
M1 and leading diffusion maps coordinate ψ1; (c) shows the residual (rk) based on the local linear regression algorithm indicating that ψ1

might be enough to parametrize the data (larger value of rk). [(d)–(f)] Diffusion maps on collected histograms from the ABM simulation across
multiple values of the parameter σ : (d),(e) show the nonharmonic diffusion map coordinates (ψ1, ψ2) colored with σ and M1, respectively; (f)
shows the residual (rk) based on the local linear regression algorithm indicating that ψ1 and ψ2 might be enough to parametrize the data (larger
values of rk).

are at least two-dimensional, and that the parameter σ appears
to correlate with the moments M1, M2.

We then proceed by computing Diffusion Maps (see Ap-
pendix 2 for a description of the algorithm) using data from
the sampled ABM simulation. The Diffusion Maps algorithm
was computed using (a) histograms obtained for a single value
of the parameter σ , (b) histograms obtained across our grid of
18 distinct σ values, and (c) the four computed moments from
data sampled across our 18 values of σ ; those computations
are reported in Appendix 2 c. We would like to reiterate that
the diffusion maps computations on the moments are not nec-
essary for the overall framework they serve as a comparison
of our approach and the one by [9].

Computing Diffusion Maps (based on histograms) for
single values of σ (far from the phase transition) gave a
one-dimensional manifold parametrized by ψ1. In Fig. 2(b)
we plot the leading Diffusion Maps coordinate ψ1 against the
first moment M1, and we demonstrate that they are one-to-one.
This suggests that Diffusion Maps is capable of discovering a
coordinate that is one-to-one with the known order parameter
M1 for this model [9,14,22]. The claim that the manifold is
one-dimensional in this case is also supported from the results
of the local-linear algorithm shown in Fig. 2(c); the residual rk

of the first eigenvector ψ1 is larger than that of the remaining
eigenvectors. In Appendix 2 c we illustrate the relation of
the Diffusion Maps coordinate with the subsequent moments
M2, M3, M4.

We proceed with the Diffusion Maps computation on data
sampled over multiple parameter values of σ . Details for the
Diffusion Maps algorithm applied on histograms are provided
in Appendix 2 b. Here in Figs. 2(d) and 2(e) we show the two
nonharmonic eigenvectors that parametrize different eigendi-
rections ψ1 and ψ2 colored with the parameter σ and the
first moment M1. The selection of the nonharmonic eigenvec-
tors was made by using the local linear regression algorithm
proposed in [23] and implemented by the datafold Python
package [24]. The residual rk of the first two eigenvectors,
shown in Fig. 2(f), is greater than the residual of the remaining
eigenvectors. This suggests that the first two eigenvectors
(ψ1, ψ2) are nonharmonic, while the remaining ones are har-
monic (functions) of the first two.

The Diffusion Maps results for the case of using col-
lected data across multiple parameter values, shown in

Figs. 2(c), 2(d), and 2(c), suggest that the mean-field dynamics
of the ABM live on a two-dimensional manifold. However, the
parameter σ appears to correlate with the behavior of the mo-
ments observed at that σ value. This suggests that even though
the data can be parametrized by two coordinates ψ1, ψ2, one
might be able to disentangle this coupled two-dimensional
description into a factorized (a single state)×(a parameter)
description. In the next section, we illustrate how a data-driven
reparametrization of the Diffusion Maps coordinates can be
achieved that will allow us to disentangle the effect of the
parameter σ from that of the latent variable.

B. Y-shaped conformal autoencoder

In this section, we illustrate the use of the Y-shaped con-
formal autoencoder, originally introduced in our previous
work [17] as a means of disentangling the effect of differ-
ent parameter combinations on model outputs in the context
of parameter nonidentifiability. The Y-shaped conformal au-
toencoder seeks a reparametrization of the Diffusion Maps
coordinates in which it disentangles the effect of the parame-
ter σ from that of the latent coordinates of the autoencoder.
A more detailed description of the overall framework, the
different loss function components of the network, and the
training procedure we followed are discussed in Appendix 3.
A schematic of the Y-shaped conformal autoencoder is shown
in Fig. 3(a). The coordinates ψ1 and ψ2, obtained by com-
puting the Diffusion Maps algorithm on estimated histograms
of the ABM, were the ones used as input to the Y-shaped
conformal autoencoder.

The bottleneck latent variables ν1, ν2 are shown in
Figs. 3(b) and 3(c) colored with the parameter σ and the
first moment M1 (that is the known coarse variable for this
model [9]). We see that the parameter σ appears to be varying
only along ν1 compared to Fig. 2(d) in which σ varied across
both ψ1, ψ2. Similarly, M1 varies only along ν2. The latent
variable ν1 shows a strong correlation with the parameter σ ,
as depicted by Fig. 3(d), indicating that they are effectively
one-to-one. The conformality efficiency of the autoencoder
becomes visually pronounced in Fig. 3(e) where level sets
of ν1 and ν2 are plotted in the Diffusion Maps coordinates.
Furthermore, the average value of the cosine of the angle,

014121-3

NIKOLAOS EVANGELOU et al. PHYSICAL REVIEW E 110, 014121 (2024)

(a) (d) (e)

(b) (c)

FIG. 3. (a) A schematic of the Y-shaped conformal autoencoder. The inputs to the network (ψ1 and ψ2) are shown as green nodes. The
outputs of the autoencoder (ψ̂1 and ψ̂2) and the Estimator are shown as red nodes. The latent variables (ν1 and ν2) are shown as light blue
nodes. (b),(c) The obtained latent coordinates ν1, ν2 colored with σ and M1, respectively. We can see that the σ appears to vary only across
ν1, compared to Fig. 2(c), in which σ varied across both ψ1, ψ2. Similarly, M1 appears to vary only across ν2. (d) The parameter σ is plotted
against the latent coordinate ν1 indicating a strong dependence. (e) Contour lines representing level sets of ν1 and ν2 are plotted in the Diffusion
Maps (ψ1, ψ2) providing a visual illustration of the obtained conformality.

cos θ = ∇ν1·∇ν2
||∇ν1||||∇ν2|| , calculated over the test set, was found to

be 5 × 10−4.
This reparametrization of the latent coordinates is crucial

since, as we show in the next section, it allows us to identify
a single-state dimension ODE depending on σ (rather than a
needlessly two-dimensional ODE).

In Appendix 3 we provide additional results obtained for
the Y-shaped autoencoder illustrating the reconstruction of its
input data (ψ1, ψ2). Remarkably, in addition, the Y-shaped
autoencoder allows us to estimate σ from previously unseen
histogram observation through ν1.

C. Identifying parameter-dependent ODEs

Using the latent variable ν2 obtained from the Y-shaped
conformal autoencoder as the state variable, we now identify
a σ -dependent ODE; remember that ν2 is conformal to ν1 (and
therefore to σ). The identification of the parameter-dependent
ODE was achieved through a residual neural network in-
spired by the forward Euler numerical integration scheme. A
schematic of the neural network is shown in Fig. 4(a). The
inputs to this network are the state variable at time t , ν2(t), and
the parameter σ , and the output is the state variable evolved to
time t + h, ν2(t + h). We provide a more detailed description
of the forward Euler network and the constructed loss function
scheme in Appendix 4.

We test the ability of the ODE to produce accurate
paths (trajectories), in ν2 space, for seven unseen values
of the parameter σ = {0.57, 0.85, 1.11, 1.75, 1.9, 2.06, 2.25};
see Appendix 1 for more details. In Fig. 4(b) we illustrate

the predicted values ν̂2(t + h) from the Euler neural network
against the ground truth (projected trajectories in ν2 generated
by the ABM) for all seven unseen values of the parameter
σ . The estimated MSE in this case was MSE = 6 × 10−4. In
addition, in Fig. 4(c) we provide a visual comparison between
trajectories simulated by the Euler neural network and by the
ABM model (projected in ν2) for the test parameter values
σ = {1.11, 1.75, 1.9}. The paths generated by the ABM and
those generated by the neural network-identified ODE show
excellent visual agreement across different values of σ and
different initial conditions. This suggests that the identified
right-hand side provides a successful approximation of the
ground-truth dynamics.

D. Bifurcation diagram: Phase transition

In this section, we now proceed to test whether the
parameter-dependent ODE identified in a data-driven way
through our neural network can qualitatively and quantita-
tively capture the phase transition. To assess the robustness
of our approach, we also estimate the error associated with
the phase transition by training 5000 neural networks in par-
allel, using different splits of the data for training, validation,
and testing. All hyperparameters were kept the same across
models during this computation. For each of the trained net-
works given the identified right-hand side, we compute the
steady states across a range of values of the parameter σ

and construct the bifurcation diagram. For values of σ ∈
[0.5, 2.2] a representative constructed bifurcation diagram is
shown in Fig. 5(a). The bifurcation diagram shows that the

014121-4

MACHINE LEARNING FOR THE IDENTIFICATION OF … PHYSICAL REVIEW E 110, 014121 (2024)

(a) (b) (c)

FIG. 4. (a) A schematic of the forward Euler residual neural network. The state variable ν2(t), the parameter σ , and the time step h are
inputs to the neural network that estimates the right-hand side fθ of the ODE. The right-hand side is then used to estimate the state variable
ν̂2(t + h) by using a forward Euler step. (b) The predicted value for ν̂2(t + h) estimated from the Euler neural network is plotted against the
true value (projected ABM trajectories in ν2 space) for values of the parameter σ = {0.57, 0.85, 1.11, 1.75, 1.9, 2.06, 2.25} not included in
the training set. (c) For three values of the parameter not included in the training set, we contrast generated paths from the ODE (solid lines)
with paths simulated by the ABM (dashed lines) embedded in ν2. The colors black, blue (gray), and green (light-gray) correspond to σ = 1.11,
1.75, and 2.25, respectively.

model identifies the existence of three steady states—two sta-
ble and one unstable—for σ < 1.84. For σ � 1.84 a unique
stable steady state exists. However, the computed bifurcation
diagram clearly possesses the flip symmetry of the generic
pitchfork bifurcation. We have identified a perturbed pitch-
fork, in which the upper branch remains permanently stable
and the lower branch exhibits a turning point where a sta-
ble and an unstable component collide. The consistency of
identifying a perturbed pitchfork was maintained across the
different models we trained.

To make sure we recover a generically symmetric pitchfork
bifurcation diagram, a simple transformation suffices: given
the identified right-hand side fθ (ν2(t); σ) of the neural net-
work, we compute

g(ν2; σ) = fθ (ν2(t); σ) − fθ (− ν2(t); σ)
2

. (2)

The vector field g(ν2; σ) is then used to construct the
bifurcation diagram, shown in Fig. 5(b) correctly capturing
the symmetry. Note that the computation of Eq. (2) does
not require a second neural network but only evaluations of
the trained Euler neural network discussed in the previous
section. The average critical parameter of the identified ODE

(a) (b)

FIG. 5. (a) A representative bifurcation diagram constructed by
the identified right-hand side of the Euler neural network suggests a
“perturbed” pitchfork. (b) A representative bifurcation diagram after
applying Eq. (2) to the identified right-hand side shows a symmetric
pitchfork.

(based on the 5000 trained neural networks) was estimated
at σ ∗ = 1.837 and the standard deviation was 0.026; the true
critical transition has been computed to be at σ ∗ = 1.890 [9];
see also Ref. [14], Eq. 3.52, for the case of additive noise.
This suggests that the identified ODE provides a qualitatively
correct and arguably quantitatively accurate approximation
of the phase transition. This small discrepancy can likely be
attributed to the limited range of σ values used in our training
data. With only 18 distinct values for σ (details on sampling
in Appendix 1), the closest ones to the true bifurcation point
are σ = 1.80 and 1.90. Using a finer grid of parameter values,
we believe it would have led to even smaller discrepancy.

IV. SUMMARY AND CONCLUSIONS

We presented a data-driven framework for identifying
qualitatively and approximating quantitatively phase tran-
sitions of interacting agent systems through an interplay
between direct simulations and machine-learning-assisted
coarse-grained system identification, and bifurcation analysis.
We demonstrated that our framework is capable of identi-
fying the phase transition of the DZ system with a single
interpretable data-driven variable, in contrast to the derived
closed-form model proposed in [9] where a system of four
approximate ODEs was required for the task. To discover
the effective coarse (collective) variables that parametrize
collected data from the ABM, the Diffusion Maps manifold
learning algorithm [16] was used. We showed that, for a con-
stant parameter value (σ = 1), away from the phase transition,
the Diffusion Maps algorithm discovers a one-dimensional
manifold parametrized by the data-driven coordinate ψ1, and
that ψ1 is one-to-one with the theoretical order parameter M1.
We then illustrated that, while data collected over a range of
parameter values (bracketing the critical value) lie on a two-
dimensional manifold, this manifold can be “disentangled”
(factored) into a one-dimensional state-variability manifold
“crossing” a one-dimensional parameter variability manifold.
To disentangle the variability due to the parameter σ from
the state variability, in terms of the latent Diffusion Maps
coordinates (ψ1, ψ2), we introduced a Y-shaped conformal
autoencoder, initially proposed in [17] for addressing param-
eter nonidentifiability. We illustrated that the autoencoder’s

014121-5

NIKOLAOS EVANGELOU et al. PHYSICAL REVIEW E 110, 014121 (2024)

latent variables (ν1, ν2) form a conformal set of coordinates
that ultimately allow us to learn a single effective nonlinear
ODE in terms of a single state variable ν2 and depending on a
single parameter σ (the latter being one-to-one with ν1). This
effective nonlinear ODE was identified via a residual neural
network, templated on the forward Euler numerical integrator.
We compared generated paths of the identified ODE for test
values of the parameter σ to paths generated with the full
ABM embedded in the latent coordinate ν2, and we demon-
strated good agreement between the two. To construct the
bifurcation diagram from the identified right-hand side of the
ODE, we used an odd symmetry transformation of the right-
hand side. This transformation provides a symmetric vector
field and captures the pitchfork bifurcation that denotes the
phase transition. Imposing known physical symmetries in the
data-driven models in order to enhance accuracy and improve
generalizability is currently an active area of research [25–33].

Our proposed framework can be extended to a broad class
of complex, multiscale dynamical systems for which a fine
scale atomistic/stochastic mode exists, but for which accurate
closed-form macroscopic equations at the coarse-grained level
are not explicitly known. We are particularly interested in
models from the social sciences, where no physics-informed
natural choice for the order parameter(s) exists. As an ex-
ample, we mention the noisy Hegselmann-Krause model for
opinion dynamics [34], for which it has been rigorously
proved that a discontinuous disorder (no consensus)/order
(consensus) phase transition exists (Ref. [6], Prop. 6.2). It
would be interesting to identify the phenomenological or-
der parameter introduced in [34] using our approach. Other
examples for which our approach is expected to be appli-
cable are the Keller-Segel model for chemotaxis (see the
work in [35–38]), the Fitzhugh-Nagumo model from the
lattice Boltzmann method in [39,40], the mean-field Fitzhugh-
Nagumo model for neurons (Ref. [41], Sec. 5.6), and the
Dean-Kawasaki stochastic PDE [3,42], which takes into ac-
count finite-particle effects and fluctuations.

The code used to generate the results for this paper are
available as a public repository [43].

ACKNOWLEDGMENTS

I.G.K. acknowledges partial support from the U.S. AFOSR
FA9550-21-0317 and the U.S. Department of Energy SA22-
0052-S001. G.A.P. is partially supported by the Frontier
Research Advanced Investigator Grant ERC Grant No.
Machine-aided general framework for fluctuating dynamic
density functional theory. The authors are grateful to N. Zagli
and A. Zanoni for useful discussions for making available
the code from [9] and [41], respectively. Many thanks to T.
Gaskin for helping set up the collaboration with Imperial
College London. He acknowledges the hospitality of the Johns
Hopkins group.

APPENDIX

1. Data collection

Given the ABM model described in Sec. II in the main
text, we generated trajectories at 18 equidistant values of σ ∈

[0.5, 2.2] [9]. For each value of σ we sampled 100 trajectories
for different initial conditions (agents’ distribution) drawn
from the Pearson distribution (implemented in MATLAB) with
prescribed mean, standard deviation, skewness, and kurto-
sis. The values for the mean, standard deviation, skewness,
and kurtosis were chosen randomly from a prescribed grid
of equidistant points: The mean was chosen from the range
[−2.0, 2.0], with increments of 0.2. The standard deviation
was selected from the range [0.0,2.0], with increments of 0.1.
The skewness was chosen from the range [−2.0, 2.0], with
increments of 0.2, and the kurtosis was selected from the
range [0.0,15], with increments of 0.72. This scheme ensured
a dense sampling both in parameter and state space.

The integration time of the ABM, containing N = 12 000
agents, was set to t f = 10 with a time step dt = 0.005. Data
were collected every five snapshots, which led to a total of
400 snapshots per trajectory. Therefore, for a single value of
the parameter, the total number of initial data is n = 40 000
(400 × 100) while for multiple values of the parameter n =
720 000 (400 × 100 × 18). Note that a number of trajectories
explodes and thus they are omitted from any further computa-
tions.

An additional preprocessing step was applied to the data
before the Diffusion Maps computation that includes dis-
carding a short transient tcut for each trajectory. This ensures
that the fast transients have decayed and the collected data
contain only the long-term dynamics (that live on the slow
manifold). When dealing with multiple parameter values we
chose tcut = 1, while for a single value of the parameter
σ = 1 we chose tcut = 0.5 to make sure that enough tran-
sients are close to the unstable steady state, otherwise the
manifold would appear as two clusters. As a test set, we
sampled nine trajectories for each of the seven values of
σ = {0.57, 0.85, 1.11, 1.75, 1.9, 2.06, 2.25} not included in
the training set. The selection of these test values was made
to validate the predictions of our Euler neural network for
dynamics before and after the bifurcation.

2. Diffusion Maps

The Diffusion Maps algorithm, introduced by Coifman
and Lafon [16], can be used to discover a low-dimensional
parametrization of high-dimensional data X = {xi}n

i=1 with
each xi ∈ Rm. Diffusion maps constructs a weighted graph
K ∈ Rn×n between the sampled data points by using a kernel
function. A common choice, also used in our case, is the
Gaussian kernel

K (xi, x j) = exp

(−||xi − x j ||22
2ε

)
, (A1)

where ε is a positive hyperparameter that controls the rate of
the kernel’s decay. The metric || · || in our case was chosen as
the 	2 norm, but different metrics are also possible.

To discover a low-dimensional manifold, regardless of the
sampling density, the following normalization is required:

K̃ = P−1KP−1, (A2)

where Pii = ∑n
j=1 Kj j . A second normalization of K̃ recovers

a row-stochastic, Markovian matrix

M = D−1K̃, (A3)

014121-6

MACHINE LEARNING FOR THE IDENTIFICATION OF … PHYSICAL REVIEW E 110, 014121 (2024)

where D is a diagonal matrix defined as Dii = ∑n
j=1 K̃i j .

The entries of matrix M can be seen as probabilities of
jumping from one point to the other. The eigendecomposition
of M,

Mφi = λiφi, (A4)

provides a set of eigenvectors φi and corresponding eigen-
values λi. To obtain a more parsimonious representation of
the original data set X, proper selection of the eigenvectors
is needed. If the intrinsic dimension of the data is small,
this selection can be achieved by visual inspection of the
nonharmonic eigenvectors (eigenvectors that span indepen-
dent directions) [44]. Alternatively, the local-linear regression
algorithm proposed by Dsilva et al. [23] can be used for
selecting the nonharmonic eigenvectors. If the number of
independent nonharmonic eigenvectors is smaller than the
dimension m of the data X, then dimensionality reduction has
been achieved. In our work, the Python library datafold [24]
was used for the Diffusion Maps and the local-linear regres-
sion algorithms.

a. Nyström extension

The Nyström extension formula provides a numerical ap-
proximation of eigenfunctions of the form [45]∫ b

a
M(x j, xi)φi(xi)dxi = λφ(x j). (A5)

In our work, the Nyström extension is utilized when
new out-of-sample data points are given, e.g., xnew /∈ X. To
generate the Diffusion Maps coordinates φnew, the Nyström
extension uses an interpolation scheme based on the kernel
computations and normalizations applied during the dimen-
sionality reduction step, discussed in the previous section. The
Nyström extension formula reads

φi(xnew) = 1

λi

n∑
j=1

M̃(xnew, x j)φi(x j), (A6)

where φi(xnew) denotes the estimated ith eigenvector for the
data point φnew, λi denotes the corresponding eigenvalue,
φi(x j) denotes the jth component of the ith eigenvector, and
M̃(·, ·) denotes the kernel function used to determine the
similarity of xnew to all the points in X.

b. Diffusion Maps on ABM data

In this section, we provide details on how the Diffusion
Maps algorithm was computed on histograms and moments
from the ABM. In the first case, for each snapshot of the ABM
we constructed a histogram as an approximation of the agents’
density. Each histogram contains 40 equidistant bins defined
in the range [−4, 4]. This range ensures that all agents in the
collected (training) data lie in between. Note that the method
is insensitive to the selected number of bins. To reduce the
computational cost of the Diffusion Maps, we subsampled the
training data uniformly [24], which resulted in about 3500
data points when Diffusion Maps applied for a single param-
eter and about 19 000 data points for multiple values of the
parameter. The hyperparameter ε was selected as the square of
the median of the pairwise distances multiplied by a constant

c, where c = 0.03 for a single value of the parameter σ and
c = 20 for multiple values of the parameter σ . In the second
case, Diffusion Maps was computed on the sampled moments,
M1, M2, M3, M4. Again, to alleviate the computational cost,
we subsampled the data [24], which results in N ∼ 11 000.
The hyperparameter ε was also selected for this case by com-
puting the median of the pairwise distances multiplied with
c = 10.

c. Diffusion Maps: Additional results

In this section, we provide additional results for the
Diffusion Maps computation for σ = 1 on the histograms
and the Diffusion Maps computations on the moments
M1, M2, M3, M4. We showed in the main text that the Diffu-
sion Maps coordinate ψ1 is one-to-one with the first moment
M1. Here we show that M3 is also one-to-one with ψ1

[Fig. 6(a)] and that the even moments M2 and M4 can be seen
as functions of ψ1 [Figs. 6(b) and 6(c)].

To strengthen the argument that the manifold in this case
is one-dimensional, we show in Fig. 6(d) the eigenvectors
ψ2 − ψ9 plotted against the first nontrivial eigenvector ψ1.
From Fig. 6(d) it appears that the eigenvectors ψ2 − ψ9 are
harmonics of ψ1. This suggests that the manifold for a fixed
value of σ is one-dimensional.

The Diffusion Maps algorithm applied using the com-
puted first four moments reveals a two-dimensional manifold
embedded in four dimensions. The first two eigenvectors in
this case, φ1 and φ2, shown in Figs. 7(a) and 7(b), are the
nonharmonic eigenvectors that parametrize the data. This is
corroborated by the larger residuals rk of the first two eigen-
vectors shown in Fig. 7(c). Also in this case, the parameter σ

and the first moment M1 appear visually as functions of the
Diffusion Maps coordinates [Figs. 7(a) and 7(b)]. This pair of
coordinates, obtained by Diffusion Maps on moments, could
have been used for the CAE’s training instead of the Diffusion
Maps coordinates (ψ1, ψ2) obtained from the computations on
the histograms, but we omit this for brevity.

3. Y-shaped conformal autoencoder

The Y-shaped conformal autoencoder was initially pre-
sented in [17]. In this work, the Y-shaped conformal
autoencoder consists of the three connected (sub)networks

Encoder: (ψ1, ψ2) �→ (ν1, ν2), (A7)

Decoder: (ν1, ν2) �→ (ψ̂1, ψ̂2), (A8)

Estimator: ν1 �→ σ̂ . (A9)

The Encoder receives as inputs the two Diffusion Maps
coordinates ψ1, ψ2 and maps them to the latent variables
ν1, ν2. The Decoder aims to reconstruct the Diffusion Maps
coordinates from the latent variables ν1, ν2. The Estimator has
as input the latent coordinate ν1 and aims to learn a map from
ν1 to the parameter σ .

The loss function used to train the Y-shaped conformal au-
toencoder consists of three parts: (a) The loss function of the
Encoder-Decoder (autoencoder) Lae that aims to reconstruct
the input itself, (b) the loss function of the Estimator, Lest,
that aims to reproduce the parameter σ given ν1, and (c) the

014121-7

NIKOLAOS EVANGELOU et al. PHYSICAL REVIEW E 110, 014121 (2024)

FIG. 6. [(a)–(c)] The Diffusion Maps coordinate ψ1 is plotted against the computed moments M2, M3, and M4, respectively. (d) The
eigenvector ψ1 is plotted against the eigenvectors ψ2 − ψ9. This supports our argument that the eigenvectors ψ2 − ψ9 are harmonics of ψ1.

loss function for imposing the conformality constraint, Lcon,
between ν1 and ν2,

〈∇ν1,∇ν2〉 = 0, (A10)

where the gradient ∇ is in terms of the Diffusion Maps coordi-
nates (ψ1, ψ2) of the input and 〈·, ·〉 denotes the inner product
between the two vectors. The gradients were computed by
using the automatic differentiation of Pytorch [46]. In prac-
tice, instead of using Eq. (A10), one can minimize the angle
between the vectors,

cosθ = ∇ν1 · ∇ν2

||∇ν1||||∇ν2|| , (A11)

which stabilizes the training of the network. We describe de-
tails for training the network, specifics about the architecture
used, and the choice of hyperparameters in the next section.

a. Hyperparameter selection and training procedure

The implementation of the Y-shaped conformal autoen-
coder was done with the Pytorch Python library [46].

Each (sub)network (Encoder, Decoder, Estimator) in the
architecture of the Y-shaped conformal autoencoder consists
of five fully connected layers. The first four hidden layers have
20 neurons and tanh(t) activation functions, and the fifth has
no activation function (linear activation) and its size depends
on the size of the desired output. The ADAM optimizer was
chosen for training the overall network. We chose minibatches

014121-8

MACHINE LEARNING FOR THE IDENTIFICATION OF … PHYSICAL REVIEW E 110, 014121 (2024)

(a) (b) (c)

FIG. 7. (a),(b) The nonharmonic coordinates φ1 and φ2 colored with σ and M1, respectively. (c) The residual rk indicates φ1 and φ2 are the
two nonharmonic coordinates.

of size 32 to train the network. The learning rate was selected
as η = 0.001 and 500 epochs. Training the network for a
larger number of epochs leads to overfitting.

To train the network and test its generalization capability,
we used about 19 000 data points. We split the data into
train|test|validation as 80:10:10. We then rescaled the train-
ing data by using the MinMaxScaler Python preprocessing
scheme from sklearn. We applied the same transformation for
the validation and test sets. During the training of the network,
we used only the training set to perform backpropagation and
the validation set to get insight into the model’s performance.
The network did not see the test set during training.

The optimization process we performed was heuristic:
for a fixed minibatch, two updates (backpropagation steps)
were performed. The first step updates the weights of the
Encoder-Decoder and the second step the weights of the
Estimator-Encoder. Altering this training protocol is possible.
In Algorithm 1 below we provide a more detailed description
of the network’s training.

Upon training of the neural network, the estimated MSE
for the autoencoder’s reconstruction was Lae = 1.36 × 10−8

on the train set and Lae = 1.37 × 10−8 on the test set. The
MSE for the Estimator was Lest = 1.2 × 10−3 for the train set
and Lest = 1.2 × 10−3 for the test. The average value of the
cosθ on the train set was Lcon = 2.72 × 10−5 and on the test
set was Lcon = 2.63 × 10−5.

b. Y-shaped conformal autoencoder: Additional results

In this section, we provide additional results regarding the
Y-shaped conformal autoencoder described in the main text.
The ability of the Estimator to predict the parameter σ from
ν1 is shown in Fig. 8(a) for train (black dots) and test (red
dots) points. We also illustrate, in Figs. 8(b) and 8(c), the
reconstruction of the autoencoder for train and test points.

4. Forward Euler neural network

In this section, we describe how we identified the right-
hand side of an ordinary differential equation directly from
data. Let ν2(t) be a state variable whose dynamics are gov-
erned by a σ -dependent ODE given by the general form

ν̇2(t) = f (ν2(t); σ). (A12)

Our goal is to construct a neural network architecture inspired
by numerical integrators of ODEs to estimate the right-hand
side f (ν2(t); σ). To this end, we constructed a forward Euler
residual neural network depicted in Fig. 4(a). To train this
network, we do not require long trajectories but only snap-
shots of the form D = {ν2(t + h), ν2(t), σ, h}, where ν2(t) is
the state variable at time t , and ν2(t + h) is the state variable
after a small time step h. Given sampled data in the form of
D, we wish to approximate f by using a neural network, with
weights denoted as θ .

To formulate the loss used to train the network fθ , we
remind the reader that the forward Euler approximates the

ALGORITHM 1. The algorithm illustrates a full iteration during
training of the Y-shaped conformal autoencoder. We set the scale
parameter to α = 10. The learning rate is denoted as η.

Input: Diffusion Maps coordinates ψ1, ψ2 and parameter values
σ .
Output: The weights of (i) Encoder (θencoder), (ii) Decoder
(θdecoder), (iii) Estimator (θestimator).
For i = 1, 2, . . . , T

1. Predict:
(ν1, ν2) = Encoder(ψ1, ψ2)

(ψ̂1, ψ̂2) = Decoder(ν1, ν2)
2. Compute Autoencoder (Encoder-Decoder) and Conformality

Losses:
L1 = Lae + Lcon

= MSE(ψ̂, ψ) + αMSE(cosθ, 0)
3. Backpropagation step–update weights (illustration with

gradient descent):
θencoder− = ηθencoderL1

θdecoder− = ηθdecoderL1

4. Predict:
(ν1, ν2) = Encoder(ψ1, ψ2)
σ̂ = Estimator(ν1)

5. Compute Estimator Loss:
Lest = MSE(σ̂ , σ)

6. Backpropagation step–update weights (illustration with
gradient descent)

θestimator− = ηθestimatorLest

θencoder− = ηθencoderLest

014121-9

NIKOLAOS EVANGELOU et al. PHYSICAL REVIEW E 110, 014121 (2024)

(a)

(b) (c)

FIG. 8. (a) The true values of the parameter σ are plotted against
that reconstructed by the Estimator for train (black) and test (red)
points. The blue dashed line indicates y = x. (b),(c) The true values
of the Diffusion Maps coordinates ψ1 and ψ2 are plotted against the
reconstructed ψ̂1, ψ̂2 coordinates by the autoencoder.

evolution of an ODE by a small positive step h, as

ν2(t + h) = ν2(t) + h f (ν2; σ). (A13)

In our case, without having access to f but only data in the
form D we wish to approximate the right-hand side with
the neural network fθ . This is achieved by performing for
each pair of inputs (ν2(t), σ) one integration step of size h,
estimating the evolved dynamics ν̂2(t + h) and minimizing
the loss

L(θ |ν2(t), ν2(t + h), h, σ) = ||ν̂2(t + h) − ν2(t + h)||2.
(A14)

For our computations, the time step h was kept constant but
the overall approach can be easily extended to handle also
varying time steps h.

a. Hyperparameter selection and training procedure

The implementation of the forward Euler neural networks
was done with the Tensorflow/Keras Python libraries [47].

To train the forward Euler neural network, we need to en-
sure our data are in the form of snapshots D. To achieve that,
we used the Nyström extension formula (see Appendix 2 a)
to all the available sampled trajectories and obtained the
corresponding trajectories in ψ1ψ2. We then evaluated the
Encoder to get trajectories in terms of ν2. These two steps
provided us with about 600 000 snapshots. We then split the
data into train|test|validation as 80: 10 :10. We then centered
and whitened the data (based on the mean and variance of
the training set) and applied the same transformation to the
validation and test set.

The architecture consisted of two hidden layers with 10
neurons each. The first hidden layer had a tanh(t) activation

(a) (b)

FIG. 9. (a) The learning curves for the train and validation sets.
(b) The true values of the state variable ν2(t + h) plotted against that
predicted by the Euler neural network ν̂2(t + h) for the train (black
points) and test (red points).

function and the second hidden layer had a linear activation
function. We used ADAM to optimize this network. The mini-
batch size was set to 32, the number of total epochs to 100,
and the learning rate to η = 0.001. The learning curves for
the training and validation are shown in Fig. 9(a). The ability
of the network to fit the training set and generalize is shown in
Fig. 9(b). Upon training of the network, the MSE on the train
and test sets were 2.63 × 10−3 and 2.79 × 10−5, respectively.
This neural network was used for the computations reported
in Sec. III C. We did not record the MSE for all the 5000
networks used to check the robustness of our approach in
identifying the critical transition.

b. Euler neural network: Additional results

In this section, we provide some additional results for the
forward Euler neural network. The learning curves for the
training and validation are shown in Fig. 9(a). The ability
of the network to fit the train set and generalize is shown in
Fig. 9(b). Note that the normalized value of the state variable
ν2 is shown in Fig. 4(a) and that the test points in this include
values of the parameter σ that are also in the training set.

FIG. 10. The eigenvalues of the Jacobian computed across a
range of parameter values σ for the moments’ equations with six
ODEs presented in [9]. The slowest eigenvalue (upper line) λ1

crosses the real axis at σ = 1.89 where the bifurcation occurs. The
black square indicates the value of σ where the (slowest) eigenvalue
crosses zero.

014121-10

MACHINE LEARNING FOR THE IDENTIFICATION OF … PHYSICAL REVIEW E 110, 014121 (2024)

5. Separation of timescales

In this section, we discuss the separation of timescales
for the reduced order models based on the equations for the
moments proposed in [9]. As shown in Fig. 10, the slowest

eigenvalue λ1 is at least one order of magnitude smaller than
the second slowest λ2. This suggests that the dynamics after
a short transient are slaved in the direction of this slowest
eigenvalue and are effectively one-dimensional.

[1] Boston Mathematical Modeling of Collective Behavior in Socio-
Economic and Life Sciences, Modeling and Simulation in
Science, Engineering and Technology, edited by G. Naldi,
L. Pareschi, and G. Toscani (Birkhäuser Boston Ltd., Boston,
MA, 2010).

[2] L. Pareschi and G. Toscani, Interacting Multiagent Systems:
Kinetic Equations and Monte Carlo Methods (Oxford University
Press, Oxford, 2013).

[3] L. Helfmann, J. Heitzig, P. Koltai, J. Kurths, and C. Schütte,
Statistical analysis of tipping pathways in agent-based models,
Eur. Phys. J.: Spec. Top. 230, 3249 (2021).

[4] L. Helfmann, N. D. Conrad, A. Djurdjevac, S. Winkelmann, and
C. Schütte, From interacting agents to density-based modeling
with stochastic PDEs, Commun. Appl. Math. Comput. Sci. 16,
1 (2021).

[5] L. Chayes and V. Panferov, The McKean-Vlasov equation in
finite volume, J. Stat. Phys. 138, 351 (2010).

[6] J. A. Carrillo, R. S. Gvalani, G. A. Pavliotis, and A. Schlichting,
Long-time behaviour and phase transitions for the Mckean-
Vlasov equation on the torus, Arch. Ration. Mech. Anal. 235,
635 (2020).

[7] T. Gross, C. J. D. D’Lima, and B. Blasius, Epidemic dy-
namics on an adaptive network, Phys. Rev. Lett. 96, 208701
(2006).

[8] S. Winkelmann, J. Zonker, C. Schütte, and N. D. Conrad, Math-
ematical modeling of spatio-temporal population dynamics and
application to epidemic spreading, Math. Biosci. 336, 108619
(2021).

[9] N. Zagli, G. A. Pavliotis, V. Lucarini, and A. Alecio, Dimen-
sion reduction of noisy interacting systems, Phys. Rev. Res. 5,
013078 (2023).

[10] P. Liu, H. R. Safford, I. D. Couzin, and I. G. Kevrekidis, Coarse-
grained variables for particle-based models: diffusion maps and
animal swarming simulations, Computat. Part. Mech. 1, 425
(2014).

[11] P. Liu, C. Siettos, C. W. Gear, and I. Kevrekidis, Equation-free
model reduction in agent-based computations: Coarse-grained
bifurcation and variable-free rare event analysis, Math. Modell.
Natural Phenom. 10, 71 (2015).

[12] G. Fabiani, N. Evangelou, T. Cui, J. M. Bello-Rivas, C. P.
Martin-Linares, C. Siettos, and I. G. Kevrekidis, Task-oriented
machine learning surrogates for tipping points of agent-based
models, Nat. Commun. 15, 4117 (2024).

[13] N. Martzel and C. Aslangul, Mean-field treatment of the
many-body Fokker-Planck equation, J. Phys. A 34, 11225
(2001).

[14] D. A. Dawson, Critical dynamics and fluctuations for a mean-
field model of cooperative behavior, J. Stat. Phys. 31, 29
(1983).

[15] J. A. Acebrón, L. L. Bonilla, C. J. Pérez V., F. Ritort, and R.
Spigler, The kuramoto model: A simple paradigm for synchro-
nization phenomena, Rev. Mod. Phys. 77, 137 (2005).

[16] R. R. Coifman and S. Lafon, Diffusion maps, Appl. Computat.
Harmon. Anal. 21, 5 (2006).

[17] N. Evangelou, N. J. Wichrowski, G. A. Kevrekidis, F. Dietrich,
M. Kooshkbaghi, S. McFann, and I. G. Kevrekidis, On the
parameter combinations that matter and on those that do not:
Data-driven studies of parameter (non) identifiability, Proc.
Natl. Acad. Sci. (USA) nexus 1, pgac154 (2022).

[18] R. Rico-martínez, K. Krischer, I. Kevrekidis, M. Kube, and J.
Hudson, Discrete-vs. continuous-time nonlinear signal process-
ing of cu electrodissolution data, Chem. Eng. Commun. 118, 25
(1992).

[19] R. González-García, R. Rico-Martìnez, and I. G. Kevrekidis,
Identification of distributed parameter systems: A neural net
based approach, Comput. Chem. Eng. 22, S965 (1998).

[20] F. Dietrich, A. Makeev, G. Kevrekidis, N. Evangelou, T.
Bertalan, S. Reich, and I. G. Kevrekidis, Learning effective
stochastic differential equations from microscopic simula-
tions: Combining stochastic numerics and deep learning,
arXiv:2106.09004.

[21] N. Evangelou, F. Dietrich, J. M. Bello-Rivas, A. J. Yeh, R. S.
Hendley, M. A. Bevan, and I. G. Kevrekidis, Learning effective
sdes from brownian dynamic simulations of colloidal particles,
Mol. Syst. Des. Eng. 8, 887 (2023).

[22] C. Van den Broeck, J. M. R. Parrondo, J. Armero, and A.
Hernández-Machado, Mean field model for spatially extended
systems in the presence of multiplicative noise, Phys. Rev. E 49,
2639 (1994).

[23] C. J. Dsilva, R. Talmon, R. R. Coifman, and I. G. Kevrekidis,
Parsimonious representation of nonlinear dynamical systems
through manifold learning: A chemotaxis case study, Appl.
Computat. Harmon. Anal. 44, 759 (2018).

[24] D. Lehmberg, F. Dietrich, G. Köster, and H.-J. Bungartz,
Datafold: Data-driven models for point clouds and time series
on manifolds, J. Open Source Softw. 5, 2283 (2020).

[25] P. J. Olver, Modern developments in the theory and applications
of moving frames, London Math. Soc. Impact150 Stories 1, 9
(2015).

[26] M. Mattheakis, P. Protopapas, D. Sondak, M. Di Giovanni, and
E. Kaxiras, Physical symmetries embedded in neural networks,
arXiv:1904.08991.

[27] D. Yarotsky, Universal approximations of invariant maps by
neural networks, Construct. Approx. 55, 407 (2022).

[28] B. Blum-Smith and S. Villar, Equivariant maps from invariant
functions, arXiv:2209.14991.

[29] S. Villar, W. Yao, D. W. Hogg, B. Blum-Smith, and B.
Dumitrascu, Dimensionless machine learning: Imposing exact
units equivariance, J. Machine Learning Res. 24, 32 (2023).

[30] P. J. Olver, M. Sabzevari, and F. Valiquette, Normal forms,
moving frames, and differential invariants for nondegenerate
hypersurfaces in C2, J. Geom. Anal. 33, 192 (2023).

[31] P. Jin, Z. Zhang, A. Zhu, Y. Tang, and G. E. Karniadakis,
Sympnets: Intrinsic structure-preserving symplectic networks

014121-11

https://doi.org/10.1140/epjs/s11734-021-00191-0
https://doi.org/10.2140/camcos.2021.16.1
https://doi.org/10.1007/s10955-009-9913-z
https://doi.org/10.1007/s00205-019-01430-4
https://doi.org/10.1103/PhysRevLett.96.208701
https://doi.org/10.1016/j.mbs.2021.108619
https://doi.org/10.1103/PhysRevResearch.5.013078
https://doi.org/10.1007/s40571-014-0030-7
https://doi.org/10.1051/mmnp/201510307
https://doi.org/10.1038/s41467-024-48024-7
https://doi.org/10.1088/0305-4470/34/50/305
https://doi.org/10.1007/BF01010922
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1093/pnasnexus/pgac154
https://doi.org/10.1080/00986449208936084
https://doi.org/10.1016/S0098-1354(98)00191-4
https://arxiv.org/abs/2106.09004
https://doi.org/10.1039/D2ME00086E
https://doi.org/10.1103/PhysRevE.49.2639
https://doi.org/10.1016/j.acha.2015.06.008
https://doi.org/10.21105/joss.02283
https://www.lms.ac.uk/sites/default/files/3.%20Olver%20-%20Modern%20Developments%20in%20the%20Theory%20and%20Applications%20of%20Moving%20Frames.pdf
https://arxiv.org/abs/1904.08991
https://doi.org/10.1007/s00365-021-09546-1
https://arxiv.org/abs/2209.14991
https://doi.org/10.1007/s12220-023-01243-8

NIKOLAOS EVANGELOU et al. PHYSICAL REVIEW E 110, 014121 (2024)

for identifying Hamiltonian systems, Neural Netw. 132, 166
(2020).

[32] F. Alet, D. Doblar, A. Zhou, J. Tenenbaum, K. Kawaguchi,
and C. Finn, Noether networks: Meta-learning useful conserved
quantities, 35th Conference on Neural Information Processing
Systems (NeurIPS 2021), Vol. 34 (Curran Associates Inc., Red
Hook, 2021), pp. 16384–16397.

[33] J. W. Burby, Q. Tang, and R. Maulik, Computing Poincaré maps
using physics-informed deep learning, Tech. Rep. [Los Alamos
National Lab. (LANL), Los Alamos, NM, 2020].

[34] C. Wang, Q. Li, W. E, and B. Chazelle, Noisy Hegselmann-
Krause systems: phase transition and the 2R-conjecture, J. Stat.
Phys. 166, 1209 (2017).

[35] S. Lee, Y. M. Psarellis, C. I. Siettos, and I. G. Kevrekidis,
Learning black-and gray-box chemotactic pdes/closures from
agent based monte carlo simulation data, J. Math. Biol. 87, 15
(2023).

[36] Y. M. Psarellis, S. Lee, T. Bhattacharjee, S. S. Datta, J. M.
Bello-Rivas, and I. G. Kevrekidis, Data-driven discovery
of chemotactic migration of bacteria via machine learning,
arXiv:2208.11853.

[37] C. Siettos, Coarse-grained computational stability analysis and
acceleration of the collective dynamics of a Monte Carlo sim-
ulation of bacterial locomotion, Appl. Math. Comput. 232, 836
(2014).

[38] S. Setayeshgar, C. W. Gear, H. G. Othmer, and I. G. Kevrekidis,
Application of coarse integration to bacterial chemotaxis,
Multiscale Model. Simul. 4, 307 (2005).

[39] A. Armaou, I. G. Kevrekidis, and C. Theodoropoulos, Equation-
free gaptooth-based controller design for distributed com-
plex/multiscale processes, Comput. Chem. Eng. 29, 731 (2005).

[40] E. Galaris, G. Fabiani, I. Gallos, I. Kevrekidis, and C. Siettos,
Numerical bifurcation analysis of pdes from lattice Boltzmann
model simulations: A parsimonious machine learning approach,
J. Sci. Comput. 92, 34 (2022).

[41] G. A. Pavliotis and A. Zanoni, A method of moments estima-
tor for interacting particle systems and their mean field limit,
arXiv:2212.00403 [math.NA].

[42] F. Cornalba and J. Fischer, The dean-kawasaki equation and
the structure of density fluctuations in systems of diffusing
particles, arXiv:2109.06500 [math.AP].

[43] https://gitlab.com/nicolasevangelou/ml_phase_transition.
[44] N. Evangelou, F. Dietrich, E. Chiavazzo, D. Lehmberg, M.

Meila, and I. G. Kevrekidis, Double diffusion maps and their
latent harmonics for scientific computations in latent space, J.
Comput. Phys. 485, 112072 (2023).

[45] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, Spectral
grouping using the nystrom method, IEEE Trans. Pattern Anal.
Machine Intell. 26, 214 (2004).

[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.
Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai et al., Pytorch:
An imperative style, high-performance deep learning library, in
Advances in Neural Information Processing Systems, Vol. 32
(Curran Associates, 2019), pp. 8024–8035.

[47] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S.
Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y.
Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg et al.,
TensorFlow: Large-scale machine learning on heterogeneous
systems (2015), software available from tensorflow.org.

014121-12

https://doi.org/10.1016/j.neunet.2020.08.017
https://doi.org/10.1007/s10955-017-1718-x
https://doi.org/10.1007/s00285-023-01946-0
https://arxiv.org/abs/2208.11853
https://doi.org/10.1016/j.amc.2014.01.151
https://doi.org/10.1137/030600874
https://doi.org/10.1016/j.compchemeng.2004.09.005
https://doi.org/10.1007/s10915-022-01883-y
https://arxiv.org/abs/2212.00403
https://arxiv.org/abs/2109.06500
https://gitlab.com/nicolasevangelou/ml_phase_transition
https://doi.org/10.1016/j.jcp.2023.112072
https://doi.org/10.1109/TPAMI.2004.1262185
http://www.tensorflow.org

