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Effect of stochastic resettings on the counting of level crossings for inertial random processes
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We study the counting of level crossings for inertial random processes exposed to stochastic resetting events.
We develop the general approach of stochastic resetting for inertial processes with sudden changes in the state
characterized by position and velocity. We obtain the level-crossing intensity in terms of that of underlying
reset-free process for resetting events with Poissonian statistics. We apply this result to the random acceleration
process and the inertial Brownian motion. In both cases, we show that there is an optimal resetting rate that
maximizes the crossing intensity, and we obtain the asymptotic behavior of the crossing intensity for large and
small resetting rates. Finally, we discuss the stationary distribution and the mean first-arrival time in the presence

of resettings.
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I. INTRODUCTION

The study of level crossings constitutes a very relevant
aspect of stochastic processes because of its theoretical impor-
tance [1-3] but also for its wide practical interest [4—6]. The
subject is diverse and embraces topics such as first-passage
times, survival, escape, and the theory of extremes, among
many others. From a general point of view the problem con-
sists in obtaining the probability distribution of the interval
between successive crossing events, a question with no known
exact solution [4,7] and few approximate results, mostly for
Gaussian processes [4,8] and the random telegraph signal [9].

A more accessible problem is the counting of level cross-
ings and the first developments along this direction were
obtained in the 1940s, especially by S. O. Rice [10] in the con-
text of statistical communication theory, and partly by M. Kac
[11] for a purely mathematical problem (counting zeros of
random polynomials), although both approaches were limited
to Gaussian and stationary random processes. The counting
problem was later set on more rigorous mathematical basis by
a series of authors, especially H. Cramers and collaborators
[6,8,12—14]. More recently, the problem has been generalized
to scalar-valued [15] and vector-valued [16,17] Gaussian ran-
dom fields.

In engineering, applications of the level-crossing problem
range from communications, reliability, and signal processing
to oceanography, just to name a few [5,6,8]. Applications
in physics include persistence and first-passage properties
[18,19], and the stochastic evolution of spin systems [20,21].
A generalization of Rice’s theory has also been used to count
the number of critical points in stochastic processes and ran-
dom fields, notably in the statistical physics of disordered
systems [22-24].
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In the counting of level crossings the main attainable result
is the crossing intensity, or crossing frequency, that can be
defined as the average number of times a random process
intersects some given level per unit time. As shown by Rice
[10] and Kac [11] the crossing intensity depends on the joint
probability density function (PDF) of the process and its
derivative (sometimes called “velocity”). This joint density
is rather difficult to obtain for non-Gaussian processes, and
even for Gaussian processes it may not exist, as is the case,
for instance, of first-order processes driven by white noise,
in which the velocity has infinite variance (see the next sec-
tion and Ref. [19] for more details).

In a recent work [19], two of us have studied the cross-
ing intensity for linear second-order (i.e., inertial) processes
driven by Gaussian white noise and have generalized Rice’s
formula for such processes. Herein we address the effects of
stochastic resetting events on linear inertial processes. In its
most common form, stochastic resetting consists in the combi-
nation of a given random process with a resetting mechanism
which at random instants of time (usually Poissonian) instan-
taneously brings the process to a given fixed position. The
random dynamics of the process and the resetting mechanism
are taken to be independent of each other.

Following a few antecedents in physics (e.g., Refs. [25,26])
and in the mathematics literature (see Ref. [27] for more
information), since the early 2010s there has been an explo-
sion of works dedicated to stochastic resetting in its multiple
forms and generalizations, which has given rise to a large
literature starting with the work of Evans, Majumdar and col-
laborators [28-34] as well as many others (see, for instance,
Refs. [35-54] out of a huge list of diverse works on the
subject).

The importance of resetting is based on two fundamen-
tal facts. First, resetting stabilizes the underlying random
process, in the sense that a nonstationary process becomes
stationary after a resetting mechanism has been implemented.
Second, and perhaps more importantly, resetting may reduce
the mean first-arrival time, thus speeding up stochastic search
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algorithms. This motivates its interest in a variety of contexts
such as protein identification in DNA sequences [25,55-58],
animal foraging [59,60], internet search algorithms, data min-
ing [61-63], and economy [64], among others.

As mentioned above, the main objective of the present
paper is to elucidate how a stochastic resetting mechanism can
alter the dynamics of level crossings, especially their count-
ing, of an underlying (reset-free) random process. In order
to apply Rice’s theory of crossing counting we must assume
that the underlying process is of bounded variation, so that
the joint PDF of position and velocity exists. This rules out
random processes governed by first-order stochastic differen-
tial equations driven by white noise. We will, therefore, base
our study on underlying processes driven by second-order
differential equations, that is, inertial processes, for which
velocity is bounded and the joint PDF exists. Let us mention
that in the specific field of second-order (inertial) processes,
resetting mechanisms have been recently addressed to random
acceleration [65] and to inertial Brownian motion [66].

As to the resetting mechanism, we will assume that it is
independent of the reset-free process and that the random
instants of time at which resetting occurs are Poissonian. One
important result of this paper is that, in the cases we consid-
ered and likely for all inertial processes, the crossing intensity
tends to a stationary value for large times and that this value
displays a maximum as a function of the resetting rate. In
other words, the average time between two consecutive cross-
ings of a given level (the so-called return time) is minimized
by an optimal choice of the resetting rate. This result may
be relevant in situations in which one seeks to maintain a
stochastic process close to a given level, for example in Monte
Carlo sampling from probability distributions with multiple
maxima. The minimum in the return time is reminiscent of
an analogous minimum of the mean first-arrival time (MFAT)
observed in diffusive processes and other stochastic processes
[34,65]. Thanks to the Rice formula, the expression of the
level-crossing intensity appears to be more easily attainable
than the MFAT (see, however, Ref. [65] for a determination of
the MFAT for the random acceleration process).

The paper is organized as follows. In Sec. II we summarize
the main traits of level-crossing counting along with their ap-
plication to Gaussian processes. In Sec. III we generalize the
renewal equations for resetting to include inertial processes
described by two-dimensional random variables (X (¢), X (1)).
In Sec. IV we study how resetting of both position and ve-
locity (so-called complete resetting) modifies the crossing
intensity and apply our results to two relevant examples of
physical interest: random acceleration and inertial Brownian
motion. For both cases, we show that the stationary crossing
intensity displays a maximum as a function of the resetting
rate, and we obtain its asymptotic behavior in the limit of
large and small resetting rate. We also show that the station-
ary upcrossing and downcrossing intensities display a similar
maximum and study their asymptotic behavior as well. All of
the aforementioned results are checked against numerical sim-
ulations. In Sec. V we obtain the stationary distribution of the
complete process with resettings for the two above-mentioned
examples. In Sec. VI we briefly deal with the MFAT and
mention some approximations, showing that, under rather
general requirements, resettings reduce such a time. Finally, in

Sec. VII we present our conclusions and in the Appendixes we
provide details of the calculations.

II. GENERAL ASPECTS OF THE LEVEL-CROSSING
INTENSITY

Consider a one-dimensional random process X (¢) and sup-
pose that the velocity Y (t) = X (¢) exists and so does the joint
PDF p(x, y, t|xo, o, to) of position and Velocity,l

p(x, y, t|xo, yo, to)dxdy
=Prob{x < X(#t) <x+dx,y <Y ()
<y +dylX(t) = x0, Y (fo) = Yo}

An important aspect of the level-crossing problem consists in
counting the number of crossings of a level u in a interval
[t0, t], which is defined as

N,(t, ty) = Number of times[X (') = u], (o <t <1).

For some applications it is useful to distinguish between the
number of upcrossings N\P(t, 1) [respectively, downcross-
ings N7(t, 19)], namely crossings at positive (respectively,
negative) velocity. Since tangencies to any level u are sup-
posed to be a set of zero measure [6], then the total number of
crossings is the sum of upcrossings and downcrossings,

N, (t,t0) = NP(t, 1) + N2, 1o).

The crossing intensity is defined as the expected number of
crossings per unit time, that is,
(Nu(t + At, 1))

() = lim ) ———"——. ey

Similarly, the upcrossing and downcrossing intensities 1) (¢)
are defined by replacing N, with N{* in the above equation. In
Rice’s theory one obtains (see, e.g., Refs. [6,19] for a detailed

derivation)

palt) = / ¥lpGe, y. 1)dy, ?)

[e¢]

which is the most general expression for the crossing intensity.
This expression can be easily modified to obtain the intensities
of upcrossings and downcrossings [19]:

W) = / yp(u, £y, 1)dy, 3)
0

and p, (1) = pSH @) + pl@).

If X () is a stationary random process, then it is time homo-
geneous and there exists a nonvanishing and time-independent
stationary joint distribution, defined as the limit [2]

pst(x,y) = Lim p(x,y,1).
11— 00

In this case the stationary crossing intensity also exists and is
given by
oo

Hu Etlirgo () = f [y psi(u, y)dy, @

—00

'If not strictly necessary, then we will omit in what follows the
dependence of the initial state (xo, yo) in the joint density and other
statistics.
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and similarly for the stationary upcrossing and downcrossing
intensities u® [cf. Eq. (3)].

Obtaining explicit expressions for the crossing intensity
turns out to be quite difficult for non-Gaussian processes [5,6]
because the joint density p(x, y, t) of position and velocity is
usually rather difficult to obtain and, in many cases, it has no
known analytical expression. Fortunately this is not the case
of Gaussian processes for which the joint PDF is

_ _ 1 2 _ 2
p('xvyit)_ zﬂA(t) eXp( 2A2(t){av(t)[x mx(t)]
- ZO'X),(I)[X - mx(t)][y - my(t)]
+o,(0ly — my(rnz}), (5)
where

me(t) = (X)), my(r) =Y )),

and
ol (1) = ([X(0) —m()), o7 (t) = ([Y(t) — my()]),
0 (1) = (X (1) — m O (1) — my()]),

are mean values and variances respectively, and

AM) = \Jo2()02(0) — o3,0). ©)

Note that the dependence on the initial state (xg, yo) lies inside
the average values m,(t) and m,(¢).

In the Gaussian case it is possible to get an explicit and
general expression for the crossing intensity 1, (¢) to any level
u. Indeed, substituting Eq. (5) into Egs. (2) and (3) we obtain
[19]

A(t) e—(zl—lm(l))z/2‘7x2(l)

M) = —yr
x {7 + /0, (OBrf (1.(1))}, %
and
pB@) = 2O w2020

2mol(t)
x {e O + \/n,(OFrfe(F.)},  (8)

where Erf(-) and Erfc(-) are the error function and the com-
plementary error function respectively, and

my (1)ox (1) Oxy (1)
V2A@)  V2A@)0.(1)

In Ref. [19] the above formalism was applied to lin-
ear inertial processes, which are described by the following
second-order Langevin equation:

X))+ BX(t)+ aX(t) = k&), (10)

nu(t) = [u—mc@)].  (9)

where «, B, and k are usually constant parameters (even
though they could be functions of time, as in aging processes)
and &(¢) is Gaussian white noise with zero mean and unit
variance:

@) =0, (EMEC)) =80 —1).

Equation (10) embraces three cases of significant physical
interest: (i) the random acceleration process, where « = 8 =
0; (ii) the inertial Brownian motion, where « = 0, § > 0; and
(iii) the noisy linear oscillator, where o > 0, 8 > 0. Cases (i)
and (ii) are nonstationary while case (iii), corresponding to the
harmonic oscillator, results in a stationary process.

Due to the linearity of Eq. (10), as well as the Gaussian
character of £(¢), we see that the process X () and its deriva-
tive are both Gaussian and their joint PDF, p(x, y, t), is given
by Eq. (5). Furthermore, by solving Eq. (10) we can obtain
explicit expressions of averages and variances which, after
substituting for Egs. (7) and (8) allows us to get the crossing
intensities 1,(t) and pu®(¢). Two of us have applied this
procedure in Ref. [19] and obtained explicit expressions of
the crossing intensities for the cases (i)—(iii) just mentioned,
and discussed asymptotic approximations. We refer the reader
to Ref. [19] for details.

III. STOCHASTIC RESETTING
FOR INERTIAL PROCESSES

Let X(¢) be an inertial process whose dynamical evolu-
tion is governed by a second-order Langevin equation, with
initial conditions X (¢y) = xo and X (to) = yo, and assume that
superimposed to this dynamical evolution there are resetting
events which randomly and instantaneously bring X (¢) and
Y(t) = X(t) to a fixed position and velocity,

X (@), Y (1)) — (xr, yr),

from which the process starts afresh. Resettings occur at
random instants of time. We suppose that the time intervals
between two consecutive events are identically distributed and
denote with v (7) the PDF of one such interval .

Let us consider the bidimensional process

Z(1) = (X(1),Y (1)),

and denote by py(z, t|zo, f) the joint PDF of (X (¢), Y (¢)) in
the absence of resettings,

Po(z, tzo, to)dxdy
=Prob{x < X)) <x+dx,y<Y(@)<y+dy|Z()

= Zy; no resettings},

where z = (x, y), 2o = (xo, Yo), and by p(z, t|zo, to) the joint
PDF of the combined process in the presence of resettings. We
will see next how p is related to py. Recall that resettings are
instantaneous and assumed to happen on both position X (¢)
and velocity Y (¢). Thus, if at the instant ¢’ the bidimensional
process Z has reached the value Z(t') = (x', y), where

X=Xt —-0), Y=Y -0),
and a resetting occurs, then
X(t/+0)=xrv Y(t/+0)=yr’

and the bidimensional process starts afresh from z, = (x,, y,).
We will assume that resetting events are Poissonian, which
implies

Y(r)=re"",
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where r > 0 is the rate (or frequency) of resetting, so that
r~! is the average time interval between two consecutive
resettings. Then the propagator p(z, t|zy) obeys the integral

equation [34,64]

P(z, t|2o, to)

e "7 po (2, t |29, o)

t , o0 [o.¢]
+r/ et )dt’/ dx’/ po(z, t|z,, 1)
0 —00 —00

x p(x', ¥, t'|zo, 19)dy’, (11)

where the first term on the right-hand side accounts for the
evolution with no resetting events between #y and ¢, while the
second term accounts for the probability that the last resetting
event was at ¢’ and no reset occurred after . Let us note that
because of the normalization of the joint PDF, i.e.,

o0 o0
/ dx// p(xX', ¥, t |29, to)dy = 1.
—0oQ —0oQ

In what follows we will assume that the underlying process as
well as the resetting mechanism are both time homogeneous,
so that

po(z, t|zo, to) = po(z, 1 —folzo), and
p(z,t]zo,10) = p(z,1 —fo|2o) (12)
and we can take 7y = 0. Then we can greatly simplify Eq. (11),

resulting in the expression

p(x, y, tlxo, yo) = e~ " po(x, y, t1x0, yo)

t
+r/ e po(x, y, t'|x,, y)dt',  (13)
0

which gives the PDF of the complete process with resettings
in terms of the PDF of the underlying reset-free process.

IV. CROSSING INTENSITY UNDER RESETTINGS

We now turn to the problem of determining the cross-
ing intensity in the presence of resettings. Let us denote by
wO(t|x0, yo) and p,(t]x0, yo) the crossing intensities to some
level u of the reset-free process and the complete process
with resettings, respectively. In terms of their respective joint
PDF’s these intensities are given by Eq. (2),

o0
uio)(tlxo,yo)=/ [yIpo(u, y, t|x0, Yo)dy, — pu(tlxo, yo)
—0Q
o0
=/ [y|p(u, y, tlxo, yo)dy. (14)
—00

For Poissonian resettings,
Eq. (14), we obtain

by combining Eq. (13) with
t
it %0, y0) = " (¢ 1x0, yo)+ r/ e uO |x,, ydt',
0
(15)

which is the most general expression of the crossing intensity
under Poissonian resettings in terms of the crossing intensity
of the reset-free process. Proceeding in a similar way we can

obtain the upcrossing and downcrossing intensities as

wE(t1x0, yo) = e O (t|x0, yo)

t
+r/ e "
0

where w® ) (¢) and ©®7)(r) denote, respectively, the up-
crossing and downcrossing intensities of the reset-free pro-
cess.

In what follows we will assume that resettings bring
the process to the initial state, so that x, = xo and y, = yo,
and simply denote wu,(¢) = n,(¢|xo0, o), and similarly for
uE(#).2 Inthe t — oo limit and assuming that e~ @ () —
0 (t+ — 00), we obtain the stationary crossing intensity

)
My = r/ e
0

in terms of the Laplace transform /,L(O)(I") of the reset-free
crossing intensity. Similarly, the stationary upcrossing and
downcrossing intensities are given by the Laplace transform
of u®H)(¢), multiplied by r.

Since resettings usually render the complete process sta-
tionary even if the underlying reset-free processes is not, we
may have a similar situation for the stationary crossing inten-
sity, namely we may have u(” = 0 and p, # 0. For this to
happen it suffices that 1(?)(¢) behaves appropriately as t — 0
and ¢+ — oo for the integral in Eq. (16) to exist.

As shown in Sec. II, when the underlying process is
Gaussian it is possible to obtain explicit expressions of the
reset-free crossing intensity u(%(¢), cf. Eq. (7). We will now
apply the above results to obtain the crossing intensity of
two examples of physical interest, the random acceleration
process and the inertial Brownian motion when both are under
Poissonian resettings.

w2 e, ye)dr

w0t = r) (), (16)

A. Random acceleration

Suppose the underlying reset-free inertial process X (¢) is
given by the second-order Langevin equation:

X (@) = ke@), (17)

k > 0, where &(¢) is Gaussian white noise and the initial state
is X(0) = x¢, X(0) = yo. The process is obviously Gaussian
and average values and variances are

my(t) = xo +yot,  my(t) = yo (18)

and
K23 Kt
ol(t) = = ol (1) =kt, oy(t) = 5 (19
By direct replacement of Eqs. (18) and (19) into Eq. (7) one
finds that the reset-free crossing intensity to any level u is
given by [19]

(0>( 1) = o= 3= (0)?/24r
2t

x [0 4 /mn, (OEf ()], (20)

2Let us note that if resettings bring the process to cross the level u,
then such a crossing event is not counted for obtaining w,,(¢).
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where, cf. Eq. (9),

s

3
nu(t) = W Yo + —(M - mx(t)):| (21)

The asymptotic expression as t — oo to any level u# and for
any value of the initial velocity yy is given by

nO(t) ~ zﬁ (t > 00), 22)
Tt

We therefore see that the stationary crossing intensity of the
reset-free random acceleration process is zero.

For the complete process with Poissonian resettings, the
crossing intensity w,(t) is finite provided u# and yy do not
both vanish, and we show below that in this case it has a
nonzero stationary value. On the other hand, if xg = u =y =
0, then the reset-free crossing intensity in Eq. (20) becomes
,ufl(zo(t) =+/3/27t at all times, and substituting this into
Eq. (15) we obtain an integral that diverges at short times, thus
Hu=o(t) = oo, which reflects the fact that after each resetting
there is a high probability of crossing the zero level. Below
we consider in detail the two cases y, = yo = 0, u # 0, and
v =Yo # 0,u = 0. In both cases we assume x, = xop = 0,
namely resetting always starts from level zero.

1. Caseyy=0,u #0

We will focus first on the case of zero initial velocity,
yo = 0, and nonzero level u # 0. In this case two timescales
appear in the problem: (i) the average time r~! between two
consecutive resettings and (ii)

|\
T, = <7> , (23)

which is the timescale at which the process reaches level
u, namely X(t,) >~ *u, starting from xy = 0. Substituting
Eq. (20) (with yg = m,(t) = 0) into Eq. (16) we obtain the
stationary crossing intensity

I ) BT 1(2)3/2
Yo Jy ot 2\t

3 3 3
x Brf| — (7, /¢ 3/2>1|e”2(f“/”‘dt, =0). 24
<ﬁ( /1) (Yo ). (24)

Figure 1 shows that u,, obtained by the numerical evaluation
of the above integral, displays a maximum as a function of r.
The existence of this maximum can be understood by noting
that as r tends to zero the process wanders further and further
from any fixed level, making a crossing increasingly less prob-
able, while for r large and growing it becomes increasingly
more likely to incur in a resetting before it can cross a level
u. Notice also that u, increases as u decreases, and diverges
logarithmically as u — O for all r.

In order to check our results, we also performed Monte
Carlo simulations of the Langevin equation Eq. (17), by adapt-
ing the algorithm of Ref. [67], as discussed in Ref. [19]. As
shown in Fig. 1, the numerical integration and the Monte
Carlo data agree perfectly. Here and in the rest of the figures of
this paper, the error bars of the Monte Carlo data are smaller
than the symbols, all timescales are expressed in units of time

0.5 | ]
u=01+—s— )s \
=0.2 » /
04 + u=0 # & 4
u=0.3
u = 0.5 /
] 0.3 I o { o \ R
= uw=0.7 4 \
ya | \“
0.2+ / & 1
/ n \
0.1} 7 1
7
, L\
0L AN
1073 1072 107! 100 10t 102

r

FIG. 1. Stationary crossing intensity u, for the random acceler-
ation process, with yo = 0,k = 1 and for different values of u, as
a function of the resetting intensity r. The lines are obtained by
numerically integrating Eq. (24). The points are the results of Monte
Carlo simulation of the Langevin equation.

chosen so that k = 1, and all crossing intensities are expressed
in the inverse of such units.

The curves in Fig. 1 for different values of u can be rescaled
onto a single curve according to the scaling form

1
e = — f(Tu1),
tl«l

sv/3 [®1 N Ea 3
T& =5, 5[ * vroaf(—maﬂ

56—
x e T de, (25)

as shown in Fig. 2.

The above scaling relation implies that the position of the
maximum scales as the inverse of 7,,. The proportionality con-
stant can be obtained in principle by the integral equation that
arises from imposing f’(s) = 0, but we have not attempted
this. We have instead obtained the asymptotic behavior of f(s)
for both large s and small s. For large s, evaluating the integral
in Eq. (25) with the Laplace method [68] (see Appendix A for
details) gives the asymptotically exact result

~ _s /3 2% 3 3% o
fls) = f>>(S)=§ EEXP _fs Erf Sis):

(26)
which, as shown in Fig. 2, approximates very well the numer-
ically integrated f(s) for large s, with a relative deviation of
less than 1% already for s ~ 10. Obtaining an exact asymp-

totic expression for small s is more involved. In this case, in
Appendix A we obtain the following approximation:

V3|
f(S) SE() f<<(S) = S§|:e ]/3\/§ -V - 1H(S 181/3):| + %s

27

where y is the Euler-Mascheroni constant. This agrees qual-
itatively with the numerically integrated f(s), as shown in
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107t L ?/:y/,;_f:%jﬂ‘\
L total ////'i// -
10 E . //; ;:1/"'74; P
T, e
uﬁs 1078 7/';/(1owncrossin u=01
= & uw=0.2
g 1074 ¢ w=03
=
3 ) u=0.5
107 ¢ uw=0.7
y (), FO(s)
10 F (), f%;%s)
o Fe(s), 1E)(s)
1073 1072 107! 100 10!

FIG. 2. Scaling and asymptotics of the stationary crossing inten-
sity for the random acceleration process, with yo = 0, k = 1. Upper
curve: The symbols represent the same Monte Carlo data of of
Fig. 1, rescaled according to the scaling form in Eq. (25). The solid
(black) line is obtained by numerical integration of f(s) in Eq. (25).
The (black) dashed line represents the large-s asymptotic expression
for the total intensity, given in Eq. (26). The (red) dot-dashed line
represents the small-s asymptotic expression for the total intensity,
given in Eq. (27). Lower curve: The symbols represent the Monte
Carlo results for the stationary downcrossing intensity, for the same
values of u as in the upper curve, rescaled according to Eq. (28). The
solid (black) line is obtained by numerical integration of f)(s) in
Eq. (28). The (black) dashed line represents the large-s asymptotic
expression for the downcrossing intensity, given in Eq. (30). The
(red) dot-dashed line represents the small-s asymptotic expression
for the downcrossing intensity, given in Eq. (31).

Fig. 2, with a relative deviation smaller than 20% in the range
s€[1073,2 x 1071].

It is interesting to study also the stationary upcrossing
and downcrossing intensities. Using Egs. (8) and (20), and
proceeding as above we obtain

1
W = L,

S;j/; 0 9|:e W+ 3sgn(u)

3sgn(u) _
*Y 207 EfC( N ﬂe

where sgn(u) is the sign function (sgn(u) =1 if u > 0 and
sgn(u) = —1 if u < 0). Using the identity FErfc(+z) =
Erf(z) F 1, we obtain the following relation between the di-
rectional and total stationary crossing intensities:

AOE

-3540, (28)

) _ Hu

o0 1
J15 7 H(M)—\/ /
(29)

We note that for u > 0 we have u” > (™) because, even if
the process has zero mean, after an upcrossing a resetting can
occur before a downcrossing can take place. In other words,
a downcrossing is always preceded by an upcrossing, but
the reverse is not necessarily true. This effect becomes more

l_’(Tu/l) dt.

important as the resetting rate increases: Indeed, by evaluating
f™)(s) with the Laplace method in a manner similar to that
used for £(s) in Appendix A, we obtain that £ (s)/f(s) — 1
as s — 0o, namely all crossings are upcrossings for large
s. Note also that by symmetry, for u < O the values of the
upcrossmg and downcrossing intensities are reversed, i.e.,
ueH =

The stat10nary downcrossing intensity for u > 0, obtained
by numerically integrating f(s) in Eq. (28), is shown in
Fig. 2 and agrees perfectly with Monte Carlo simulations.
Using the Laplace method (see Appendix B for details) we

obtain
1 29/4
(=) ~ (=) — _ 3/4
[ =0 (S)_ﬁ(2159s)1/8EXp< Vel )
(30

which gives the correct qualitative behavior, as shown in
Fig. 2, albeit with a relative deviation around 50% in the range
of s displayed in the figure. Finally, for small s, using again the
Laplace method, in Appendix B we obtain the approximate
expression

- . V3| s m 1.9
FO0 2 fS@ =5y e P ey = s —ns |,

&1V

which reproduces the correct qualitative behavior, with a
relative deviation between 20% and 50% in the range of s
displayed in the figure.

2. Caseyy #0,u=0

We now turn to the case of nonzero initial velocity, yy #
0, and consider the crossing at level u = 0. In this case the
timescales of the problem are ! and

)’0
K2
which is the time at which the standard deviation of the veloc-
ity becomes of the order of the initial velocity, o,(z1) > |yol.
As in the previous case, the stationary zero-crossing intensity
is obtained by substituting Eq. (20) [with u = 0, m, () = yot]
into Eq. (16), which in the limit # — oo yields

T = (32)

1
Mo = Hy=0 = —g(rlr),

g
g(s)—zjr \ 0|:e + 9Erf(1/¢§)

x e 3/9=012q9 (33)

where we have made the change of variables 6 = 2¢/7; in
the integral. Figure 3 shows g, obtained by numerically
integrating g(s), as a function of r, tested against Monte Carlo
simulations, with perfect agreement as otherwise expected.
We observe again a maximum as a function of r, which can be
understood in the same way we have discussed above for the
previous case yo = 0, u # 0. Note also that 1 increases as yy
decreases and eventually diverges logarithmically for yg — O.
In Fig. 4 we show the data rescaled according to Eq. (33).
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FIG. 3. Stationary zero-crossing intensity (i, for the random ac-
celeration process with k = 1 and different initial velocities yy, as
a function of the resetting intensity r. The lines are obtained by
numerically integrating Eq. (33). The points are the results of Monte
Carlo simulation of the Langevin equation.

In Appendix C we prove that the exact analytical expres-
sion for the integral in Eq. (33) can be written in terms of an
infinite sum of modified Bessel functions of the second kind

T1 Mo

T /t(()+) )

9<<( )

10—7 L
1073 1072 107t 100 10!

s=TT

FIG. 4. Scaling and asymptotics of the stationary zero-crossing
intensity for the random acceleration process, with u =0,k = 1.
Upper curve: the symbols represent the same Monte Carlo data of of
Fig. 3, rescaled according to the scaling form in Eq. (33). The solid
(black) line is obtained by numerical integration of g(s) in Eq. (33).
The (black) dashed line represents the large-s asymptotic expression
for the total intensity, given in Eq. (35). The (red) dot-dashed line
represents the small-s asymptotic expression for the total intensity,
given in Eq. (36). Lower curve: the symbols represent the Monte
Carlo results for the stationary upcrossing intensity, for the same
values of y, as in the upper curve, rescaled according to Eq. (37).
The solid (black) line is obtained by numerical integration of g™ (s)
in Eq. (37). The (black) dashed line represents the large-s asymptotic
expression for the upcrossing intensity, given in Eq. (39). The (red)
dot-dashed line represents the small-s asymptotic expression for the
upcrossing intensity, given in Eq. (40).

[69], K, (2),

8(s) = \/_[KO(Z‘/_) + 22 ( nl!) 2n1—|— 1 (%)7

x Kyt (@)} : (34)

and how this formula can be readily used to obtain asymptotic
approximations valid for large and small values of s. Never-
theless, these approximate expressions can be also recovered
by direct inspection of Eq. (33), as we will show.

Thus, for large s, the integral in Eq. (33) is dominated by
small values of 6, at which the first term inside the square
brackets is negligible compared to the second. Therefore,
since Erf(x) ~ x for x — 0, we have

~ o= 3/0-s0/2 _ S s
86) = g5 = [/ e = e

(35)

where the last integral was evaluated exactly [70]. Conversely,
for small s the integral in Eq. (33) is dominated by large values
of 6, at which the second term inside the square brackets is
negligible, giving

[ f e HP0124h = */_Ko(z«/_ 25).

— In(x/2) as x — 0 [70], we have

8(s )A:O 5

Since Ko(x) ~ =2y
/3 1

g(s) ~ — |:—— In(2s) — yi|.
s—0 I 2

By expanding the error function in Eq. (33) in power series, as
shown in Appendix C, we obtain the following more accurate
expression:

5+/3 w

8(s) = 8«(s) = - [ In(2s) —y + 6\/§} (36)
Both expressions in Egs. (35) and (36) are asymptotically
exact, and agree very well with the numerically integrated
g(s), as shown in Fig. 4, with a relative deviation below 1%

for s 2 20 and s < 0.006 for g, and g respectively.
Proceeding as in the case yg = 0, u # 0 we also obtain the
stationary zero-upcrossing and zero-downcrossing intensities:

1
no = T—g(i)(ﬁi’),

sv/3

(£) —
g = T

7 [ ~M% £ sgn(yo)
0

x\/gErfc(:bsgn(yo)/\/g)}e‘ye_sg/zd@. (37)

Substituting Erfc(+z) = 1 F Erf(z) in the above equa-
tion and comparing it with Eqgs. (33) and (35) we obtain the
following relation, valid for all s:

1 -
§96) = 386 F sgn(m)%e—@ (38)
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We note that for yo > 0 we have uy > ug, which can be
understood observing that the first zero-crossing after a re-
setting is necessarily a downcrossing, since the process starts
at positive velocity. From Egs. (38) and (35) we see that
g 7(s)/g(s) = 1 as s — o0, since for large reset rate, after
the first downcrossing the process does not have enough time
do an upcrossing before the next resetting takes place. We also
note that, due to symmetry, the values of pL((,H and ,u((f) are
swapped when we change the sign of yo. The bottom curve
in Fig. 4 shows the upcrossing intensity for different values of
yo, rescaled according to Eq. (37) where g (s) was integrated
numerically, together with the Monte Carlo data.

For the upcrossing intensity at yo > 0 we obtain in Ap-
pendix D the following asymptotic relations:

T s\V4 _,
0 = = 2(5) e (39
§—>00 3 2

and
F(g) ~ :ﬁ_l] 25) —y — 40
8 (S) S—_>0 g<<(s)— T [ 2 n( S) 3ﬁ ) ( )
where the latter follows directly from Eqgs. (36) and (38). Both
relations are displayed in Fig. 4 and agree fairly well with the
numerically integrated g(s).

Finally, we note that in the general case where y, and u
are nonzero, both timescales, t, and 1), participate in the
expressions of the crossing intensity and a more complex
scaling form is obtained.

B. Inertial Brownian motion

As a second example we consider as the underlying reset-
free process the inertial Brownian motion, described by the
Langevin equation

X(t)+ BX(t) = k&(1), (41)

where B > 0 is the damping constant, & (7) is zero-mean Gaus-
sian white noise, and the initial state is X (0) = xo, X (0) = yo.
Average values and variances are [19]:

my(t) = xo + %"(1 — e, my(t) = yoe ",

and
2

k 3 1
-B —2p
E(ﬂt—i—l—Ze t—ze t),

2
ol (1) = K=o,

ol(t) =

2p
kK /1 1
0yy(t) = E<5 —e P 4 Ee_m)'

The exact expression for the reset-free crossing intensity
wO(#) is obtained after substituting these expressions into
Eq. (7), along with the expressions for A(¢) and n,(f) given
by Egs. (6) and (9), respectively. All of this results in a rather
cumbersome expression which we will not write. We will
obtain instead approximate expressions valid for large and
small times. Specifically, for f¢ > 1, to leading order we have

my(t) ~ xo + 22,

8 my(t) >0, (42)

2.5
2 b / \ 1
u=0.01 1
u=0.1 .
1.5 | 1
u=0.2
=
3
1 4
0.5 | . 1
Yy .
0 b i . T N
1073 1072 10°1 10° 10t 102 103

T

FIG. 5. Stationary crossing intensity u, for the inertial Brownian
motion, with xo = yo = 0, k = 8 = 1 and for different values of u,
as a function of the resetting intensity r. The lines are obtained by
numerical integration of Eq. (16) using the full expression of the
reset-free crossing intensity. The points are the results of Monte
Carlo simulation of the Langevin equation, Eq. (41).

and
k%t K2 2
N 200N ~ ~

o, (1) Fs Gy(f)— ﬁ7 ny(t)_Z_ﬂz’ (43)

from which we obtain

N A

Alt) ~ ———, ~ | — . 44
@ V2B32 ok1) (2:) “4)

In what follows we will consider for simplicity only the case
xo = yo = 0. In this case, for large values of t we have

B2
2kt

In the opposite limit 8t < 1, the variances tend to the expres-
sions given for the random acceleration process, Eq. (19), and
so does 1, (t) after setting xo = yo = 0 in Eq. (21), namely

Nu(t) >~ . (Bt>1).

Mu(t) = (Br L D).

3u
V2ke32
Therefore in this limit the reset-free crossing intensity 4 (¢)
takes the same form as that of random acceleration [cf.
Eq. (20) after setting m,(¢t) = 0], a fact that can be understood
physically by noting that damping is negligible in the ballistic
regime Bt < 1.

For the inertial Brownian motion with Poissonian reset-
tings, we evaluate u, as a function of r by inserting the full
expression of (% (¢) into Eq. (16) and computing the integral
in ¢ numerically. The results of the numerical integration,
shown in Fig. 5 together with our Monte Carlo estimates,
display a maximum which increases for decreasing u and
diverges as u — 0, a behavior which can be understood in
the same way discussed earlier for the random acceleration
process.

We note that, compared to random acceleration, an addi-
tional timescale S~' appears in Brownian motion, which is
the time when the damping force becomes of the order of the
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FIG. 6. Asymptotic behavior of the stationary crossing intensity
for the inertial Brownian motion. The symbols and the solid lines
are the same as in Fig. 5, displayed in log-log form. The (colored)
dashed lines represent the large-r asymptotic Eq. (45). The (black)
dot-dashed line represents the small-r asymptotic Eq. (46).

inertial force. As a result, the stationary crossing intensity with
yo = 0 will obey a more complicated scaling form

1
Hu = _L__h(fura Tu:B)’

and the data of Fig. 5 cannot be rescaled on a single curve.
In the case yy # 0, which we will not consider here, one must
consider also the timescale t; [19], as in random acceleration.

Obtaining the large-r asymptotic behavior of w, for arbi-
trary values of u and B~' is a complicated task. We obtain
an approximation for this behavior by observing that for
large r/f, the integral in Eq. (16) is dominated by small
times. We therefore replace the full expression of x? with
its asymptotic form for small times, given by Eq. (20) with
m, = yo = 0, and obtain in this way the same expression as
in random acceleration for the case yp = 0, u # 0, given by
Eq. (24). We can then use the large-r limit of that expression,
given in Eq. (26), which gives

B (2 (3 s
My ps1 2V 2 Xp _ﬁ(rllr) I 21/8(714”) .
45)

This approximation becomes asymptotically exact for
7,8 — 0 and t,r — o0, as shown in Fig. 6, since in this
regime we have r—! « 1, <« B! thus damping is negligible.

In the opposite limit /8 < 1, the integral in Eq. (16) will
be dominated by large times, and thus we can replace the
reset-free intensity with its large B¢ form,

1/B 172 u2’32
D¢y ~ —(LZ) Exp(-—=—
me @) = o (2;) Xp( 2k

MZ,B MIBI/Z M,Bl/2
[o(-sem) 7 ()

Furthermore, the second term can be neglected for large times,
hence we obtain

1/2 o9} —rt 212 2
Uy = E i/ dte—Exp _uﬂ —M'B .
r/p<l \ 2 7 Jo t1/2 2k 2k*?

To leading order, the above integral can be evaluated asymp-
totically as

B 172 r /-oo et Br 172
e (2 7 Jo 172 27 (46)

This form agrees quite well with the numerically integrated
ny for small r, as shown in Fig. 6. Finally, we note that
the stationary upcrossing and downcrossing intensities can be
evaluated in a manner similar to the one we followed for the
random acceleration process.

V. THE STATIONARY DISTRIBUTION

We will now set aside the level crossing counting and turn
our attention to the classical issues of resettings, namely, the
existence of stationary distributions and the mean-first arrival
time.

Let us first address the problem of determining the station-
ary distribution in the presence of resetting. This is defined by
the limit

pst(x, y) = lim p(x, y, tlxo, yo),
r—0o0

as long as it is finite and nonzero. From Eq. (13) we therefore
obtain

o0
Psi(x,y) = r/ e " po(x, y, t1x,, y)dt = rpo(x, y, rlx,, y,),
0
47)

where po(x, y, r|x,, y,) is the Laplace transform of the reset-
free joint PDF. We observe that the stationary distribution
of the process under resettings, py(x,y), may exist even
though the reset-free process has no stationary distribution,
provided the above Laplace transform exists, a less restrictive
condition than the existence of a stationary distribution for the
reset-free process [30,44].

Suppose that the reset-free process X (¢) is Gaussian. In
this case the joint PDF p(x, y, t|xo, yo) is explicitly given by
Eq. (5) and the marginal distribution of X () reads

Cx- m.(xo, y0)1*
202(1) '

1
Po(x, txo, yo) = W exp (
(48)

Note that the stationary PDF of the reset-free process,
defined as the limit

P (x) = Tim po(x, t1x0, yo),
—00
will exist (and it is nonzero) depending on the asymptotic
behavior of the variance o,(t) as t — oo.
The stationary distribution for the resetting process will
thus be given by

Pt (X1Xr, yr)

r < dt [x_mx(”xrvyr)]z
-l amer(n- ) @

We remark that this density may exist (and it is nonzero)
even if p{{’(x) does not. Below we will illustrate this with the
two examples considered in Sec. IV, random acceleration and
inertial Brownian motion. In both cases we assume Poissonian
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resettings to a fixed state (x,,y,), and for simplicity we take
yr =yo = 0, so that the process starts at rest and resettings
bring the process to position x, with zero velocity. Note that
the random acceleration case was studied before in Ref. [65]
but, for completeness, we report here our calculation which
uses a somewhat different method.

A. Random acceleration

For the random acceleration process, the reset-free distri-
bution is [19]

(e t]x0) = o = 3 = %o (50)
POt TiX0) =y 5 s P e )

which tends to zero as ¢t — oo and the reset-free process is
not stationary. The presence of resetting renders the process
stationary. Indeed, substituting into Eq. (47) we write

_ 3r ® dt 3(x — x,)?
psl(x|xr)—‘/2nk2 | P = —aaa )

61V

Since the integrand is continuous and positive and tends
to zero exponentially (both as # — 0 and t — 00) when x #
Xy, the integral in Eq. (51) is finite and not vanishing. The
complete process is thus stationary. However, the integral in
Eq. (51) is difficult to perform analytically in exact form and
results in a very lengthy expression involving Airy and Kelvin
special functions which we will not reproduce here. We obtain
instead an approximate expression for it using the Laplace
method one more time. Let us define

3= xp)23 _
=T 5a— o=m (52)

and write Eq. (51) as
33 [ e dO
— —h(0)
Ps(xlx,) =4/ - /0 ¢ o (53)

h(©) =06 +%/6%. (54)

where

The Laplace approximation (cf. Appendix E) gives:

213 /K214 43 )/
(xlx,) St exp (S = xl ), > 1
Pst(X|X) =
ray/e) r 1/3
JT (18k2\x7x,.\) s K,
(55)

where I' (1) is the Gamma function. The goodness of these re-
sults, which are in complete agreement with those in Ref. [65],
is remakable, as can be observed in Fig. 7.

B. Inertial Brownian motion

For the inertial Brownian motion, we can easily see from
Eq. (43) that that o,(t) > oo as t — oo, implying that
po(x, t|xo, yo) — 0 and there is no stationary distribution for
the reset-free process pg?)(x) (a well-known result of the free
Brownian motion). For § > r we can use for the variance
sz(t) the limit expression given in Eq. (43), and substituting

100

p&)

0.01

104

1073 0.001 0.100 10

i

FIG. 7. Stationary distribution for the model with random ac-
celeration and resets. Here we show, in a double logarithmic scale,
the exact stationary distribution in Eq. (53), solid red line, and the
approximate results in Eq. (55) valid when |x — x,| is either small
(dashed black line) or large (dotted black line). In all cases we have
depicted the dimensionless quantity p(¢) = pg(x|x,)|dx/d¢ |, where
¢ is defined in Eq. (52).

the latter into into Eq. (49) we write the approximation

(|)N,3/r/°°d9 P I
Pst(X]Xp =%V 2r J, 91/2eXp 23 )
where 6 = rt and

[TB*(x — x,)?

— e (56)

Taking into account that [70]

do 1/2
—0—a/6 —2qa'/
/0 91/26 - ﬁe ’

we obtain [66]:

putele) = B (2) exp (—%(g)mu - x,-|), (57)

an expression valid for 8 2 r which clearly shows that Brow-
nian motion under resettings is stationary while the reset-free
process is not. Let us finally note that this approximate form of
the stationary PDF is properly normalized, since in this case
we have estimated not the value of the integral in Eq. (49),
but the value of the integrand. As it can be seen in Fig. 8,
this results in a succession of curves for the PDF that steadily
converge to Eq. (5§7) as B > r. On the other side, recall that
the case B < r will lead us back to the previous scenario,
Egs. (53) and (55).

¢

(a > 0),

VI. MEAN FIRST-ARRIVAL TIME

As mentioned in Sec. I a key characteristic of resetting is
a potential decrease in the MFAT. Dealing with first-passage
and extreme times for inertial random processes is rather
difficult [2] and only in few cases it is possible to get analytical
expressions for the mean exit time [71-73]. Despite that our
main objective is obtaining crossing-counting statistics, we
will here present a brief and incomplete approximation on
how resettings affect first-passage times of inertial processes.
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FIG. 8. Stationary distribution for the inertial Brownian motion
with resets. Here we show, in a double logarithmic scale, the nu-
merical evaluation of the exact stationary distribution for: 8 = r/10,
dashed green line; B = r, dot-dashed blue line; and 8 = 10, solid
red line; as well as the approximate result in Eq. (57), dotted black
line. In all cases we have depicted the dimensionless quantity p(¢) =
Dsi(x|x,)|dx/d¢ |, where ¢ is defined in Eq. (56).

For the random acceleration process this question has been
more thoroughly studied in Ref. [65].

Before proceeding further we must bear in mind that the
MEFAT to some critical level (or threshold) x. may be infinite
in many situations. This is, for instance, the case of the over-
damped Brownian motion described by a first-order Langevin
equation, but also of the random acceleration process and the
inertial Brownian motion because in all these cases the ran-
dom process in question has a finite probability of becoming
more and more separated from x, which results in an infinite
average time of reaching x, [2].

The problem of obtaining the MFAT to x,. of an inertial
random process X () under resettings is characterized by the
survival probability (SP) to x.. This is the probability that
the process, being initially in the state uy = (X (1), X (1)),
does not reach threshold x. during the time interval [#, ¢].
We denote this probability by S,(¢|ug, ty; u,, #,), where 7, is
the last reset time prior to 7y (¢, < ) and u, = (X (z,), X ).
Let us also denote by Sy(¢|ug, fp) the survival probability to
threshold x. of the reset-free process. Both probabilities S,
and Sy are related to each other by a renewal equation [33].
Indeed, if we assume that at 7y a resetting event has occurred,
so that 7, = #y, then such an equation reads [34,44,52]

S, (tlag, tg) = e~ So(tug, t9)

t
T / e TS, (2lu,, £)So(t g, 10)dt’.

fo

A similar relation can be written directly for the MFAT
[38,39]. Assuming time homogeneity, using the convolution
theorem and after few manipulations, it can be easily shown
that in Laplace space one has [28,29]

So(r + sluo)

S,(shag) = —————,
(s1u0) 1 — rSo(r + slu,)

(58)

where
N o0
8, (sluo) = / S, (t[up)dt,
0

and similarly for Sy. In terms of the SP the mean first-arrival
time is given by the time integral [1,2]

T,(up) = / S,(tlag)dt = S,(s = Oluy),
0

and setting s = 0 in Eq. (58) we get

So(r|uo)
1—rSo(rfu,)

At this point, let us note that a similar relation between the
MFAT of the resetting process with the survival probability of
the reset-free process can be obtained when resetting times are
not exponentially distributed (i.e., they are not Poissonian) but
distributed by a general probability density function ¥ (¢). In
such a case Chechkin and Sokolov [52] have recently shown
that,

T.(ug) = (59)

T @) fy Sot'[ug)dtdt’
S w1 — Soltlu,)lde

from which we directly recover Eq. (§9) in the Poissonian case
when ¥ (1) = re™".

Suppose we are interested on the MFAT to some crit-
ical level (or threshold) x.. Equations (59) and (60) show
that in order to obtain the MFAT for the resetting process
one needs to know the complete survival probability of the
reset-free process. For inertial processes this is a complicated
issue which, nonetheless, has been very recently addressed in
Ref. [65] for the particular case of the random acceleration
process. On the other hand, Eq. (59) also shows that, as long
as the Laplace transform of the reset-free SP is finite, we can
have a finite MFAT under resetting, 7,(up), even though the
reset-free MFAT, Ty(up), is infinite. This is the case, as we
have explained above, of the random acceleration process (and
also of the inertial Brownian motion) (in fact, as shown in
Ref. [65] T, (uy) attains a minimum value for some resetting
frequency r # 0).

Unfortunately obtaining So(#|u, ) (or its Laplace transform)
for general inertial processes seems to be out of reach (see,
nonetheless, Refs. [71,72] and a recent mathematical work
[74]). However, for those processes in which the reset-free
MFAT, Ty(uy) < oo, exists we can find an analytical approx-
imation to the MFAT T, (up) valid for small frequencies of
resetting. We thus suppose that S’o(s|u0) is a differentiable
function of the Laplace variable 5,3 then for small values of
the resetting rate » we may write

So(rlug) = So(0lug) + rS;(0lug) + O(*), (61)

T, () = (60)

but

oo
56(0lug) = —/ 1So(rlug)dt.
0

3In particular this assumption implies the existence of the reset-free
MFAT, Ty (ug) = $0(0, wy).
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Now defining
e S
Ao(ug) = / tSo(tlug)dt = —S5(0lug) >0, (62)
0

and recalling that So(0lug) = To(ug), we write Eq. (61) as
So(rlug) = To(wg) — rig(mg) + OG),
which substituting into Eq. (59) yields
To(ug) — rio(ug) + O(-?)
1 —rTy(u,) + O(r?)
Expanding up to first order we have

Ao(up)
To(ug)

and within the same degree of approximation we may expo-
nentiate and write

T:(ug) =

’

T,(wg) = To(llo){l — r[ — To(llr)] 0 0<r2>}.

Ao(up)
To(up)

T:(ug) = To(up) exp {—r[ - TO(ur)i| + 0(}’2)},

(63)

an expression associating the MFAT for the resetting process
with the MFAT of the reset-free process for small values of
the resetting rate.

Let us also observe that if

Ao(ug) = To(ug)To(u,), (64)
then

T.(ug) < To(up),

and resettings may decrease the MFAT (at least for small
resetting rates, r — 0).

In fact, for r — oo one has T,(ug) — oo, since then the
process will reach u, immediately, and be trapped there.
Therefore, if Eq. (64) holds, then 7, (uy) must have (at least) a
minimum,

iTr(llo) =0. (65)
ar N

r=r

When the optimal value r* is small, the minimum can be
estimated as follows. Expanding Sy (r|ug) we have

~ 1
So(rlug) = To(ug) — rio(up) + Erzvo(uo) + 0@,
where
o0
vo(ug) = / 280 (t|up)dr. (66)
0

Substituting for Eq. (59) we have

To(ug) — rig(up) + 3r%v9(ug) + O(3)
1 — rTy(u,) + r2ho(u,) + O(r3)
=~ To(ug) — r[Ao(ug) — To(up)Tp(u,)]

1
+ Erz{vo(uo) — 2T (u,)Ao(up) — 27 (wp)

Tr(ng) =

x [ro(u,) — T3 (u)]} (67)

and from Eq. (65) we obtain the approximate expression for
the optimal resetting rate,

- Ao(ag) — To(up)To(u,)
V(o) — 2Ty (u,)Ao(ug) — 2Tp(wo)[Ao(u,) — T2 (u,)]’
(68)

The numerator of this expression is positive because of con-
dition in Eq. (64). Thus r* will be meaningful (i.e., positive)
provided that the denominator is also positive, that is

vo(uo) > 2Ty (w,)Ao(ug) + 2Ty (o) Mo(u,) — Ty (u,)]
= 2To(up)ro(u,) + 27Tp(u, )[Ao(ug) — To(ug)To(u, )],
(69)

being both summands positive-definite [cf. Eq. (64)] and,
hence, vo(ug) > 0.

Let us illustrate the correctness of these approximations
with a simple and fully solvable example consisting in a
deterministic process with resets. We thus consider the deter-
ministic process X(t) = 0,1.e., X(t) = xo + yot, with x, > xo,
Xe > Xp, and y, = yg = v > 0 (hence uy = (xp, v) and u, =
(x, v)). In this case, the SP of the process is given by

So(t|ug) = @(XC ;xo — z), (70)

where ©(u) is the Heaviside step function, defined as ®(u) =
lif u > 0 and ®(u) = 0 otherwise. The Laplace transform of
Eq. (70) reads

q 1 —5(xc—x0)/v
So(slug) = ;[1 — e T, (71)
and therefore

o Xe — X
To(ug) = S5(0lug) = ~— 2, (72)

is finite. The expression for 7,.(ug) is obtained by direct inser-
tion of Eq. (71) in Eq. (59) with s = r, thus yielding

1
T.(up) = ;[er(xfxr)/v _ e*r(xl-ﬂco)/v]_ (73)

Note that 7,.(up) is a decreasing function of r for small r,
ie., T.(ug) < Tp(up), if and only if x, — x, < x, — xp, that is,
when

x> IR (74)

which agrees with condition in Eq. (64) since here

(re—20)/v 1/ % — )\ 2
2o(ug) = / tdt = —<x° x°> ,
0 2 v

and thus
2
1/ x.—xp Xe —Xo Xe — Xp
= P : )
2 ( v > v v

implies that x, > (x. + x0)/2. Under these circumstances,
T,(up) in Eq. (73) will show a minimum for the value of r = r*
that fulfills the transcendental equation:

r(Xe —Xo) _ log <1 + ' (x, —XO)/U)

v 1 —r*(x. —x,)/v

(75)
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& 1.00

0.98
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FIG. 9. Mean first-arrival time for a deterministic motion with
resets. Here we show the decaying function in Eq. (63), dotted black
line; the parabolic approximation in Eq. (67), dashed green line; and
the exact expression in Eq. (73), solid red line. The position of the
respective minima of the two last formulas, Eqs. (68) and (75), are
depicted with a full circle.

whose solution can be approximated by

o v (xe = x0)[2x, — xc — xo]
2 (e —x)3 H (x — x0)? ,

if r* is small enough. This expression coincides with Eq. (68)
after some algebra, since

(xe=x0)/v 1 /% —xa\2
vo(up) = / 2dt = —(x‘ x0> )
0 3 v

We can visualize the different approximations in Fig. 9,
in which we compare the exact expression for 7,(ug) in
Eq. (73) with the exponential approximation in Eq. (63) and
the parabolic approximation in Eq. (67), after substituting in
the latter two the above expressions for Typ(ug), Ao(ug), and
vo(ug). In the figure, we have intentionally chosen the value
of the parameters in such a way the conditions that ensure
the validity of the approach taken are barely satisfied. This
will allow us to better appreciate the disparities. In particular,
we have used x. and v to define spatial and temporal units,
ie., x, = v = 1, with xo = 0. The reset point is then located
at x, = 0.57, which implies that the true optimal reset rate,
Eq. (75), is as large as r* = 0.85. Even thus, the result ob-
tained through the approximate expression, Eq. (68), is not
very far from this value, r* ~ 0.79 (see the full circles in
Fig. 9). A moderate reduction of x,, e.g., x, = 0.53, would
lead to the almost total coincidence of both formulas, r* ~
0.36 (not shown).

We therefore come to the conclusion that if the reset-free
MEFAT is finite and the survival first moment, then Eq. (62)
satisfies the condition in Eq. (64) resettings may decrease the
MFAT. In such a case there may exists an optimal rate r* for
which the MFAT is minimum. For small resetting rates, such
an optimal rate is approximately given by Eq. (68) as far as
the (reset-free) survival second moment, Eq. (66), satisfies the
condition in Eq. (69).

We stress the fact that for the above approximations to be
valid it is necessary that Tp(ug) and Ag(ug) are both finite,

(76)

which is not the case for the simplest inertial processes such as
the random inertial process and the inertial Brownian motion
we have analyzed in the preceding sections. This situation
may change if an external potential is added to the dynamics
of the process, resulting in a finite reset-free MFAT.

VII. CONCLUDING REMARKS

We have studied the effect of resetting events on the count-
ing of level crossings for linear inertial processes driven by
Gaussian white noise. After a brief review in Sec. II of the
work recently published by two of us [19] on Rice’s theory of
level counting and its generalization to inertial processes, we
have shown that for inertial processes resettings affect both
position and velocity and have obtained the equations relating
the joint PDF (position and velocity) of the reset-free process
with that of the complete resetting process.

We have next addressed the main objective of the paper
which is to determine the effect of stochastic resettings on
the counting of crossing events. We have thus obtained, for
Poissonian resettings of rate r, renewal equations that allow
us to obtain the crossing intensity u,(¢) knowing the intensity
wO(¢) of the underlying reset-free process, cf. Eq. (15),

1
wu(t1x0, yo) = e " 1Dt |x0, yo) + 1 / e uO x,, y,)dt' .
0

From this fundamental expression we see that a nonzero sta-
tionary crossing intensity p, = lim,_, o @, (¢) is simply given
by the Laplace transform of the reset-free intensity,

o = ritOrlx,, y,),

which shows that that stationary crossing intensity can be
nonzero even if the intensity of the reset-free process vanishes
ast — oo.

We have applied these results to two simple, but relevant,
examples: the random acceleration process and the inertial
Brownian motion. Both processes are not stationary and their
reset-free crossing intensity vanishes at large times. However,
as we have just mentioned, in the presence of resettings a
nonzero [, exists. Even more relevant is that in both cases,
we found that p,, displays a maximum as a function of r, due
to the fact that as r — 0 the process wanders away from any
finite level u, while as r — oo it does not have the time to
undergo a crossing between resetting events. We have thus
shown that, at least for these two cases, resettings increase
the stationary frequency of crossing events. Very likely this
remarkable fact is also true for any inertial process under
stochastic resetting, which calls for further investigation and
is relevant for applications in which one wishes to minimize
the return time of a process to a given level.

For the random acceleration process, [, depends on three
timescales, r~!, 7, ~ u?/, and 7, ~ y, where the last two
are intrinsic timescales of the reset-free process representing,
respectively, the time to reach a level u starting from a zero
level and zero velocity, and the time to reach a velocity yq
starting from zero velocity.

We have studied in detail the scaling behavior of w, in two
special cases in which either u or y, are set to zero (as u,
diverges when they are both zero), and obtained asymptotic
expressions for small and large values of rt, and rt;. For
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yo = 0, u # 0, to leading order 1, goes to zero as a stretched
exponential for large rt,,

e =~  arExp[-b(r,)*,

rT,—00
where a and b are numerical constants—see Eq. (26). In the
opposite limit as tt, — 0, u, diverges logarithmically to
leading order (cf. Eq. (27)) as

3
Wy mz_)o —Erln(rru).
For u =0, yp # 0 we obtain similar behaviors to leading
order:
1 Jort; o ~

~ —re s

3
rr]:oo 2 —Erln(r‘tl).

rr:>0

In both cases, we also carried out an analogous study of
the stationary upcrossing and downcrossing intensities. One
of the two always dominates the total intensity, and for the
subdominant one we find similar asymptotic expressions to
those given above for the total intensity.

In the inertial Brownian motion a fourth timescale appears,
namely, the inverse of the damping constant, 8~'. In this
case we have studied only the case of zero initial velocity.
The above large r expression for random acceleration be-
comes asymptotically exact for inertial Brownian motion in
the regimes r~'t, — oo and Bt, — 0. For small r, we find
the simple and rather appealing expression

ﬂr 1/2
My r//.‘5_—>0 <E> 5

independently of the level u.

Analogously to noninertial (i.e., first-order) processes
resettings stabilize inertial processes in the sense that nonsta-
tionary processes become stationary as soon as the resetting
mechanism has been set in. We have thus been able to obtain
approximate explicit expressions for the stationary distribu-
tion of both the random acceleration process [cf. Eq. (53)] and
the inertial Brownian motion [cf. Eq. (57)].

We have finally discussed the effect of resettings on the
MFAT of inertial processes. We have recalled that the MFAT
of the complete resetting process is related to the survival
probability of the reset-free process [cf. Eq. (59)], which
however is in general difficult to obtain, an exception being
the random acceleration process [65]. As long as the Laplace
transform of the survival probability of the reset-free process
exists, the MFAT for resetting processes is finite, even in cases
where the reset-free MFAT is infinite, as in random accelera-
tion and inertial Brownian motion. When the reset-free MFAT
is finite we have obtained an approximate expression, valid
for small resetting rates r, relating 7, (xo, yo) with the MFAT
of the underlying reset-free process Ty (xo, ¥o) [cf. Eq. (63)]

T, (x0, yo0)
Ao (xo,
= T()(.X'(), yO)eXp (_r[% - Yb(xr’ yr)] + O(FZ))a

where )¢ is defined in Eq. (62). Finally, if Xo(xo, yo) =
To(x0, y0)To(xr, yr), then T,(xo, yo) < To(x;, y,), and, as in
noninertial processes, resettings may reduce the MFAT. Fur-
thermore, in such a case the MFAT must have (at least)

a minimum value for some optimal resetting rate r* given
approximately by Eq. (68). The correctness of these approxi-
mations has been checked with a simple model consisting of
deterministic motion with resets.

Let us finally remark that the present approach can be
extended to include processes driven by Gaussian colored
noise, as well as processes driven by generalized Langevin
equations with memory damping. These works are under cur-
rent research and some results will be published soon. We are
also taking into consideration possible practical applications,
in particular to stochastic search and sampling, of the effect of
resettings on level crossing.
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APPENDIX A: APPROXIMATE EXPRESSIONS
FOR EQ. (25)

For large s, the most important contribution to f(s),

sV/3 (1 o T 3
1O =5, 5[ ! +3VﬁErf<«/293>}

— 50— =
X e 63 d6, (AD)

comes from those values of 8 in the vicinity of 6,,, the single
minimum of the function

3
h@) =s0 + —,
@) 0+ 53

()
Op=1—1] .
2s

We can then use the Laplace method [68] to evaluate the above
integral, and since 6,, becomes very small when s is large,
we can neglect the first term inside the square brackets in
Eq. (Al). This gives

FGs) = fs(s)
§—> 00
E—Sﬁ LI IS B R PO
270\ O O N 205\ 208

3 31/4 27/4
:E —Erf(]—8s3/8)Exp<——s3/4),
2V 2\ 2y /3

where we used

that is,

h(6,,) 4 0 27/ 3/4 h”(G ) 18
m) = 580m = —=5", m) = ——<-
3 V3 O
When s is small enough, we can no longer ignore the contri-
bution of the first term inside the square brackets in Eq. (A1).
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Let us define

fils) = i L= ap,
0

0

and

ﬁ(s)sswg N 1Ef( >

T
227 Jo VO3 V263

such that f(s) = fi(s) + f2(s). By analyzing f;(s) one con-
cludes that the integrand is not sharply peaked around a given
value. On the contrary, it abruply attains a maximum and then
decays exponentially slowly. Let us denote by 0, the location
of the maximum of the whole integrand and split the integral
in Eq. (A1) into two terms, f11(s) and fi 2(s),

—sH— 3
e 73740, (A2)

frals) = i 1 -5 a0 = sv/3 —ve—e%—lnw)d@’
0 o
fials) = % e L 0% ap.
6.

When s is small enough, the value of 6, can be estimated
through the minimum of

6
h(®) = R In(0),

that is 6, ~ 18!/3, and therefore

ISx/_ —s0, —
Sr1(s) = ——e b gh(®)
227\ (9*)
__ 9 o—s18 =173 o s o173
221 2V2n '

where we have used again the Laplace method and the 1/2
prefactor is due to the fact that we have just one side of the
peak. The integral for values 6 > 6, has the upper bound

31 _,
fia208) < i/ —e%%q0
’ 2w 0, 0

= ir(o 50,) ~ —%g[y +In(s18'73)],

where I'(a, u) is the upper incomplete Gamma function. In
order to compute f>(s) when s — 0 one can perform a change
of the variable of integration in Eq. (A2) in such a way the
argument of the error function becomes the new variable and
the exponential is expanded up to order zero:

s o0 2 J 9
fols) = ﬁ/o Erf(z)e 3Exp<—s,/2—Z2)dz

0 B s
Erf(z)e” 7dz = 3

=)

Collecting all the terms we finally have

f<(s) = V3 |:\/7 AR
2 6

- 1n(s181/3)i| +

APPENDIX B: APPROXIMATE EXPRESSIONS
FOR EQ. (28)

We want to derive approximate expressions for

(=) S\/§ o 1 _9 3
f7s) = ; ) e 2 —3sgn(u) 2493E rfc T
x e-sﬁ—z;%de, (B1)

for u > 0 when s is either large or small. In this case, in
contrast to the approach taken in Appendix A, one must
consider the whole expression inside the square brackets at
once, otherwise one may get inconsistencies. After a change
of variables, f(7)(s) reads

K |
<l
273 oz

When s — oo, the most important contribution to the integral
will come from large values of z. Using the asymptotic series

7s3/§7%dz.

(B2)

) =

— /7 zErfe(z)]e

Exf i N C DI
rfc(z) = Z ) MICAEE
we obtain
e
— /7 zErfe(z) ~ 7
hence
] gy 42
f()(s):4nﬁ/0 = V= T dz. (B3)

This integral can be approximated once again by the Laplace
method to obtain

29/4

< S3/4>

1
NP EXP(_ N

For s < 1 we must follow an approach similar to that in
Appendix A, with the main difference concentrated in the fact
that in this case all the expression within the square brackets in
the integrand of Eq. (B1) is approximately equal to one since
when z — O:

FO6 = 570 =

— /7 zErfe(z) ~ 1.
Thus, fors < 1,

3 o1
FOs) ~ V3 / —e~" 3740, (B4)
4 0 0

Again, we must split the integration range in Eq. (B4) in two
zones,

Ox
A7 = V3L g g
4 0 9
0Oy
_ sv3 o055 ~n®) g
47 0 ’
oo
£s) = V3L g

4 0, 0
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When s is small enough, the value of 6, can be estimated
through the minimum of

3
h©) = 55 +1n(0),

that is 6, >~ (9/2)'/3, and therefore

) 153 —s6. —h(B,)
fi ()= m e
247 \\ h (0*)
O NaEs Ve RIS VE
427 427 '

where we have used again the Laplace method and the 1/2
prefactor is due to the fact that we have just one side of the
peak. The integral for values 6 > 6, has the upper bound

_ V3 [ 1
fZ( )(S) < ﬂ/e 56 SOdQ

= i_1“(0 805) =~ —i[y + In(sv/9/2)1,

where I'(a, u) is as above the upper incomplete Gamma func-
tion. Collecting the two terms one has finally

) = I[ﬁ 13—y —In(sy/9/2 )]

APPENDIX C: DERIVATION OF EQ. (34)
The starting point is Eq. (33):

g(s) = sv/3 [e—l/O + \/EErf(l/«/g)}e_W@_S@/zdg_
27T 0 9 9

(CDH
Note that the first of the two terms in square brackets leads to
[70]
*1
/ 56_4/3_S9/2d9 = 2Ko(2/25),
0

where Kj(z) is a modified Bessel function of second kind [69].
As to the second term in Eq. (C1) we need to expand the error
function in power series,

Ef() = Z 2n T

and therefore

2 ]
/ ~ Bt (1/v/0)e 305240
o 6Vo

:2i(—1)" 1 /oo 1 o—39-0/2 49
~ n' 2n+1J, omt2

(=11 s\
242 o %—H(g)an—H(‘/a)

Thus, after collecting all the terms one obtains

g(s) = 3 |:K0(2\/_ )

n! 2n+1\6

+2Z(_1)n ! (E)TKH+1(J§)]. (€2)
n=0

For small values of their arguments, the modified Bessel
functions of the second kind behave as [69]

(n—1D!/2\"

where y is the Euler-Mascheroni constant, y & 0.5772. Then,
when s < 1 one has

Ko@) = —In(3)-r. K@)

8(s) SEO 8«(s)

V3s| 1 (=D 1\
7[‘51“@”‘”;2”“(5)

— @ |:_l In(2s) —
T 2

b4
+—=1 (C3)
63 }
In the opposite situation, when s >> 1, we use the asymp-
totic approximation [69],

b g
Ky(z) > | —e ™, (z— 00), (C4
2z
and get
qor = 2B [Ty [T s
T 44/2s 24/6s
o0 n+1
(1 1 s\
X; n! 2n+1(6) :|
~ %Erf \‘@)e—@, (s> 1) (C5)

but Erf(y/s/6) = 1 for s 3> 1 and thus we finally write

S
gs) = gul(s)= e Vo
§—00 2

APPENDIX D: APPROXIMATE EXPRESSIONS
FOR EQ. (37)

Using Erfc(z) = 1 — Erf(z) and Erfc(—z) = 1 + Erf(z),
from Eqgs. (33) and (37) one can obtain

g(s) = —g(s):F [ / g

for yo > 0. The integral in the above equation can be per-
formed exactly, giving

1 s
OOk Ze—@ (D1)
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This formula is very useful for obtaining the asymptotic ex-
pressions of g&)(s) for s < 1, since then [cf. Eq. (C3)]

V3s
21

N

+ 2]
6\/5:':4’

gF(s) ~ [—% In(2s) —

and therefore, in particular,

3s 1
g(”(s) ~ g<<>< ) = i[—zmas)_

)
3V3]
Equation (D1) is still useful when considering the asymp-

totic limit for s > 1 in the case of the zero-downcrossing
intensity, since then

g7(s) = g(s).
In the case of the zero-upcrossing intensity, using Eq. (D1)
together with Eq. (C5) will give a negative result, so a different

approach must be considered. The exact expression for g™ (s)
when yy > 0 reads

sv3 —1/6 _ \/;
e A 6’|:e 5Erfc(1/¢§)i|

x e 307591249,

gPs) =

(D2)

Here we need to use the following asymptotic expansion of
the complementary error function:

Erfc(z) =

e i( Ly (2n)!
[ NL s nl(2z)*’
which turns Eq. (D2) into

(+)(S) S\/_ Z( )n+1 (@2n)!

> i 4/6—56/2
n—1 _—4/6—s
YT 0" e dao,

n=1

and, hence,

—Z(— yrr1 21

PIERTE K,(2V/2s),

g M) = (D3)

where K, (z) are again the modified Bessel functions of the
second kind, whose asymptotic behavior is, cf. Eq. (C4),

K (z) ~ \/gez, (z = 00).

Thus we can conclude that the main contribution in Eq. (D3)
comes from the term withn = 1,

(+)(s) ~ g>>)(S) [(;7)462@.

APPENDIX E: DERIVATION OF EQ. (55)

Here we analyze

3 3
putale) =[5 / e E1)

with
h(©) =6 +¢?/6°,

and
_[3(x—x)?r
¢= 2k? '

Let us first observe that for ¢ # 0limg_oh(0) = o0,
limg_, o, h(0) = 400, and also that #(6) has a single global
minimum at

6, =34/, (E2)

with 0 < 6,, < oo. Then, the major contribution to the inte-
gral comes from the values of 6 around the vicinity of 6,,.
Therefore we can use the Laplace approximation to obtain

1/2
* wey 49 apl 27 / —h(On)
e — 0 —_— e s
0 93/2 m h//(em)

and taking into account Egs. (52), (54), and (E2) we finally
obtain

oy GO a2
Pst r 2 — r|1/2 (3]{)1/2 Xr ,

for ¢ # 0. The goodness of this approximation will increase
as ¢ does. On the contrary, if one wants to explore the vicinity
of ¢ ~ 0, then one must perform the change of variable z =
£%/6% in Eq. (El),

1 r 13
Ps(x]x,) = ﬁ(lSkﬂx—x,l) /0

since the integral is well defined for ¢ = 0,

oofzdz_rl
o ¢ @ \s)

where I'(«) is the Gamma function, thus yielding

) = r(1/6) 73 13
Pl == skt —x, 1)

as ¢ — 0.

1/3
[ee] _Z_(g / dZ

25/6”
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