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A model for anomalous transport of tracer particles diffusing in complex media in two dimensions is proposed.
The model takes into account the characteristics of persistent motion that an active bath transfers to the tracer;
thus, the model proposed here extends active Brownian motion, for which the stochastic dynamics of the
orientation of the propelling force is described by scaled Brownian motion (sBm), identified by time-dependent
diffusivity of the form Dβ ∝ tβ−1, β > 0. If β �= 1, sBm is highly nonstationary and suitable to describe such
nonequilibrium dynamics induced by complex media. In this paper, we provide analytical calculations and
computer simulations to show that genuine anomalous diffusion emerges in the long-time regime, with a time
scaling of the mean-squared displacement t2−β , while ballistic transport t2, characteristic of persistent motion,
is found in the short-time regime. We also analyze the time dependence of the kurtosis, and the intermediate
scattering function of the position distribution, as well as the propulsion autocorrelation function, which defines
the effective persistence time.
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I. INTRODUCTION

Anomalous diffusion refers to those transport processes
whose mean-squared displacement (MSD) scales asymptoti-
cally as a power law with time, i.e.,

〈x2(t )〉 ∼ tβ (1)

with β > 0. The term subdiffusion is used for the cases where
0 < β < 1, while superdiffusion denotes cases where β > 1.
Normal diffusion is the term left for the traditional diffusion
of a Brownian particle for which β = 1.

Depending on the specific mechanism that leads to anoma-
lous transport of tracer particles in complex environments,
if known, a specific mathematical model can be devised to
describe the power-law time dependence of the MSD. Com-
monly, if the origin of the anomalous behavior is unclear,
predictions of the timescaling of the MSD given by different
models are fitted to the experimental results in order to obtain
the values of the relevant parameters of the model. A standard
approach to model the effects of complex environments on
tracer motion is to implicitly incorporate them, in the form of
complex noise, into a stochastic differential equation model
(Langevin-like models) [1–3].

Recently, anomalous diffusion of tracer particles in com-
plex media, particularly in nonequilibrium environments
made of active particles (active baths) [1–5] or of viscoelastic
fluid [6–8], has been observed. In these cases, the transport
properties of the tracer particle mimic those of active mo-
tion, exhibiting highly persistent motion. Active or propelled
particles are the name for those agents that locally transform,
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through complex mechanisms, the energy adsorbed from the
environment into a variety forms of locomotion. Active Brow-
nian motion is a simple stochastic model for active motion
and is based in the overdamped motion of a Brownian particle
subject to propelling force v0v̂(t ), i.e.,

d

dt
x(t ) = v0v̂(t ), (2)

where v0 is the constant propulsion speed, and v̂(t ) =
(cos ϕ(t ), sin ϕ(t )) is the direction of propulsion, randomized
by the fluctuations of the propelling mechanism; in the sim-
plest case, these are modeled by rotational Brownian motion.

In this paper we consider the case in which the stochastic
dynamics of the propelling direction of active Brownian parti-
cles is modeled by scaled Brownian motion. In contrast to the
results reported in [9], where the dynamics of the propelling
direction was modeled by fractional Brownian motion, here
we show the emergence of genuine anomalous diffusion.

Scaled or geometric Brownian motion (sBm), is a nonsta-
tionary and nonergodic stochastic process χβ (t ) whose time
evolution is given by the Langevin-like stochastic differential
equation [10–13]

d

dt
χβ (t ) =

√
2βKβtβ−1ξ (t ), (3)

where ξ (t )is Gaussian white noise, i.e., 〈ξ (t )〉 = 0 and
〈ξ (t )ξ (s)〉 = δ(t − s); Kβ has units of [χ (t )]2 over [time]β ,
which generalizes the meaning of the diffusion coefficient
when β = 1, and χ (t ) has units of length. Scaled Brown-
ian motion has been considered in a variety of physical and
nonphysical processes and it naturally provides a seemingly
adequate description in the case of unbounded diffusion of
anomalous diffusion since for 0 < β < 1 the amplitude of
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fluctuations in Eq. (3) extinguishes with time, giving rise to
subdiffusion 〈χ2(t )〉 ∝ tβ , while superdiffusion is observed if
1 < β when the fluctuation grows without limit with time.

The associated Fokker-Planck equation for the probability
density, P(χ, t ), of finding the outcome χ at time t for χβ (t ),
is given by Batchelor’s equation [11,14,15]

∂

∂t
Pβ (χ, t ) = DK,β (t )

∂2

∂χ2
Pβ (χ, t ) (4)

where DK,β (t ) = βKβtβ−1 is the time-dependent diffusion co-
efficient. sBm has been used to describe anomalous diffusion,
for instance in the anomalous diffusion properties of fluores-
cently tagged gold beads in the cytoplasm and the nucleus
of living cells [16], in the self-diffusion in granular gases
[17], in numerical simulations of fluorescence photobleaching
recovery experiments [18], or as a model to fit parameters in
fluorescence correlation spectroscopy [19]. Different studies
have shown that the statistical properties of sBm give rise to
a variety of nontrivial effects [20–25], particularly under con-
ditions that exacerbate them, for instance, under conditions
of confinement [12,26] or when particles move on manifolds
[27].

In Sec. II we detail the mathematical model for the
analysis, namely active Brownian particles driven by scaled
Brownian motion. We give the model as stochastic differential
equations from which ensembles of trajectories are obtained
through numerical solutions. We also provide the correspond-
ing Fokker-Planck equation for the probability density of
finding a particle at position x and propelled in the direction
v̂ at time t , from which analytical results are obtained. In
Sec. III we focus our analysis on the reduced probability
density which is independent of the propelling direction, from
which approximated results for the intermediate scattering
function (ISF) and kurtosis are obtained. Remarkably the
mean-squared displacement and propulsion autocorrelation
function (PACF) are obtained in the exact same manner. We
conclude in Sec. IV.

II. THE MODEL

We consider a particle that is propelled in a two-
dimensional domain with constant propulsion speed v0 along
the direction v̂(t ) = (cos ϕβ (t ), sin ϕβ (t )), ϕβ (t ) being the
angle between the direction of motion and the horizontal
axis. Active fluctuations affect the rotational dynamics lead-
ing to rotational diffusion of the propelling “force,” which
in this paper is modeled by sBm. The overdamped dynam-
ics of an active Brownian particle follow from the Langevin
equations [28,29]

d

dt
x(t ) = v0 v̂(t ), (5a)

d

dt
ϕβ (t ) = √

2DR,β (t ) ξ (t ), (5b)

where x(t ) = (x1(t ), x2(t )) denotes the particle position and
with 0 < β. ξ (t ) in Eq. (5b) is Gaussian white noise, 〈ξ 〉 =
0, 〈ξ (t )ξ (s)〉 = δ(t − s), and DR,β (t ) = βRβtβ−1 with Rβ a
constant with units of 1/[time]β that gives a measure of the
fluctuations at a given time. Standard rotational Brownian

motion is recovered in the case β = 1. We introduce the length
l = v0/R1/β

β as the distance traveled by a particle during the

time R−1/β

β .
The Fokker-Planck equation for the probability den-

sity P(x, ϕ, t ) ≡ 〈δ[x − x(t )]δ[ϕ − ϕβ (t )]〉 corresponding to
Eqs. (5) is given by

∂

∂t
pβ (x, ϕ, t ) + v0∇ · v̂ pβ (x, ϕ, t )

= DR,β (t )
∂2

∂ϕ2
pβ (x, ϕ, t ), (6)

which corresponds to active Brownian motion driven by sBm
dynamics.

III. THE REDUCED PROBABILITY DISTRIBUTION pβ(x, t )

We now focus our analysis on the reduced distribution of
the particle positions, i.e., we focus on the probability density
function of finding a particle at position x at time t regardless
of the direction of motion ϕ. We consider as initial distribution
the one that corresponds to a pulse at the origin with vanishing
probability current, i.e., pβ (x, ϕ, 0) = δ(x)/2π .

We solve numerically Eqs. (5) for an ensemble of N =
2.3 × 105 particles up to times t = 104 R−1/β

β , using a dis-

cretization time step 	t = 10−3 R−1/β

β in an implementation
of the Euler-Maruyama method. This is straightforwardly ap-
plied to Eq. (5b) to obtain ϕβ (t ); with this a simple Euler
update scheme is used to compute x(t ). The positions of
the particles in the ensemble are shown in Fig. 1 at time
t = 10 R−1/β

β ; additionally, five typical trajectories are shown
to exhibit the stochastic dynamics for β = 0.2, 0.4, 0.6, 0.8,
1.0, 1.2, 1.4, 1.6, and 1.8.

First, we resort to the Fourier transform of the spatial
variables of Eq. (6), i.e., x = (x1, x2) −→ k = (k1, k2):

∂

∂t
p̂β (k, ϕ, t ) + iv0 v̂ · k p̂β (k, ϕ, t ) = DR,β (t )

∂2

∂ϕ2
p̂β (k, ϕ, t ),

(7)

where f̂ (k) = ∫
d2x e−ik·x f (x) denotes the Fourier transform

of f (x) and k = (kx, ky ) denotes the Fourier wave vector. We
consider the series expansion

p̂β (k, ϕ, t ) = 1

2π

∞∑
n=−∞

q̂(n)
β (k, t ) e−Rβ tβn2

einϕ, (8)

where {e−Rβ tβn2
einϕ} with n an integer is the set of independent

solutions of the equation

∂

∂t

β (ϕ, t ) = DR,β (t )

∂2

∂ϕ2

β (ϕ, t ). (9)

The coefficients of the expansion (8) are obtained using
the standard orthogonality relation among the Fourier basis
functions {einϕ}, explicitly

q̂(n)
β (k, t ) = eRβ tβ n2

∫ π

−π

dϕ p̂β (k, ϕ, t )e−inϕ. (10)
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FIG. 1. Snapshots of the positions of an ensemble of 2.3 × 105 particles at time t = 10 R−1/β

β are shown for β = 0.2 (a), 0.4 (b), 0.6 (c),

0.8 (d), 1.0 (e), 1.2 (f), 1.4 (g), 1.6 (h), and 1.8 (i). In each case, five typical trajectories are traced during the time interval [0, 10R1/β

β ], all of
them starting at the origin of coordinates and initial directions chosen uniformly and random in [0, π ].

From this we have

q̂(0)
β (k, t ) =

∫ π

−π

dϕ p̂β (k, ϕ, t ) (11)

which corresponds to the self-part or coherent part of the
ISF. This is obtained from numerical simulations and shown
in Fig. 2 for small wave-vector number kl = 0.1 [Fig. 2(a)],
intermediate kl = 1.0 [Fig. 2(b)], and large wave-vector num-
ber kl = 10.0 [Fig. 2(c)]; in all cases, the ballistic short-time
behavior ( p̂β ≈ 1) is clearly observed.

In the case kl = 10, ISF characterizes the particle position
distribution at short length scales. At short times, it relaxes
in the same manner independently of the value of β. In this

regime, particle distributions are all alike, as the one shown in
Fig. 1(a), corresponding to ballistic propagation. After times
of the order of tR1/β

β � 1, relaxation of the ISF depends on β

as shown by the long-lasting oscillations the smaller β is. For
the cases for which the wave-vector number is of the order
of or smaller than l−1, kl � 1 [kl = 1.0 and 0.1 are shown
in Figs. 2(b) and 2(a), respectively], it is possible to identify
the effects of the different values of β in the intermediate-
time regimes, i.e., the ISF relaxation distinguishes among
the distinct patterns of propagation induced by the different
sBm exponent β. For kl = 1.0 in Fig. 2(b) the ISF oscillates,
decaying to zero faster if β � 1.0; instead it decays slowly and
monotonically when β > 1, meaning that the corresponding

FIG. 2. The time dependence of the intermediate scattering function. Top row: Results obtained from numerical simulations, p̂β (k, t ), for
dimensionless wave vectors kl = 0.1 (a), 1.0 (b), and 10.0 (c). Bottom row: Results obtained from the numerical integration of Eq. (17),
q̂(TE)

β (k, t ), for dimensionless wave vectors kl = 0.1 (d), 1.0 (e), and 10.0 (f).
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relaxation time increases. These features are more noticeable
the smaller the values of kl are. In Fig. 2(a) the case kl = 0.1
is shown; now the oscillating decay of the ISF is observed
for β � 0.6 and monotonically decaying ISFs for β > 0.6.
Similar characteristics have been reported in the case β = 1
in standard active Brownian motion [30,31]. Figures 2(d)–2(f)
also include approximate results for the ISF computed from a
generalization of the telegrapher equation, which is discussed
in the next section.

The moments of pβ (x, t ) are of interest and can be ob-
tained from its characteristic function p̂β (k, t ) = q̂(0)

β (k, t ) as
follows:

〈
xm1

1 xm2
2

〉 =
[(

− i
∂

∂k1

)m1

×
(

− i
∂

∂k2

)m2

q̂(0)
β (k, t )

]
k1=0
k2=0

.

(12)

After substitution of Eq. (8) into Eq. (7) and after use of
the orthogonality of the Fourier basis functions, we get the
following set of coupled ordinary differential equations for the
nth coefficient of the expansion q̂(n)

β (k, t ):

d

dt
q̂(n)

β (k, t ) = −i
v0

2
k
[
e−iθ e−Rβ tβ (1−2n) q̂(n−1)

β (k, t )

+ eiθ e−Rβ tβ (1+2n) q̂(n+1)
β (k, t )

]
, (13)

with θ and k = |k| defined through the relations k1 ± ik2 ≡
ke±iθ ≡ k± and the initial conditions q̂(n)

β (k, 0) = δn,0 which
correspond to the initial distribution Pβ (x, ϕ, 0) = δ(x)/2π ,
δn,m being the standard Kronecker delta.

A. The q̂(±1)
β approximation: The telegrapher equation with

time-dependent relaxation coefficient

We can close the coupled Eq. (13) up to q̂(±1)
β (k, t ), dis-

regarding, as a first approximation, all coefficients q̂(n)
β (k, t )

with |n| > 1 [32,33]. This approximation is expected to be
appropriate in the long-time regime since high Fourier modes
in the expansion (8) are negligible in that limit. However, for
0 < β < 1

2 , this is not the case due to the slow dynamics.
Notwithstanding this, the exact time dependence of the MSD
is obtained from this, as is shown afterwards. We have that in
this approximation

∂

∂t
q̂(1)

β (k, t ) = −i
v0

2
ke−iθ eRβ tβ

q̂(0)
β (k, t ), (14a)

∂

∂t
q̂(0)

β (k, t ) = −i
v0

2
ke−Rβ tβ [

e−iθ q̂(−1)
β (k, t )

+eiθ q̂(1)
β (k, t )

]
, (14b)

∂

∂t
q̂(−1)

β (k, t ) = −i
v0

2
keiθ eRβ tβ

q̂(0)
β (k, t ). (14c)

The q̂(0)
β (k, t ) in Eq. (11) must be distinguished from the cor-

responding solution of Eqs. (14), which is an approximation
of the former, referred to as q̂(TE)

β (k, t ). This is given by

∂

∂t
q̂(TE)

β (k, t ) = −v2
0

2
k2e−Rβ tβ

∫ t

0
ds eRβ sβ

q̂(TE)
β (k, s), (15)

with k2 = k2
1 + k2

2 . After inverting the Fourier transform, we
obtain the generalized diffusion equation

∂

∂t
q(TE)

β (x, t ) = v2
0

2

∫ t

0
ds γ (t ; s)∇2q(TE)

β (x, s), (16)

where the memory function γ (t ; s) = e−Rβ (tβ−sβ ) is not time-
translationally invariant, a characteristic that emerges from the
inherently nonstationarity of the sBm process.

After taking the derivative with respect to time we get,
equivalently,

∂2

∂t2
q̂(TE)

β (k, t ) + DR,β (t )
∂

∂t
q̂(TE)

β (k, t ) = −v2
0

2
k2q̂(TE)

β (k, t ),

(17)
which corresponds to a damped harmonic oscillator with time-
dependent damping coefficient DR,β (t ), whose inverse Fourier
transform is identified with the telegrapher’s equation with
time-dependent relaxation coefficient DR,β (t ):

∂2

∂t2
q(TE)

β (x, t ) + DR,β (t )
∂

∂t
q(TE)

β (x, t ) = v2
0

2
∇2q(TE)

β (x, t ).

(18)
The differential equations that determine the time depen-
dence of the moments of q(TE)

β (x, t ) can be obtained by using

Eq. (15), but with q(TE)
β (x, t ) instead of q(0)

β (x, t ).
In Figs. 2(d)–2(f), the time dependence of the ISF obtained

from the numerical solution of the telegrapher equation with
time-dependent relaxation coefficient (17) is shown for differ-
ent values of the dimensionless wave vector kl and different
scaling parameter β. The results are qualitatively in good
agreement with those discussed in the previous section. The
main differences with respect to the exactly computed cases
[Figs. 2(a)–2(c)] are that relaxation times increase by or-
ders of magnitude and oscillation amplitudes become larger
for β (� 0.5); when the approximated ISF decays mono-
tonically, the decaying is faster than in the exact case. This
analysis elucidates the importance of the higher Fourier
modes left aside in the approximation (14). Notwithstand-
ing this, the approximation made in (14) leads to the exact
time dependence of the MSD as discussed in the following
section.

B. The mean-squared displacement

The diffusive transport of the particle is generically
characterized by the second moment or mean-squared dis-
placement of the position distributions pβ (x, t ) and 〈x2(t )〉 =∫

d2x x2 pβ (x, t ) and, according to Eqs. (12) and (11), is
given by

〈x2(t )〉pβ
= 〈

x2
1 (t )

〉
pβ

+ 〈
x2

2 (t )
〉
pβ

= −
[(

∂2

∂k2
1

+ ∂2

∂k2
2

)
q̂(0)

β (k, t )

]
k1=0
k2=0

. (19)

After applying the differential operator of the last equa-
tion to the Fourier transform of the generalized diffusion
equation (15), the approximation q̂(0)

β (k, t ) ≈ q̂(TE)
β (k, t ) leads
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FIG. 3. Time dependence of the dimensionless mean-squared
displacement 〈x2(t )〉/2,  = v0/R1/β

β being the persistence length.

Symbols show the exact result 〈x2(t )〉 from our numerical analysis,
while continuous lines mark the analytical expression 〈x2(t )〉TE (21)
obtained from the q̂(±1)

β approximation. The agreement is remarkable.

to the result

d

dt
〈x2(t )〉TE = 2v2

0e−Rβ tβ

∫ t

0
ds eRβ sβ

, (20)

from which we get straightforwardly that

〈x2(t )〉TE = 2v2
0

∫ t

0
ds e−Rβ sβ

∫ s

0
ds1 eRβ sβ

1 , (21)

where we have made explicit the initial condition
〈x2(0)〉TE = 0. This is one of the main results of our analysis.
Expression (21) is evaluated numerically for β = 0.2, 0.4,
0.6, 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8 and shown in Fig. 3 (solid
lines) and compared with the exact results obtained from
the numerical analysis of the trajectories ensemble obtained
from integration of Eqs. (5) (symbols). The agreement is
remarkable, corroborating that q̂(TE)

β (k, t ) gives the exact
time dependence of the mean-squared displacement.

Although not evident at first a glance, analytical Eq. (21)
masks a crossover between ballistic transport at the short-
time regime 〈x2(t )〉 ≈ v2

0t2 and anomalous diffusion 〈x2(t )〉 ∼
t2−β in the long-time one (see Fig. 3). This transition can
be seen from the following heuristic argument. By taking the
time derivative of Eq. (20) we get

d2

dt2
〈x2(t )〉TE + DR,β (t )

d

dt
〈x2(t )〉TE = 2v2

0 . (22)

In the short-time regime, i.e., to times up to the order of R1/β

β ,
the effects of noise expressed in the second term of Eq. (17)
are negligible compared with the coherent term expressed by
the second-order time derivative, and thus we disregard it from
Eq. (22) to get approximately

d2

dt2
〈x2(t )〉TE = 2v2

0, (23)

whose solution with the corresponding initial conditions is
〈x2(t )〉TE = v2

0t2. Analogously, in the long-time regime, the
coherent motion described by the second-order time derivative

becomes negligible with respect to the effects of fluctuations;
thus we have that approximately

DR,β (t )
d

dt
〈x2(t )〉TE = 2v2

0 (24)

which yields 〈x2(t )〉TE = 2v2
0

Rββ(2−β ) t
2−β .

A series expansion in powers of R1/β

β t can be obtained by
using the series expansion of the stretched exponentials in
Eq. (20). After carrying out the integrals, we get

〈x2(t )〉TE = v2
0t2

∞∑
n,m=0

2(−1)n(Rβtβ )n+m

n! m!(βm + 1)[β(n + m) + 2]
(25)

which clearly leads to the ballistic transport when R1/β

β t � 1.
Conversely, an asymptotic expansion of the integral in (20)
can be obtained after using the change of variable sβ = tβ −
Rβz; thus, it can be written as

eRβ tβ t1−β

Rββ

∫ Rβ tβ

0
dz

(
1 − z

Rβtβ

)1/β−1
e−z.

Therefore, in the limit Rβtβ → ∞ we have∫ t

0
ds eRβ sβ ∼ eRβ tβ t1−β

Rββ

[
1 + O

(
1

Rβtβ

)]
. (26)

By retaining the leading term in the asymptotic expansion, we
substitute it into Eq. (20), and after integration we obtain

〈x2(t )〉TE ∼ 2v2
0

Rββ(2 − β )
t2−β (27)

as mentioned previously.

C. The kurtosis

The kurtosis of the bivariate distribution pβ (x; t ) is given
by [34]

κβ (t ) = 〈[(x(t ) − 〈x(t )〉)�−1(x(t ) − 〈x(t )〉)T]2〉, (28)

where xT denotes a column vector, the transpose of the row
vector x = (x1, x2), and � is the 2 × 2 matrix defined by
the average of the dyadic product [x(t ) − 〈x(t )〉]T · [x(t ) −
〈x(t )〉]. It can be shown that, due to the invariance of pβ (x, t )
under spatial rotations, the kurtosis (28) reduces to

κβ (t ) =
〈
x4

1 (t )
〉

〈
x2

1 (t )
〉2 +

〈
x4

2 (t )
〉

〈
x2

2 (t )
〉2 + 2

〈
x2

1 (t ) x2
2 (t )

〉
〈
x2

1 (t )
〉 〈

x2
2 (t )

〉 . (29)

Each moment involved can be computed by use of the formula
(12). The moments in the denominators are the squares of the
second moments computed in the calculation of the MSD. The
exact fourth-order moments are given by〈

x4
i (t )

〉
pβ

=
[

∂4

∂k4
i

q̂(0)
β (k, t )

]
k1=0
k2=0

, (i = 1, 2), (30a)

〈
x2

1 (t ) x2
2 (t )

〉
pβ

=
[

∂4

∂k2
1∂k2

2

q̂(0)
β (k, t )

]
k1=0
k2=0

. (30b)

In Fig. 4 the exact time dependence of κβ (t ), obtained from
our numerical analysis, is shown (symbols) for different val-
ues of β ranging from 0.2 to 1.8. The short-time regime
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FIG. 4. Time dependence of the kurtosis of pβ (x, t ) as defined
in Eq. (28). Symbols mark the result from the ensemble average of
the trajectories obtained from numerical simulations for β = 0.2,
0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8. Solid lines refer to the
approximated result given in Eq. (32).

corresponds to a distribution of particle that propagates from
the origin uniformly in all directions at speed v0; at time t the
particles are distributed around a “ring” of radius v0t ; see for
instance Fig. 1(a), which has kurtosis 4 transiting to the value
8, characteristic of a Gaussian in the long-time regime.

Differential equations for the fourth moments in the q̂(±1)
β

approximation can be derived after applying the fourth-order
derivatives in Eqs. (30) to Eq. (15); after some rearrange-
ments, we get

d2

dt2

〈
x4

i (t )
〉
TE + DR,β (t )

d

dt

〈
x4

i (t )
〉
TE = 6v2

0

〈
x2

i (t )
〉
TE

(31a)

and

d2

dt2

〈
x2

1 (t )x2
2 (t )

〉
TE + DR,β (t )

d

dt

〈
x2

1 (t )x2
2 (t )

〉
TE

= v2
0

[〈
x2

1 (t )
〉
TE + 〈

x2
2 (t )

〉
TE

]
, (31b)

whose solutions lead to the time dependence of the kurtosis in
the q̂(±1)

β approximation

κβ,TE(t )

= 16

∫ t
0 ds e−Rβ sβ ∫ s

0 ds1 eRβ sβ

1
∫ s1

0 ds2 e−Rβ sβ

2
∫ s2

0 ds3 eRβ sβ

3[ ∫ t
0 ds e−Rβ sβ

∫ s
0 ds1 eRβ sβ

1
]2 .

(32)

In contrast to the exact result in the short-time regime,
κβ (t ) ≈ 4, the q̂(±1)

β approximation yields a value κβ,TE =
8
3 ≈ 2.667. Thus, failing to give the correct description in the
short-time regime, however, in the long-time regime the ap-
proximation agrees well with exact time dependence. This is
corrected by taking into consideration the next higher Fourier
modes q̂(±2)

β in Eq. (13) as is shown in the Appendix.

D. The velocity autocorrelation function

The nonstationary fluctuations of sBm induce a relax-
ation of the PACF 〈v̂(t ) · v̂(0)〉 in the form of a stretched

FIG. 5. Velocity autocorrelation function 〈v̂(t ) · v̂(0)〉. The sym-
bols mark the exact results obtained from numerical simulations for
β = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8. Solid lines indicate
the analytical formula e−Rβ tβ .

exponential, i.e.,

〈v̂(t ) · v̂(0)〉 = e−Rβ tβ

, (33)

which measures the persistence of active motion induced
by sBm. Equation (33) was obtained by noticing that
〈v̂(t ) · v̂(0)〉 = 〈cos[ϕ(t ) − ϕ(0)]〉 and using 
(ϕ, t |ϕ′, 0) =

1
2π

∑∞
n=0 e−Rβ tβn2

ein(ϕ−ϕ′ ), the solution of Eq. (9) with ini-
tial distribution 
(ϕ, 0|ϕ(0), 0) = δ[ϕ − ϕ(0)]. In the case
β = 1, the simple exponential relaxation is recovered and
R1 is recognized with the rotational diffusion of standard
active Brownian motion, that defines the persistence time
τ1 = ∫ ∞

0 dt e−R1t = R−1
1 . For β �= 1 we have, analogously,

τβ = ∫ ∞
0 dt e−Rβ tβ = �(1 + β−1)R−β−1

β ; this decreases mono-

tonically with β being larger than R−1
1 for 0 < β < 1 and

smaller for 1 < β < 2, implying the origin of the anomalous
transport observed.

In Fig. 5 the PACF is shown from the numerical analysis
(symbols) as a function of the dimensionless time tR1/β

β for
β = 0.2 (dark circles), 0.4 (light up triangles), 0.6 (light di-
amonds), 0.8 (light squares), 1.0 (dark down triangles), 1.2
(light circles), 1.4 (dark up triangles), 1.6 (dark diamonds),
and 1.8 (dark squares), and compared with the analytical
stretched exponential.

IV. FINAL REMARKS

Motivated by the anomalous transport properties of tracer
particles diffusing in complex media, particularly of tracers
that inherit characteristics of active motion when diffusing
in active baths, we propose an extension of active Brownian
motion as a model of tracer particles moving in complex me-
dia for which the stochastic dynamics of propulsion is driven
by scaled Brownian motion, a highly nonstationary process
paradigmatic of nonequilibrium stochastic dynamics.

A crossover from ballistic transport in the short-time
regime, characteristic of active motion, to genuine anomalous
diffusion in the long-time regime with exponent 2 − β is
observed, where β is the exponent that characterizes

014113-6
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sBm. This has been shown from numerical and analytical
calculations.

Further, we analyzed the intermediate scattering function
p̂β (k, t ), which corresponds to the Fourier transform of the
reduced probability density of finding a particle at position
x at time t independent of the direction of propulsion ϕ,
pβ (x, t ). Our numerical analysis shows the discrepancy be-
tween the results obtained from the analysis of the ensemble
of trajectories generated from Eqs. (5) and the approximation
given by Eq. (17); notwithstanding this, the analytical formula
for the MSD (21) from such approximation agrees perfectly
from our ensemble analysis.

The discrepancy is exhibited in the kurtosis of the particle
position distribution pβ (x, t ), mainly in the short-time regime.
In this regime, the approximation given by q̂(1)

β in Eq. (17)
describes coherent transport by the two-dimensional wave
equation. This differs from the transport described by the
persistence of active motion.

These results are inserted into a wide class of anomalous
diffusion systems of tracer particles in nonequilibrium baths,
where scaling exponents of the mean-squared displacement in
different time regimes vary depending on the specific physical
system. The dynamics analyzed in this paper corresponds to
systems, described by active Brownian particles, where the
stochastic dynamics of the orientational degree of freedom
(the particle direction of motion) differs from the dynamics
given by thermal fluctuations, in this paper implemented as
scaled Brownian motion. Recently, control of the orientational
dynamics of active Brownian particles has been achieved
through randomly oriented magnetic fields, leading to a rich
diffusive behavior [35]. More recently [36], the stochastic
dynamics of the orientational degree of freedom of active
Brownian particles has been analyzed under the effects of
stochastic resetting; this leads to the emergence of interesting
spatiotemporal patterns imprinted in an imaginary part of the
intermediate scattering function. These recent studies open a
direction on the persistent dynamics of active motion.
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APPENDIX: The q̂±2
β APPROXIMATION

1. Contribution of q̂±2
β to the intermediate scattering function

Consideration of the next Fourier modes, q̂(±2)
β , to the q̂(±1)

β

approximation presented in Sec. III A, i.e., disregarding the
coefficients q̂(n)

β (k, t ) with |n| > 2, leads to the following sys-
tem of coupled equations:

d

dt
q̂(2)

β = −i
v0

2
k−e3Rβ tβ

q̂(1)
β , (A1a)

d

dt
q̂(1)

β = −i
v0

2

[
k−eRβ tβ

q̂(0)
β + k+e−3Rβ tβ

q̂(2)
β

]
, (A1b)

d

dt
q̂(0)

β = −i
v0

2
e−Rβ tβ [

k−q̂(−1)
β + k+q̂(1)

β

]
, (A1c)

d

dt
q̂(−1)

β = −i
v0

2

[
k−e−3Rβ tβ

q̂(−2)
β + k+eRβ tβ

q̂(0)
β

]
, (A1d)

d

dt
q̂(−2)

β = −i
v0

2
k+e3Rβ tβ

q̂(−1)
β , (A1e)

where we have omitted the arguments for the sake of economy
of space and k± = k1 ± ik2. By introducing the quantities

Ĵ (1) ≡ ik−q̂(−1)
β + ik+q̂(1)

β , Ĵ (2) ≡ −k2
−q̂(−2)

β − k2
+q̂(2)

β ,

we can rewrite the system (A1) as

d

dt
q̂(GTE)

β = −v0

2
e−Rβ tβ

Ĵ (1)
β , (A2)

d

dt
Ĵ (1)
β = −v0

2
e−3Rβ tβ

Ĵ (2)
β + v0k2eRβ tβ

q̂(GTE)
β , (A3)

d

dt
Ĵ (2)
β = v0

2
k2eRβ tβ

Ĵ (1)
β , (A4)

with k2 = k2
1 + k2

2 . Notice that by neglecting Ĵβ (2) from the
last system of equations we recover the telegrapher’s equa-
tion (17), thus Ĵ (2)

β gives the contribution of the Fourier

coefficients q̂(±2)
β (k, t ) to the intermediate scattering function.

In Fig. 6 we show a comparison between the ISF obtained
from Eq. (17) (dot-dashed lines) and the one obtained from
Eq. (A2) (dashed lines) for the case β = 0.4. For wave vec-
tors smaller than or of the order of the inverse of the length
l−1, both approximations give practically the same result [see
Figs. 6(a) and 6(b)]. In Fig. 6(a) both approximations are
closed to the numerical exact results (open circles), while in
Fig. 6(b) they start to depart from the numerical results as
kl grows. For kl = 10.0 in Fig. 6(c), both approximations
depart from the exact result of numerical simulations, but the
improvement of the q̂(±2)

β approximation over the q̂(±1)
β is now

clear.

2. No contribution of q̂(±2)
β to the second moments of the

position distribution

We show in passing that q̂(±2) and higher do not contribute
to the second-order moments, thus making the q̂(±1) approx-
imation sufficient to give the exact time dependence of the
MSD. The second moment of the ith spatial degree of freedom
is

〈
x2

i (t )
〉
pβ

= −
[

∂2

∂k2
i

q̂(0)
β (k, t )

]
k1=0
k2=0

. (A5)

We consider the explicit calculation of 〈x2
1 (t )〉 only, since the

calculation of 〈x2
2 (t )〉 goes on the same line. After taking ∂2

∂k2
1

to Eq. (A1c) we have that

d

dt

[
∂2

∂k2
1

q̂(0)
β

]
k1=0
k2=0

= −iv0e−Rβ tβ

[
∂

∂k1
q̂(−1)

β + ∂

∂k1
q̂(1)

β

]
k1=0
k2=0

.

(A6)

Similarly, by applying ∂
∂k1

to Eqs. (A1b) and (A1d) we get,
respectively,

d

dt

[
∂

∂k1
q̂(±1)

β

]
k1=0
k2=0

= −i
v0

2
e−3Rβ tβ [

q̂(±2)
β

]
k1=0
k2=0

−i
v0

2
eRβ tβ [

q̂(0)
β

]
k1=0
k2=0

. (A7)
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FIG. 6. Comparison of the intermediate scattering function obtained from the q̂(±2)
β approximation [q̂(GTE)

β (k, t ) in Eq. (A2), dashed lines].

Dot-dashed lines and open circles correspond to the cases given by the q̂(±1)
β approximation from Eq. (17) and by the numerical results obtained

from numerical simulations, respectively. Different values of the dimensionless wave vector are shown: kl = 0.1 (a), 1.0 (b), and 10.0 (c). In
the three cases we have β = 0.4

Notice that the right-hand side of Eqs. (A1) vanishes when
evaluating at k1 = 0 and k2 = 0; thus each [q̂(n)

β ]k1=0
k2=0

is station-

ary whose values correspond to the ones given by the initial
conditions, δn,0 in this case. Therefore, there is no contribution
of q̂(n)

β with |n| � 2 to the second moment.
We conclude this calculation by noting that[

∂

∂k1
q̂(±1)

β

]
k1=0
k2=0

= −i
v0

2

∫ t

0
ds eRβ sβ

, (A8)

and after the substitution of these in Eq. (A6) and the corre-
sponding integration we get[

∂2

∂k2
1

q̂(0)
β

]
k1=0
k2=0

= −v2
0

∫ t

0
ds e−Rβ sβ

∫ s

0
ds1 eRβ sβ

1 , (A9)

and therefore

〈
x2

1 (t )
〉
pβ

= v2
0

∫ t

0
ds e−Rβ sβ

∫ s

0
ds1 eRβ sβ

1 . (A10)

From here we get

〈x2(t )〉pβ
=〈

x2
1 (t )

〉
pβ

+ 〈
x2

2 (t )
〉
pβ

=2v2
0

∫ t

0
ds e−Rβ sβ

∫ s

0
ds1 eRβ sβ

1 , (A11)

which coincides with the expression given in Eq. (21) ob-
tained from the telegrapherlike Eq. (17) as explained in the
text.

3. The contribution of q̂(±2)
β to the kurtosis of the position distribution

We now elucidate the contribution of the Fourier modes q̂(±2)
β in the fourth moments of pβ (x, t ) given in Eqs. (30). We

consider the explicit calculation of 〈x4
1 (t )〉pβ

only since the calculations of 〈x4
2 (t )〉pβ

and 〈x2
1 (t )x2

2 (t )〉pβ
are carried out in the same

manner.
Thus after taking ∂4

∂k4 of Eq. (A1c) and evaluating it at k1 = 0, k2 = 0 we get

d

dt

〈
x4

1 (t )
〉
pβ

=
[

∂4

∂k4
1

q̂(0)
β (k, t )

]
k1=0
k2=0

= −2iv0e−Rβ tβ

[
∂3

∂k3
1

(
q̂(−1)

β + q̂(1)
β

)]
k1=0
k2=0

. (A12)

The third-order derivatives of q̂(±1)
β can be evaluated from Eqs. (A1b) and (A1d):

d

dt

[
∂3

∂k3
1

q̂(±1)
β

]
k1=0
k2=0

= −i
v0

2
3eRβ tβ

[
∂2

∂k2
1

q̂(0)
β

]
k1=0
k2=0

− i
v0

2
3e−3Rβ tβ

[
∂2

∂k2
1

q̂(±2)
β

]
k1=0
k2=0

, (A13)

where the last term gives the contribution of q̂(±2)
β to the fourth moment 〈x4

1 (t )〉pβ
. The second derivative of q̂(0)

β is already given

in Eq. (A9). The second derivatives of q̂(±2)
β are computed from Eqs. (A1a) and (A1e):

d

dt

[
∂2

∂k2
1

q̂(±2)
β

]
k1=0
k2=0

= −i
v0

2
e3Rβ tβ

[
∂

∂k1
q̂(±1)

β

]
k1=0
k2=0

, (A14)

where the last factor in the right-hand side is already given in Eq. (A8). From these results we get[
∂2

∂k2
1

q̂(±2)
β

]
k1=0
k2=0

= −v2
0

2

∫ t

0
ds e3Rβ sβ

∫ s

0
ds1eRβ sβ

1 . (A15)
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All these results put together allow the integration of Eq. (A13) that gives[
∂3

∂k3
1

q̂(±1)
β

]
k1=0
k2=0

= 12i
(v0

2

)3
∫ t

0
dseRβ sβ

∫ s

0
ds1e−Rβ sβ

1

∫ s1

0
ds2eRβ sβ

2 + 6i
(v0

2

)3
∫ t

0
dse−3Rβ sβ

∫ s

0
ds1e3Rβ sβ

1

∫ s1

0
ds2eRβ sβ

2 .

(A16)

Correspondingly, after substitution of this in Eq. (A12) and integrating we have that the fourth moment of the coordinate x1 (the
other gives the same result) is

〈
x4

1 (t )
〉
pβ

= 6v4
0

∫ t

0
dse−Rβ sβ

∫ s

0
ds1eRβ sβ

1

∫ s1

0
ds2e−Rβ sβ

2

∫ s2

0
ds3eRβ sβ

3

+ 3v4
0

∫ t

0
dse−Rβ sβ

∫ s

0
ds1e−3Rβ sβ

1

∫ s1

0
ds2e3Rβ sβ

2

∫ s2

0
ds3eRβ sβ

3 , (A17)

the second term in the right-hand side being the contribution due to q̂(±2)
β . By a similar procedure we obtain for 〈x2

1 (t )x2
2 (t )〉pβ〈

x2
1 (t )x2

2 (t )
〉
pβ

= 2v2
0

∫ t

0
dse−Rβ sβ

∫ s

0
ds1eRβ sβ

1

∫ s1

0
ds2e−Rβ sβ

2

∫ s2

0
ds3eRβ sβ

3

+ v4
0

∫ t

0
dse−Rβ sβ

∫ s

0
ds1e−3Rβ sβ

1

∫ s1

0
ds2e3Rβ sβ

2

∫ s2

0
ds3eRβ sβ

3 . (A18)

Substituting Eqs. (A17) and (A18) into Eq. (29), and considering that 〈x4
1 (t )〉pβ

= 〈x4
2 (t )〉pβ

, we have that in the q̂(±2)
β approxi-

mation κβ (t ) can be written as κβ (t ) = κβ,TE(t ) + κ
(2)
β (t ) where the contribution of q̂(±2)

β to the kurtosis is given by

κ
(2)
β (t ) = 8

∫ t
0 ds e−Rβ sβ ∫ s

0 ds1 e−3Rβ sβ

1
∫ s1

0 ds2 e3Rβ sβ

2
∫ s2

0 ds3 eRβ sβ

3[ ∫ t
0 ds e−Rβ sβ

∫ s
0 ds1 eRβ sβ

1
]2 . (A19)

The leading time dependences for the numerator and denominator in the short-time regime of the last expression are, respectively,
t4/24 and t4/4, with which along with the result of Sec. III C, κβ,TE = 8

3 , we get κβ = 8
3 + 4

3 = 4, thus recovering the exact
results from numerical simulations κβ = 4 as is shown in Fig. 4. This calculation elucidates the role of the Fourier coefficients
q̂(±2)

β .
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