
PHYSICAL REVIEW E 110, 014111 (2024)

Structure of the Hamiltonian of mean force
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The Hamiltonian of mean force is an effective Hamiltonian that allows a quantum system, nonweakly coupled
to an environment, to be written in an effective Gibbs state. We present results on the structure of the Hamiltonian
of mean force in extended quantum systems with local interactions. We show that its spatial structure exhibits a
“skin effect”—its difference from the system Hamiltonian dies off exponentially with distance from the system-
environment boundary. For spin systems, we identify the terms that can appear in the Hamiltonian of mean force
at different orders in the inverse temperature.
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I. INTRODUCTION

The assumption of weak system-bath coupling is
widespread in thermodynamics but is clearly not universally
valid. There is thus considerable interest in formulating ther-
modynamics to include effects of nonweak coupling [1]. A
central concept in this effort is that of the Hamiltonian of
mean force (HMF) [2,3], the quantum counterpart to the
classical potential of mean force [4–6]. Consider a combined
system in thermal equilibrium, composed of a system A and
a bath/environment B, interacting via the Hamiltonian HAB

so that the combined Hamiltonian is H = HA + HB + HAB.
The system state ρA, obtained by tracing out B degrees of
freedom, is then not a thermal Gibbs state in general and
differs from e−βHA [7–9]; here β is the inverse temperature.
Nevertheless, we can formally define an effective Hamiltonian
H∗

A so that ρA ∝ e−βH∗
A [10–18]. This H∗

A is the HMF. For
non-negligible coupling HAB, the HMF will generally deviate
from the actual system Hamiltonian HA. For extended systems
with local degrees of freedom, we address the question of how
H∗

A differs from HA, in particular, the spatial dependence of
this difference.

The HMF often appears implicitly in the study of ther-
malization in isolated quantum systems [19–25]. Any spatial
segment of an isolated system (A) can be regarded as be-
ing thermalized by the rest of the system (B), so that the
expectation values of local observables having support in A
are given by their expectation values in the reduced thermal
state. Since the partition between A and B is arbitrary in this
setup, the coupling HAB is not small, and thus the thermal
state to be used is ρA ∝ trBe−βH ∝ e−βH∗

A rather than just
e−βHA . In this context, the temperature 1/β is determined
using the canonical-ensemble correspondence between energy
and temperature [19,20,22,24,26–41]. The relevance of the
HMF concept in this setup raises the question of the structure
of the HMF in systems with local interactions. Two questions
immediately arise: (i) What is the spatial structure of the
HMF, i.e., of the deviation of H∗

A from HA? (ii) What type
of interactions are contained in the HMF?

We find that when β is not very large, the difference of
coefficients of HMF terms from the corresponding HA coef-
ficients decay exponentially with distance d to the boundary
between A and B, as illustrated in Fig. 1(b). This result implies
a “skin effect,” illustrated in Fig. 1(a): The HMF effectively
only deviates from HA near the boundary, i.e., the “bath” B
has a very shallow influence in A. This is a general result,
provided the total system Hamiltonian is made of local terms.
For β → ∞ (very low temperature), we show how the HMF
is related to the “entanglement Hamiltonian” [42–45] which
is calculated from the ground state alone. We formulate our
results in terms of spin chains, which are paradigm models
for extended quantum systems with local interactions. Using
a perturbative framework coupled with numerical analysis, we
elucidate the types of terms that can appear in the HMF and
present systematics on which types of terms can appear at
which order in β.

II. DEFINITIONS & SETUP

The combined system is taken to be in a thermal state ρ =
e−βH/Z , so that subsystem A (the “system”) is in state ρA =
1
Z trBe−βH , where trB is the partial trace over B. The HMF H∗

A
is defined to satisfy [2]

ρA = 1

Z∗(β )
e−βH∗

A (β ). (1)

This essentially defines the HMF only up to a constant
[46–48]. As this freedom is not of interest to us (it only adds
an identity operator to the HMF), we remove the ambiguity
by choosing the normalization to be Z∗(β ) = Z (β )/ZB(β ),
where Z and ZB are the partition functions of the combined
system and the subsystem B (“bath”), respectively. With this
definition, the HMF is

H∗
A (β ) = − 1

β
ln

trB(e−βH )

trB(e−βHB )
. (2)

2470-0045/2024/110(1)/014111(7) 014111-1 ©2024 American Physical Society

https://orcid.org/0000-0001-9156-7843
https://orcid.org/0000-0001-7313-2758
https://orcid.org/0000-0001-6848-6068
https://ror.org/05m7pjf47
https://ror.org/05m7pjf47
https://ror.org/048nfjm95
https://ror.org/042aqky30
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.014111&domain=pdf&date_stamp=2024-07-03
https://doi.org/10.1103/PhysRevE.110.014111


BURKE, NAKERST, AND HAQUE PHYSICAL REVIEW E 110, 014111 (2024)

FIG. 1. (a) Illustration of the skin effect in a composite system.
The dark red region indicates the shallow effect of B within A.
(b) Magnitude of coefficients in the HMF plotted versus the distance
d from the boundary site LA at small β, illustrating the exponential
decay with distance d .

The HMF H∗
A reduces to the bare system Hamiltonian HA

for vanishing coupling (HAB = 0) [49–51] and for infinite
temperature (β = 0) [13].

For definiteness, we formulate our results for the XXZ
chain, with and without magnetic fields. This exemplifies
the case of operators being supported on nearest-neighbor
sites (spin-spin interactions) or single sites (magnetic fields).
Generalization to longer-range interactions and to fermionic
or bosonic systems should be straightforward, but we do
not attempt to write out explicitly all such cases. The
Hamiltonian is

H = J
L−1∑
j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

) + �

L−1∑
j=1

σ z
j σ

z
j+1

+
L∑

j=1

(
hz

jσ
z
j + hx

jσ
x
j

)
, (3)

where J is the site-to-site “hopping” strength, � is the spin-
spin interaction strength (anisotropy), and hz

j , (hx
j) denotes

the strength of the onsite magnetic field in the z direction (x
direction) onsite j. Unless otherwise stated, we will generally
use uniform magnetic fields, i.e., hz

j = hz and hx
j = hx, ∀ j. The

case of hx
j = hz

j = 0 is the standard XXZ chain. We take the
first LA sites as subsystem A; the boundary bond connects sites
j = LA and j = LA + 1.

A convenient basis to investigate the HMF of spin sys-
tems is the basis of Pauli operators. The Pauli operators O =
σ

α1
i1

. . . σ
αLA
iLA

, where α j = {x, y, z} and i j denote sites in A, to-
gether with the identity operator, form an orthogonal basis of
operators with respect to the Hilbert-Schmidt scalar product.
The coefficient of an operator in a Hamiltonian is given by the
scalar product of the operator with the Hamiltonian. Thus, we
quantify the deviation of the HMF from HA by

c(O) = tr[O · (H∗
A (β ) − HA)], (4)

i.e., by the difference of coefficients of the same operator in
the HMF and HA.

All numerical results in this work are obtained via exact
diagonalization, i.e., the canonical density matrix of the entire
A + B system is constructed explicitly as a 2L×2L matrix,
and then the B degrees of freedom are traced out numerically.
The computations are performed with 128-bit precision.
This higher precision is necessary because in many cases the

TABLE I. One- and two-body terms appearing in H∗
A , for various

system Hamiltonians H . The final row indicates the minimum order
in β at which the terms can appear.

H σα
j σα

j σα
j+1 σα

j σα
k σα

j σα′
k

XX (� = 0) . � . .
XXZ (� �= 0) . � � .
XXZ +σα

n � � � �
Min. order in β β2d+1 β2d β2d β2d+1

coefficients are orders of magnitude smaller than the precision
of double-precision floating-point arithmetic (∼10−16).

We refer to the B partition (sites LA + 1 to L) as the “bath.”
However, in the present setting, we are not interested in the
thermalizing effect of the bath, since the full A + B system is
already imposed to be in a Gibbs (thermal) state. This means
that the B partition is not required to have any of the properties
(zero memory, fast timescales, infinite bandwidth, etc.) that a
physical bath is usually assumed to have. In particular, the
B partition is not required to be larger than the A partition.
In fact, we find that the size of the “bath” does not affect
the qualitative insights presented in this work. Therefore, it
is computationally advantageous to take the B partition to be
as small as meaningful, and we present much of our data for
systems with L = LA + 1, i.e., a single site in B. This might
appear to contradict the usual idea of a physical bath that
thermalizes a system and sets the temperature, for which a
large size is necessary or at least helpful. However, in the
present setting, a single-site “bath” is perfectly reasonable.

III. WHICH TERMS APPEAR?

Terms appearing in H∗
A , beyond those already in HA, are

formed by combining terms in H , as can be seen by consider-
ing an expansion of Eq. (2) in β. Thus any term in H∗

A must
have the form O ≡ h1 · · · hk (equality up to a constant), with
the hi being terms that appear in H .

The type of Pauli operators appearing in H constrains
the types that can appear in H∗

A . We outline the cases of an
XXZ chain—other cases can be worked out analogously. For
the XXZ Hamiltonian without magnetic fields, the operators
appearing in the HMF can be identified by considering a
homomorphism of the Klein four-group, the group of Pauli
matrices modulo phases [52]. The homomorphisms are given
by assigning a sign ±1 to single-body Pauli operators σ x, σ y,
and σ z. All terms in the XXZ Hamiltonian without magnetic
fields have sign +1, regardless of the sign function. This
carries over to the corresponding HMF [52]. For single-body
and mixed two-body (σα

i σα′
j for α �= α′) Pauli operators, there

are sign functions such that the sign of the operators is nega-
tive. Thus, these Pauli operators do not appear in the HMF.
This purely algebraic argument [52] is independent of the
temperature and the lattice geometry.

The XXZ Hamiltonian with magnetic fields contains single-
body Pauli operators and the above argument breaks down.
The corresponding HMF overlaps with all Pauli operators for
any β > 0. In Table I, we list the one- and two-body terms
that can arise in the HMF for several system Hamiltonians.
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FIG. 2. (a) |c(O)| for one-body term σ x
j in the HMF versus dis-

tance for various β (color bar). Corresponding curves for two- or
three-body terms are similar [52]. (b) Skin depth dc as function of
β, for one-body, two-body (σα

� σ α
m ), and three-body (σα

� σ α
mσ γ

n ) terms.
n = 1 corresponds to slopes in (a). Dashed lines are (a − 2 ln β )−1

for fitted a (legend) for each n—shifted up/down by 10−2 for clarity.
Data for a uniform field XXZ chain with L = 7, LA = 6, J = 1,
� = 0.95, and hx = hz = 0.2.

IV. SMALL β

For β → 0, the HMF converges to HA [11,13]. For small
β > 0, we find that H∗

A differs from HA most notably close
to the boundary of A with the bath B, i.e., |c(O)| is larger
for operators O supported close to the boundary than for O
supported far away from the boundary. We define the distance
d (O) as the distance from the boundary to the farthest site
within the support of O, i.e., for an n-body Pauli operator
O = σ

α1
i1

. . . σ
αn
in

with i1 < · · · < in, we have d (O) = LA − i1.
Remarkably, |c(O)| decays exponentially with distance d

from the boundary. For one-body (n = 1) terms, the clear
exponential behavior is seen in Fig. 1(b) and Fig. 2(a); sim-
ilar exponential behaviors are observed for n = 2 and n = 3
operators [52]. This exponential decay with distance means
that the HMF differs from the bare subsystem Hamiltonian
HA only by a skin effect. The skin depth dc is defined by

|c(O)| ∼ e−d/dc . (5)

The skin depth is the slope in Fig. 1(b) and Fig. 2(a). The
skin depth as a function of β is shown for one-, two-, and
three-body terms in Fig. 2(b). This dependence is very well
approximated by

dc ≈ 1

a − 2 ln β
. (6)

The quantity a(O) is numerically found to be either indepen-
dent of or at most weakly dependent on β and to depend on
the operator O. The term 2 ln β is independent of the operator;
we will provide a perturbative argument below.

A. Perturbative considerations

Equations (5) and (6) can be justified by a perturbative
argument in β. We expand the HMF in a formal power series
in β:

H∗
A =

∞∑
k=0

βkH∗
A,k, (7)

with the matrix-valued coefficients [52]

H∗
A,k−1 = (−1)k−1

k∑
m=1

(−1)m+1

m Dm
B

×
∑

{n1+...+nm=k}

(
m∏

i=1

trB(Hni )

ni!

)
− [H ↔ HB], (8)

where the second term, [H ↔ HB], is obtained from the first
term by replacing H with HB.

We note that an expansion in a “unitful” quantity β is
questionable, and indeed the expansion in Eq. (7) should be in
β/J as the dominating scale in the Hamiltonian is J , provided
h j and � are not significantly larger than J . In all numerical
results, we have chosen J = 1, and thus for ease of readability
we have opted to omit factors of J .

When the operators in H are traceless, the first few coeffi-
cients are [52]

H∗
A,0 = HA, (9)

H∗
A,1 = 1

2DB
trB

(
H2

AB

)
, (10)

H∗
A,2 = 1

6DB

[
trB(HABHAHAB) − trB

(
H2

AB

)
HA

]
. (11)

From Eq. (9) one infers the known result H∗
A (β ) → HA for

β → 0 [11,13], which is illustrated in Figs. 4(a) and 4(c).
We denote the overlap of operators O with H∗

A,k by ck (O) =
tr(OH∗

A,k ), and the smallest k � 1 such that ck (O) is nonzero
by k0. We observed that k0 is lower bounded by

k0 � 2(d + 1) − n (12)

for n-body operators. In other words, the minimum order at
which c(O) can appear is O(β2(d+1)−n). Some examples are
listed in Table I.

In Figs. 3(a) and 3(b) we present |c(O)| as a function of β

for n = 1 and n = 2 operators. For small β, the dependence
is a power law with exponent 2d + 1 for one-body operators
and 2d for two-body operators O (dashed line). Similarly,
we find that c(O) is of order O(β2d−1) for three-body and
O(β2d−2) for four-body operators [52]. In addition to these
examples obeying the equality in Eq. (12), we also have cases
where k0 is larger than the lower bound: for mixed two-body
operators σα

j σα′
� with α �= α′, c(O) follows a power law in β

with exponent 2d + 1 (2d + 2 if � = LA) [52].
Before justifying the lower bound, Eq. (12), we first high-

light a consequence. We denote k0 = 2d + b, where b is an
integer, independent of d and β. Then

c(O) = e2d ln β

∞∑
k=b

ck+2dβ
k . (13)

We write the d dependence of the second factor as
| ∑∞

k=b ck+2dβ
k| ∼ e−ad , where a is a real number; we assume

that there is no faster dependence on d . (The prefactor may
have polynomial dependence.) Then the exponential depen-
dence of |c(O)| on d is given by

|c(O)| ∼ e−(a−2 ln β )d . (14)

014111-3



BURKE, NAKERST, AND HAQUE PHYSICAL REVIEW E 110, 014111 (2024)

FIG. 3. |c(O)| for (a) one-body (σ (x,z)
j ) and (b) two-body (σ x

j σ
x
k )

operators in H∗
A versus β-uniform field XXZ chain with L = 7, LA =

6, J = 1, � = 0.95, hx = hz = 0.2. Similar results are observed in an
XXZ chain with disordered fields [52]. Lines are grouped into colors
representing the distance to the boundary, the top group being closest
to the boundary. (c) Illustration of analytical argument for the factor
of 2d . Rectangles denote Pauli operators (hi) in H . The different
colored patterns correspond to x, y, z, and the enclosed black dots
indicate the support of the operator on the chain. Double rectangles
mean that the operators appear twice. The orange-shaded regions
indicate support of operators corresponding to the product of all Pauli
operators in the string (O ≡ h1, . . . , hk+1).

Extracting dc from Eq. (14) implies Eq. (6). For small β,
retaining only the first term in the sum in Eq. (13), we see
that a is independent of β for small β [52]. Numerically
[Fig. 2(b)], a appears to be β-independent at all β.

B. Justification of the lower bound Eq. (12)

Equation (12) is consistent with the lowest-order expres-
sions, Eqs. (9)–(11). By Eq. (12), two-body Pauli operators

FIG. 4. Hilbert-Schmidt norm of the difference between (a) HA

and H∗
A , (b) HE

A and H̃∗
A , for a uniform field XXZ chain with L = 7,

LA = 3, J = 1, � = 0.95, and hx = hz = 0.2. (c) |c(O)| for a two-
body term (that does not appear in HA) in H∗

A versus β, for the same
parameters as (a) and (b) but with L = 6 and LA = 4.

with distance d > 1 and one-body operators with d � 1
should have ck (O) = 0 for k = 1, 2. These operators are not
the identity. But H∗

A,1 ∝ 1A by Eq. (10), when HAB contains
no mixed Pauli operators, so c1(O) = 0. In Ref. [52] we
show how c2(O) = 0 follows from Eq. (11). For k > 2, H∗

A,k
becomes intractable to calculate. However, we can formulate
a heuristic argument for Eq. (12), based on the following:

Conjecture. We express the operator O in terms of tuples
h1, . . . , hk+1 up to a constant O ≡ h1 · · · hk+1 (k � 1), where
the hi are all in H . If all such tuples h1, . . . , hk+1 can be split
into two sets of operators H1 �= ∅ and H2, such that operators
in H1 commute with operators in H2 and operators in H1 have
no support in B, then ck (O) = 0.

The conjecture is supported by the k = 1 and k = 2 cases,
which follow from Eqs. (10) and (11) [52].

As shown visually in Fig. 3(c), the smallest k such that
there exists a string h1 . . . hk+1 ≡ O, which cannot be sep-
arated into H1,2, is given by k = 2d for nearest-neighbor
two-body operators O = σα

j σα
j+1 and k = 2d + 1 for single-

body operators O and mixed nearest-neighbor two-body
operators O = σα

j σα′
j+1 with α �= α′. These strings are given

by nearest-neighbor two-body operators appearing in H con-
necting the bath to the support of the operator O. We sketch
such strings in Fig. 3(c) for O = σ x

j σ
x
j+1, O = σ

y
j σ

x
j+1, and

O = σ x
j .

The first row of Fig. 3(c) corresponds to representations of
O = σ x

j σ
x
j+1 of the form

σ x
j σ

x
j+1 ≡ σ x

j σ
x
j+1

(
σ

y
j+1σ

y
j+2

)2
. . .

(
σ

(x/y)
LA

σ
(x/y)
LA+1

)2
(15)

or permutations thereof. Using squares of pairs requires the
least number of Pauli operators that connect to the bath while
yielding the identity operator. The square structure in Eq. (15),
reflected in the double rectangles in Fig. 3(c), provides a vi-
sual interpretation of the factor 2 in the lower bound, Eq. (12).

The strings for O = σ
y
j σ

x
j and O = σ x

j , also presented in
Fig. 3(c) are similar. They differ only by the first term on the
right-hand side in Eq. (15), namely σ

y
j σ

x
j+1 ≡ σ z

j σ
x
j σ

x
j+1 and

σ x
j ≡ σ x

j+1σ
x
j σ

x
j+1. This agrees with our result that single-body

and mixed two-body terms only appear in the HMF when
magnetic fields are present in H [52].

For nearest-neighbor two-body operators σα
j σα

j+1, any
Pauli string h1 . . . hk+1 representing the operator with k <

2d can be separated into sets H1,2, because there are not
enough operators to construct structures of the type shown in
Fig. 3(c). Similarly, for k < 2d + 1 this holds for single-body
operators and nearest-neighbor two-body operators σα

j σα′
j+1

with α �= α′.

V. LARGE β

In the limit β → ∞, e−βH/Z converges to the projec-
tor PGS = |	GS〉〈	GS| onto the ground-state subspace, where
|	GS〉 is the ground-state wave function of the entire (A + B)
system. The reduced projector

ρGS
A = trB(PGS ) = trB|	GS〉〈	GS|, (16)

i.e., the reduced density matrix of the A region in the ground-
state wave function, is a widely studied object, as it encodes
the entanglement between A and B. It is often expressed in
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terms of an “effective” Hamiltonian HE
A , the entanglement

Hamiltonian [42–45]:

e−HE
A = ρGS

A = lim
β→∞

trB(e−βH )Z−1. (17)

Comparing with Eq. (1), we obtain the following relationship
for β � 1 between the HMF H∗

A and the entanglement Hamil-
tonian HE

A :

HE
A ≈ βH∗

A + ln(Z∗). (18)

In other words, the entanglement Hamiltonian is obtained
by shifting and scaling the HMF at large β. This relation
extends the previously derived result that H∗

A ∝ 1A in the same
limit [13].

The shifted and scaled operator H̃∗
A = βH∗

A + ln(Z∗) is
compared in Fig. 4(b) to HE

A for β � 1 limit. As pre-
dicted, the distance between the two “Hamiltonians” vanishes
for β → ∞.

VI. CONCLUDING DISCUSSION

In this work, we investigated the (spatial) structure of
the HMF, a fundamental concept in understanding the im-
plications of nonweak coupling in thermodynamics. We
demonstrated and explained a skin effect in the HMF
structure: The magnitude of terms in H∗

A − HA decreases ex-
ponentially with the distance from the boundary. We also
identified the types of terms that can appear in the HMF and
at which order they can occur.

The idea of a skin effect in the deviation of the HMF from
the system Hamiltonian is related in spirit to ideas discussed
in the literature around locality of temperature [53–56]. Since
thermal states of systems described by short-range interac-
tions incorporate a notion of locality, it makes sense that the
effect on the HMF should be localized near the boundary.
To the best of our knowledge, one cannot infer the explicit
exponential behavior, Eqs. (5) and (6), from such intuition
alone.

While our explicit examples and expressions are for a spin-
1
2 chain with one-body and nearest-neighbor two-body terms
and for traceless operators, it is clear that analogous expres-
sions can be worked out for other cases (fermions, bosons,

spins > 1
2 , other local operators, other geometries), and that

the physical conclusions are generic.
The form of the skin effect and the skin depth, Eqs. (5)

and (6), do not depend on the strength of the “system-bath”
coupling HAB. We see from the perturbative construction that
the coupling strength can affect the coefficient at most poly-
nomially in d , leaving the exponential decay in Eq. (6) and
hence the length dc unaffected. We have also explicitly tested
this independence numerically [52].

Our perturbative construction, and the arguments leading
to the skin effect, do not require the subsystem B to be large.
Thus, the results are independent of “bath size” in the sense
that the form |c(O)| ∼ e−d/dc of Eq. (5), and the value of
dc, are not affected by the size LB of the B partition [52].
Changing LB does affect the prefactor in Eq. (5), i.e., the
magnitude of |c(O)|.

In addition, the chaotic vs integrable nature of
the Hamiltonian, although generally important for
thermalization/thermodynamics, plays no role, and our
results are independent of integrability.

Our results open up several research directions. (i) The
skin-effect structure is based on locality; one might ask
whether some version of this picture survives for long-ranged
Hamiltonians with power-law decay of couplings. (ii) Notions
of boundary locality have been discussed for the entanglement
Hamiltonian and its spectrum [45,57,58]. It is intriguing to
ask whether these might be related to the skin effect we
have presented for the HMF. (iii) Numerically, we found the
constant a in Eq. (6) to be relatively large (>1), leading to a
rather sharp skin effect (small dc); the deviations of H∗

A from
HA are strongly localized near the boundary. Whether this
is a generic feature for different classes of systems remains
an open question. (iv) In this work we have focused on the
exponential behavior |c(O)| ∼ e−d/dc and on the constant dc,
and have not attempted to treat the prefactor, i.e., the absolute
magnitude of |c(O)|, explicitly. For example, the way this
prefactor depends on the size of the B partition remains an
open question.
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