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In nonequilibrium statistical mechanics, the asymmetric simple exclusion process (ASEP) serves as a paradig-
matic example. We investigate the spectral characteristics of the ASEP, focusing on the spectral boundary of its
generator matrix. We examine finite ASEP chains of length L, under periodic boundary conditions (PBCs) and
open boundary conditions (OBCs). Notably, the spectral boundary exhibits L spikes for PBCs and L + 1 spikes
for OBCs. Treating the ASEP generator as an interacting non-Hermitian fermionic model, we extend the model
to have tunable interaction. In the noninteracting case, the analytically computed many-body spectrum shows a
spectral boundary with prominent spikes. For PBCs, we use the coordinate Bethe ansatz to interpolate between
the noninteracting case to the ASEP limit and show that these spikes stem from clustering of Bethe roots. The
robustness of the spikes in the spectral boundary is demonstrated by linking the ASEP generator to random
matrices with trace correlations or, equivalently, random graphs with distinct cycle structures, both displaying
similar spiked spectral boundaries.
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I. INTRODUCTION

The asymmetric simple exclusion process (ASEP) [1–11]
is a well-studied paradigmatic stochastic many-body model
that has been used to understand a wide range of nonequilib-
rium phenomena. This paper explores the spectral boundary of
the Markov matrix (the generator of ASEP), with a focus on
a characteristic spiky formation, by establishing connections
between the ASEP, non-interacting fermions, and random ma-
trices featuring trace correlations.

The ASEP model has proven instrumental in shedding light
on phenomena like nonequilibrium phase transitions [5,12–
16] and shock formation [16–21], among others. Its versatility
extends across various domains, such as protein synthesis
[22–24], intracellular transport [24–26], traffic flows [27], and
quantum dots [28]. Another major incentive for its study is
the association of the ASEP with interface dynamics and its
connection to the Kardar-Parisi-Zhang equation in 1D (or
equivalent noisy Burgers’ equation) [29–32].

The ASEP is a model where particles move stochastically
on a one-dimensional lattice, adhering to exclusion interac-
tions that restrict each site to a single particle, mirroring
volume exclusion in real systems. Particles move to adjacent
sites only if these sites are unoccupied. The process is termed
asymmetric due to the unequal probabilities for particle move-
ment to the left or right, leading to directional bias. In cases
where movement is limited to one direction, the model is
referred to as totally asymmetric simple exclusion process
(TASEP).

A probability vector P of particle configurations evolves
according to the equation

d

dt
P(t ) = HP(t ), (1)

where H is the generator matrix that governs the dynamics of
the system. This Markov (stochastic) matrix is a cornerstone
of our study as it encapsulates all the dynamical information
of the ASEP. The spectrum of H is particularly insightful: it
informs us about the various rates at which different states of
the system evolve, which is crucial for understanding how the
system approaches its steady state.

The asymmetry of the ASEP implies that the matrix H is
non-Hermitian and its eigenvalues are generally complex. The
real part of these eigenvalues relates to the relaxation times of
eigenmodes, indicating how quickly the system returns to the
steady state after a disturbance. The imaginary part, on the
other hand, determines the oscillatory behavior of the system,
setting the timescales of periodic or quasiperiodic patterns in
the system evolution.

In this paper, we focus on finite chains of length L and
either periodic boundary conditions (PBCs) or open boundary
conditions (OBCs). The finite-dimensional nature of H in
these cases leads to a discrete and bounded spectrum. Analyz-
ing this spectrum, especially establishing tight bounds on it,
provides valuable insights into the aforementioned time scales
and the overall dynamical properties of the system.

Our primary objective is to investigate and explain an in-
triguing feature of the shape of the spectral boundary, namely,

2470-0045/2024/110(1)/014110(21) 014110-1 ©2024 American Physical Society

https://orcid.org/0000-0001-7313-2758
https://orcid.org/0000-0001-9979-6253
https://orcid.org/0000-0001-6848-6068
https://ror.org/042aqky30
https://ror.org/048nfjm95
https://ror.org/05njb9z20
https://ror.org/01bf9rw71
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.014110&domain=pdf&date_stamp=2024-07-02
https://doi.org/10.1103/PhysRevE.110.014110


NAKERST, PROSEN, AND HAQUE PHYSICAL REVIEW E 110, 014110 (2024)

FIG. 1. Spectrum of the generator matrix H of TASEP (a),
(b) and the noninteracting TASEP (c), (d) on L = 11 sites. The
spectrum shows L spikes in (a), (c) for PBCs with N = 5 particles
and L + 1 spikes in (b), (d) for OBCs. Red (gray in print) solid lines
in (c), (d) denote the spectral boundary according to Eq. (24).

the prominent spikes clearly seen in Figs. 1(a) and 1(b) and
also in previous studies [33,34]. The formation of these spikes
(L spikes for PBCs and L + 1 for OBCs) present a fascinating
aspect of the spectral characteristics of the ASEP. Unraveling
the mechanisms behind the formation of these spikes in the
spectral boundary is a major focus of this paper. We elucidate
the emergence of spectral spikes through three approaches.

First, the generator matrix H is modeled as an interact-
ing, non-Hermitian, spinless fermion system with interaction
strength U = 1. For U = 0, H reduces to a noninteracting
fermion model. Although this is not a Markov matrix, it is
instructive to study the U = 0 case, as it is solvable as a
non-Hermitian free-fermion Hamiltonian. (We refer to this as
the noninteracting ASEP.) The many-body spectrum of H in
this case, expressible as sums of single-particle eigenvalues
on ellipses (circles for TASEP) in the complex plane, exhibits
L spikes (L + 1 for OBCs) at its spectral boundary.

In the second approach, we use an extension of the coor-
dinate Bethe ansatz method, traditionally used for calculating
the spectrum of U = 1 with PBCs [32], which encompasses
arbitrary interaction strengths U . For TASEP, the many-body
spectrum is constituted by sums of Bethe roots, which exhibit
an elliptical clustering in the complex plane within the range
0 � U � 1. By focusing on the cluster sizes and disregard-
ing finer Bethe root details, we demonstrate that the spectral
boundary, akin to the U = 0 case, is defined by sums of Bethe
roots from neighboring clusters, resulting in a prominent dis-
play of L spikes.

Lastly, we underscore the resilience of these spiky spectral
boundaries by relating the TASEP to a random graph ensem-
ble. In TASEP, the number of updates required to revert to
a specific configuration is a multiple of L (L + 1 for OBCs)
[33]. We examine random graphs wherein all cycle lengths are
divisible by L (L + 1 for OBCs). Our findings reveal that the
spectral boundaries of both the adjacency matrix (analogous
to U = 0 in TASEP) and the Laplacian matrices (correspond-

ing to U = 1 in TASEP) of this random graph ensemble are
characterized by the presence of L (L + 1) spikes.

The resilience of the spiky spectral boundary is note-
worthy. This feature, inherent in the noninteracting fermion
model, remarkably withstands the reintroduction of interac-
tions. Furthermore, it prevails even when all aspects of H are
disregarded, except for the cycle lengths in the many-body
graph.

The paper is organized as follows: In Sec. II, we intro-
duce the generator matrix of ASEP with PBCs and OBCs.
In Secs. III and IV, we present results of the noninteract-
ing ASEP (U = 0) with PBCs and OBCs, respectively. In
Sec. V, we investigate the interacting TASEP (0 � U � 1)
with PBCs by Bethe ansatz. In Sec. VI, we compare TASEP
to random graphs with the aforementioned cycle structure. We
conclude in Sec. VII. Appendixes A and B provide additional
information on solving the noninteracting TASEP with OBCs.
Appendix C details the derivation of Bethe equations for any
U with PBCs and Appendix D presents numerical specifics
for solving these equations to determine the full spectrum of
the generator matrix H .

II. GENERATOR MATRIX OF ASEP

In this section, we will introduce the generator matrix H
of the ASEP for PBCs and OBCs as non-Hermitian fermion
models, along with essential notation.

We consider ASEP chains of length L. The number of
particles in the chain is denoted by N and the particle density
by ρ = N/L. The probability for a particle to hop right or left
in time dt is p dt or q dt , respectively, with the convention
p + q = 1 unless specified otherwise.

Let us introduce

H = HU = H0 + UI, (2)

where H0 is a matrix with non-negative off-diagonal elements
and zero diagonal entries and I is a diagonal matrix. The term
U denotes the interaction strength. In the ASEP context, H0

represents a noninteracting spinless fermion model, and I is a
four-point (two-body) fermion interaction.

The generator of the ASEP is H = H1 with interaction
strength U = 1. Here, H1 is the generator of a stochastic
Markov process and a stochastic matrix, where the sums of
all columns of H1 equal zero. This property is ensured by the
diagonal elements of I equaling the sums of the correspond-
ing columns of H0:

I j j =
∑

k

(H0)k j . (3)

Whenever U �= 1, HU ceases to be a Markov matrix and does
not generate the ASEP or any other stochastic process.

Studying HU with U �= 1 could elucidate the U = 1 case
for two reasons. First, the analyticity of HU in U sug-
gests that its properties at U �= 1 could be extrapolated to
U = 1. Second, the diagonal matrix I exists only to en-
sure the Markov property of H1 and, according to Eq. (3),
is entirely determined by H0. Therefore, ignoring I in the
U = 0 case likely retains some features of the Markov
matrix H1.
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A. Periodic boundary conditions

For PBCs, the matrices H0 and I are given by

H0 =
L∑

j=1

(pσ+
j+1σ

−
j + qσ+

j σ−
j+1), (4)

I = 1

4

L∑
j=1

(
σ z

j σ
z
j+1 − 1

)
. (5)

The symbols σ± denote spin-raising and -lowering operators,
while σ z denotes the z-component of the spin. The spin-up
state is interpreted as a particle present, while the spin-down
state is interpreted as a particle absent.

Without loss of generality, we can assume q � p. For
p, q �= 0, the matrix H can be mapped to an XXZ spin-1/2
chain with non-Hermitian, twisted boundary conditions [9].
For p = q, the matrix H is Hermitian and for U = 1 reduces
to the Heisenberg spin chain.

The matrix H can be written in terms of fermions by a
Jordan-Wigner transformation

c(†)
j = eiπ

∑
k< j σ+

k σ−
k σ

−(+)
j , (6)

where c(†)
j are fermionic annihiliation (creation) operators.

The corresponding fermionic operator H is then given by

H0 =
L−1∑
j=1

(pc†
j+1c j + qc†

j c j+1) + (−1)N+1(pc†
1cL + qc†

Lc1),

(7)

I =
L∑

j=1

c†
j c jc

†
j+1c j+1 − N. (8)

H0 is the Hamiltoninian of non-Hermitian free spinless
fermions, while I denotes a fermionic quartic interaction. The
off-diagonal elements of H given by H0 are non-negative,
while the diagonal of the diagonal matrix I consists of non-
positive values.

The number of particles N (spin-up states) is conserved by
H for all interaction strengths U . The spectrum of H is invari-
ant under exchanging p with q, since this change corresponds
to taking the transpose of H .

B. Open boundary conditions

For OBCs, the matrix H0 is given by

H0 =
L−1∑
j=1

(pσ+
j+1σ

−
j + qσ+

j σ−
j+1) + ασ+

1 + γ σ−
1

+ βσ−
L + δσ+

L , (9)

while the diagonal I is given by

I = 1

4

L−1∑
j=1

(
σ z

j σ
z
j+1 − 1

)

+ 1

2

[(
p − q

2
− α + γ

)
σ z

1 +
(

q − p

2
− δ + β

)
σ z

L

]

− 1

2
[α + β + γ + δ]. (10)

The bulk term of H0 for OBCs is the same as for PBCs.
The terms at the edges of the chain on site 1 and L with
parameters α, β, γ , δ denote particles hopping in and out of
the chain from an infinite reservoir of particles. Similar to
PBCs and p, q �= 0, H can be mapped to an XXZ chain with
non-Hermitian, twisted boundary conditions [35].

As in the PBC case, the operator H can be written in
terms of fermions. The single spin operators at the end of the
chain on site 1 and L hinder a straightforward application of
a Jordan-Wigner transformation. Instead, we treat the infinite
reservoir as an additional site. We enlarge the chain of length
L to a ring of length L + 1 and change the terms connecting to
site L + 1 accordingly. This is formally done by application
of the well-known Kramers-Wannier duality transformation
[36] σ x

j → ∏ j
l=1 σ z

l and σ z
j → σ x

j σ
x
j+1. The details are in Ap-

pendix A. Adding a site to the chain comes with the caveat
that the multiplicity of every eigenvalue of the so-transformed
H0 is doubled.

To keep the algebra simpler, we restrict to the TASEP case
p = 1 and q = γ = δ = 0, leaving α and β as free parameters.
The following results can be straightforwardly generalized to
arbitrary p, q, γ , δ. As outlined in Appendix A, the Hamilto-
nian H0 is expressible in terms of spinless fermions c, c† as

H0 = α(cL+1 − c†
L+1)c†

1 +
L−1∑
j=1

[c jc
†
j+1]

+ (−1)LPcβcL(cL+1 + c†
L+1), (11)

where Pc denotes the parity of the fermion number

Pc = (−1)
∑L+1

j=1 c†
j c j = (−1)N , (12)

which is conserved by H0. Restricted to a fixed parity sector,
H0 is a quadratic Hamiltonian. The corresponding spectrum is
the same for each parity sector, leading to the aforementioned
doubling of the spectral multiplicity. This will be shown in
detail in Sec. IV B.

In summary, the noninteracting TASEP H0 on L sites with
OBCs can be written as a free fermion model on L + 1 sites,
with twisted PBCs and superconducting terms c(†)

L,1c(†)
L+1 con-

necting to the additional site L + 1.

C. Spectrum

All eigenvalues of H are either real or come in complex
conjugate pairs. This characteristic stems from the fact that
H can be represented as a real matrix. Specifically, for the
case where U = 1, the stochastic nature of H dictates that its
spectrum is situated in the left half of the complex plane.

Figure 1 presents the spectrum of TASEP on a lattice
with L = 11 sites. The spectral boundary shows L spikes for
PBCs (N = 5 particles) for U = 1 in (a) and U = 0 in (c)
and L + 1 spikes for OBCs and U = 1 in (b) and U = 0 in
(d). For OBCs, the parameters corresponding to the reservoirs
are chosen as α = β = 1 and γ = δ = 0. The subsequent
sections primarily aim to derive the mechanism responsible
for the spikes in the spectral boundary.

Figures 1(c) and 1(d) reveal a highly structured spectrum
for the noninteracting TASEP H0, exhibiting rotational invari-
ance at angles 2π/L for PBCs and 2π/(L + 1) for OBCs. This
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FIG. 2. Spectrum of the generator matrix H of TASEP (a) and
the noninteracting TASEP (b) on L = 40 sites with N = 2 particles
(dilute limit). The red (gray in print) solid line in (b) denotes the spec-
tral boundary according to Eq. (24). The spectral boundary appears
smooth and nonspiky in both panels.

characteristic stems from a quasisymmetry of H0, which is
investigated in detail in Secs. III and IV.

For TASEP with OBCs, the spectral boundary spikes are
always prominent, as illustrated for the noninteracting TASEP
in Sec. IV. However, this is not the case for PBCs. In Fig. 2(a),
the spectrum of the PBC TASEP (U = 1) and in (b) its non-
interacting variant (U = 0) are presented for L = 40 sites
and N = 2 particles, without any noticeable spikes in the
spectral boundary. Section III will demonstrate that, techni-
cally, the spectral boundary of the noninteracting TASEP has
L = 40 spikes, but their distinctiveness fades in the dilute limit
where ρ → 0.

III. NONINTERACTING ASEP WITH PBC

In this section, we investigate the spectrum of the non-
interacting ASEP H0 for PBCs given by Eqs. (4) and (7),
respectively. Section III A is devoted to the calculation of the
single-body eigenvalues of H0. In Sec. III B, we show the
rotational invariance of the many-body spectrum of TASEP
and in Sec. III C we combine the results from the preceding
subsections and show how the spiky spectral boundary
emerges. We quantify the prominence of the spikes in
Sec. III D and comment on whether they survive in the limit
of large L.

A. Single-body spectrum

Let us focus on the totally asymmetric case p = 1 and
q = 0 first. Considering the single-body sector of H0 as given
in Eq. (7), we see that the single-body spectrum λ is given by
roots of the polynomial:

λL + (−1)N+1. (13)

The roots are given by λ = ω j , where ω = eiπ/L and 0 � j <

2L runs over all even (odd) integers when N is odd (even).
Thus, the single-body spectrum lies on the unit circle. In
Fig. 3(a), the single-body spectrum for p = 1 and q = 0 and
L = 11 and odd N is shown together with the unit circle.

For arbitrary values of p and q, the single-body spectrum
is represented as

λ = pω j + qω− j, (14)

FIG. 3. Spectrum of the noninteracting TASEP H0 on L = 11
sites with PBCs. Single-body eigenvalues with p = 1 and q = 0 in
(a) and p = 0.7 and q = 0.3 in (b). In (c), (part of) many-body
spectrum with N = 5 particles highlighting the tips of the spikes
(red, gray in print) and other boundary eigenvalues (blue, black in
print). All boundary eigenvalues are located on circles of radius 1,
with crosses marking the midpoints.

with j defined as previously. This spectrum lies on an ellipse
with foci at ±2

√
pq and semimajor axis p + q and semiminor

axis p − q:

{(p + q) cos(t ) + i(p − q) sin(t ) : 0 � t � 2π}. (15)

Figure 3(b) illustrates the single-body spectrum for p = 0.7
and q = 0.3, alongside the ellipse defined by Eq. (15).

The structure of the single-body spectrum for any p, q
suggests a straightforward relation with the totally asymmetric
scenario q = 0. By modifying the imaginary component while
maintaining the real part constant,

z → Re z + i
p + q

p − q
Im z, (16)

we can convert the single-body eigenvalues for general p, q
values to those corresponding to the q = 0 case. This trans-
forms the ellipse into a circle of radius p + q. Without loss
of generality, we restrict ourselves to p = 1 and q = 0 for the
remainder of this section.

B. Rotational invariance

With p = 1 and q = 0, the single-body spectrum remains
unchanged under complex plane rotations of 2π/L. This ro-
tational invariance also applies to the many-body spectrum,
which comprises sums of single-body eigenvalues.

Furthermore, this symmetry is evident in H0 when trans-
forming spin and fermionic operators. Transforming c j →
e−i2π j/Lc j = c̃ j and c†

j → ei2π j/Lc†
j = c̃†

j , or in terms of spin
operators σ±

j → e±i2π j/Lσ±
j = σ̃±

j , results in ei2π/LH0 = H̃0.
Here, H̃0 is constructed like H0, but using the modified oper-
ators c̃, c̃† (σ̃±). Since these altered operators maintain their
respective (anti)commutation relations, the spectra of H0 and
H̃0 are identical. Therefore, the spectrum of H0 is invariant
under 2π/L rotations.
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C. Spectral boundary

The structure of the many-body spectrum as observed in
Fig. 1 is now a consequence of the relation of single-body to
many-body eigenvalues and the rotational symmetry.

For ease of notation, we define λ j = ω2 j when N is odd,
and λ j = ω2 j+1 for even N . The many-body eigenvalues are
obtained by adding N of these L single-body eigenvalues.
More precisely, the many-body eigenvalues E correspond
uniquely to configurations s = (s1, . . . , sL ) ∈ {0, 1}L, where∑

j s j = N , and are given by

E =
L∑

j=1

s jλ j . (17)

The many-body eigenvalues Et which appear at the spike tips
have the highest absolute values and are derived from con-
figurations s with contiguous nonzero s j entries. Specifically,
each of the L tips Et ( j0) is linked to an index 1 � j0 � L and
a configuration s = st ( j0) with

s j =
{

1 j0 � j � j0 + N − 1

0 otherwise.
(18)

Here, j ≡ j − L is applied for j > L. The eigenvalues Et ( j0)
are calculated as

Et ( j0) =
j0+N−1∑

j= j0

λ j . (19)

Configurations s that lead to spike tips are termed domain-wall
configurations. The many-body eigenvalues Et are depicted as
red circles (light colored in print) in Fig. 3(c).

Boundary eigenvalues in the many-body spectrum arise
from interpolating between configurations of adjacent spike
tips. In these configurations, the domain walls differ by a
shift of one site. The interpolation process between these two
domain walls involves moving a single particle (or executing
a single spin flip). As a result, the configurations formed
contain a maximum of two domain walls, each separated by
one site. Specifically, boundary configurations s = sb( j0, l0)
are associated with indices 1 � j0 � L and j0 � l0 � j0 + N ,
defined as

s j =

⎧⎪⎨
⎪⎩

1 j0 � j � j0 + N and j �= l0
0 j = l0
0 otherwise.

(20)

Again, j ≡ j − L is used for j > L. The corresponding
boundary eigenvalues Eb( j0, l0) are computed by

Eb( j0, l ) =
j0+N∑

j= j0; j �=l

λ j . (21)

When l0 = j0 or l0 = j0 + N (indicating a single do-
main wall), the boundary eigenvalue matches a spike tip,
Eb( j0, j0) = Et ( j0 + 1) or Eb( j0, j0 + N ) = Et ( j0), respec-
tively. The boundary eigenvalues Eb( j0, l ) for j0 < l < j0 +
N are those many-body eigenvalues located between the spike
tips Et ( j0) and Et ( j0 + 1), depicted as blue circles in Fig. 3(c).

Equation (21) can be reformulated as

Eb( j0, l ) =
j0+N∑
j= j0

λ j − λl . (22)

Given |λl | = 1 and the independence of the sum from l , all
boundary eigenvalues are on L circles of radius 1. For N �
L/2, the circle midpoints are the many-body spectrum tips
E (N+1)

t ( j0) with N + 1 particles. The tips E (N )
t intersect two

adjacent circles. This is illustrated in Fig. 3(c) with circles as
black lines and midpoints as gray crosses.

According to Eq. (19), all tips reside on a circle with radius
R, defined as

R =
∣∣∣∣1 − ei2πN/L

1 − ei2π/L

∣∣∣∣ = sin(πN/L)

sin(π/L)
. (23)

This radius, combined with the circular pattern of the bound-
ary eigenvalues, enables us to establish a continuous boundary
for the many-body spectrum. It is formed by the intersection
of all circles of radius 1 with the disk of radius R from
Eq. (23). The boundary is parameterized by

zB(t ) = e−i f (t )(γ1 + γ2eig(kt ) ), (24)

with γ1 = sin(πρ)
sin(π/L) and γ2 = 1, with piecewise constant f ,

f (t ) = π

L

(
2

⌊
Lt

2π

⌋
− 1

)
, (25)

and g is piecewise the identity:

g(t ) = π (1 − ρ) + ρ(t mod 2π ). (26)

The continuous boundary zB(t ) is illustrated as a red (gray in
print) curve in Fig. 1(c) for L = 11 and N = 5 and in Fig. 2(b)
for L = 40 and N = 2. As expected, all boundary eigenvalues
reside on the continuous boundary parametrized by zB(t ).

Equation (24) is related to the spectral boundary of ran-
dom matrices with higher-order cyclic correlations between
L-tuples of matrix elements, akin to random graphs with a
dominant cycle structure [37]. Their spectral boundary forms
a hypotrochoidic curve, which is recovered from Eq. (24) by
letting f (t ) = g(t ) = t . This relation hints at the connection
between the spectral boundary of the noninteracting TASEP
and random matrices; we explore this connection in Sec. VI.

A continuous spectral boundary has been derived for the
TASEP (U = 1) as well [33]. It can be parametrized in
terms of elementary functions and solutions of a differential
equation.

D. Quantification of spikes

This subsection aims to measure the sharpness of the
spectral boundary in the noninteracting TASEP, particularly
focusing on whether spikes persist in large system sizes and,
if so, how. For simplicity, we consider particle densities 0 �
ρ � 1/2. As the ASEP spectrum is invariant under changing
ρ → 1 − ρ, this comes with no loss of generality.

To assess the spikiness of the spectral boundary, we exam-
ine the ratio between two distances: dt , the distance between
spike tips, and db, the maximum extension of the spectral
boundary beyond a circle of radius R. Recall, this circle of
radius R represents the smallest enclosing disk for the TASEP
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spectrum. db measures how far radius 1 circles, carrying the
boundary eigenvalues, reach into the enclosing circle. A larger
db relative to dt indicates that these radius 1 circles extend
more into the enclosing spectrum. Therefore, the ratio 2db/dt

quantifies the spikiness of the boundary. A value close to 1
suggests a spiky boundary, while a significantly smaller ratio
implies a less spiky boundary. This factor of 2 arises because
dt pertains to the diameter of the boundary circles, whereas db

is compared to their radius.
Following some simple trigonometry, one finds that the

distances dt and db are given by

dt = 2 sin(πρ) (27)

and

db = 1 − cos (πρ + π/(2L))
cos (π/(2L))

. (28)

The fraction 2db/dt then simplifies to

2db

dt
= tan(πρ/2) + tan (π/(2L)). (29)

Equation (29) shows a monotonic increase with ρ, indicating
that the spectral boundary becomes more pronouncedly spiky
at higher ρ values. Due to the invariance of the spectrum
under the transformation ρ → 1 − ρ, the boundary reaches
its maximum spikiness at ρ = 1/2.

The analytical findings are confirmed by panels (c) and
(b) in Figs. 1 and 2, respectively. In Fig. 1(c), the many-
body spectrum of H0 is markedly spiky for ρ = 5/11 ≈ 0.45,
whereas in Fig. 2(b), the spectral boundary is nearly circular,
aligning with the low ρ value of 2/40=0.05.

In examining the large L limit, we will explore two scenar-
ios: the thermodynamic limit, where both N and L increase to
infinity while maintaining a fixed ρ, and the few-particle (di-
lute) limit, where N remains constant and only L approaches
infinity.

1. Thermodynamic limit

In the thermodynamic limit, the distance dt remains con-
stant, whereas db approaches 1 − cos(π/ρ). Consequently,
the ratio 2db/dt tends towards tan(πρ/2). This implies that
for any nonzero ρ, the spiky structure of the spectral bound-
ary is preserved in the thermodynamic limit, becoming more
pronounced with increasing ρ.

Figure 1(c) presents the many-body spectrum of the non-
interacting TASEP for L = 11 and N = 5, with Fig. 3(c)
offering a closer view of the spectral boundary. Here, ρ ≈
0.45 and 2db/dt ≈ 1.01 indicate pronounced spikes of the
spectral boundary, as evident.

Regarding the length scales at which these spikes are ob-
servable, consider the following: The radius R of the spectrum
scales as O(L), necessitating a rescaling of the spectrum by
1/L to ensure a well-defined spectral density in the thermody-
namic limit. At an infinite L, this rescaled spectrum densely
fills the unit circle. For finite L, the tips of the spikes are
spaced at a distance of dt = O(1/L) and the distance db of
the spectral boundary from the unit circle is also O(1/L).

Therefore, at the length scale of 1/L, the spiky nature of the
spectral boundary is distinctly visible.

2. Dilute limit (large L, constant N)

In the scenario where N is fixed and L increases, both
distances dt and db decrease, scaling as O(1/L) and O(1/L2),
respectively. Consequently, the ratio 2db/dt tends towards 0,
as indicated by Eq. (29). Therefore, in this limit, the spiky
structure of the spectral boundary does not persist.

Figure 2 shows the many-body spectrum of the TASEP for
L = 40 and N = 2, representative of the dilute limit. We show
both a TASEP case (U = 1) and a noninteracting TASEP case
(U = 0). With a 2db/dt ratio of ≈0.01, it reveals a nonspiky
spectral boundary, barely distinguishable from a circle, as
shown by the red curve (gray in print) in Fig. 2(b).

IV. NONINTERACTING TASEP WITH OBC

In this section, we will present the analytical derivation
of the many-body spectrum of the noninteracting TASEP H0

with OBCs, specifically for p = 1 and q = γ = δ = 0. Gen-
eralizations to arbitrary p, q, γ , δ are straightforward.

In Sec. IV A, we establish the rotational invariance of the
spectrum of H0. In Sec. IV B, we derive its single-particle
spectrum and demonstrate its relation to the many-body eigen-
values. Section IV C demonstrates that the spectral boundary
of H0, similar to the PBC case, is defined by the intersection
of circles with a disk, featuring L + 1 spikes. In the limit of
large L, this boundary is akin to the PBC case with density
ρ = 1/2, highlighted in Sec. IV D.

A. Rotational symmetry

The spectrum of the noninteracting TASEP H0 is invariant
under rotations of angle 2π

L+1 . Similar to the PBC case, con-

sider the change of operators c†
j → ei 2π

L+1 jc†
j = c̃†

j and c j →
e−i 2π

L+1 jc j = c̃ j or, equivalently, σ±
j → e±i 2π

L+1 jσ±
j = σ̃±. This

change implies that ei 2π
L+1 H0 = H̃0, where H̃0 is H0 with c, c†

(σ ) replaced by the tilde operators. As the tilde operators
fulfill the canonical (anti)commutation relations of fermion
operators (Pauli matrices), the spectrum of the noninteracting
TASEP is invariant under rotations of angle 2π

L+1 .

B. Single- and many-body spectrum

Before we diagonalize H0, let us specify the parity sector
as s = (−1)LPc. To simplify the following arguments, we
will abuse notation and not distinguish between H0 and H0

restricted to a subspace of constant parity. At the end of this
subsection, we will take the difference into account properly.

Let us collect the Dirac fermion operators c, c† into a (2L +
2)-dimensional vector c = (c1, . . . , cL+1, c†

1, . . . , c†
L+1)t . We

express H0 given by Eq. (11) as

H0 = 1

2
c†

(
A B
C −At

)
c = 1

2
c†Mcc, (30)
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where the (L + 1) × (L + 1)-matrices A, B, and C are
given by

Ai j = −δi, j+1mod(L+1) + (1 − βs)δi,L+1δ j,L

+ (1 − α)δi,1δ j,L+1, (31)

Bi j = α(δi,1δ j,L+1 − δi,L+1δ j,1), (32)

Ci j = βs(δi,Lδ j,L+1 − δi,L+1δ j,L ), (33)

and δ denotes the Kronecker-delta symbol.
The matrix A is, up to deformations in the (1, L + 1)th and

(L + 1, L)th entries, a circulant matrix with only one nonzero
off-diagonal. The matrices B and C only contain two nonzero
entries. Thus, the solutions λ and u to the eigenvalue problem

Mcu = λu (34)

are closely related to the eigendecomposition of circulant
matrices, which in turn are given by Fourier transforms.
As shown in detail in Appendix B, the eigenvalues λ are
solutions of

λ2L+2 = 4(αβ )2(−1)L (35)

and are independent of the parity sector s. Since the polyno-
mial in Eq. (35) is of even degree, its roots appear in pairs
of ±λ.

The Hamiltonian H0 in Eq. (11) is non-Hermitian, prevent-
ing the direct use of the (Hermitian) Bogoliubov-de-Gennes
formalism for linking the eigenvalues of Mc to the many-body
spectrum of H0. Hence, we will pursue an alternative method.
We proceed as in Ref. [38] and express c, c† in terms of
Majorana fermions:

φ j,1 = 1√
2

(c j + c†
j ), φ j,2 = 1

i
√

2
(c j − c†

j ). (36)

After collecting the Majorana fermions φ j,l into a col-
umn vector φ = (φ1,1, φ1,2, . . . , φL+1,1, φL+1,2)t , H0 can be
written as

H0 = 1
2φt Mφφ, (37)

where the matrix Mφ is a complex and antisymmetric
(2L + 2) × (2L + 2) matrix. The transformation of Majorana
fermions φ to Dirac fermions c via Eqs. (36) is unitary, mak-
ing Mφ and Mc unitarily equivalent and hence sharing the
same eigenvalues.

As Mφ is antisymmetric, it can be factorized [38] as

Mφ = 1
2V �JV t , (38)

where

V tV = J = IdL+1 ⊗
(

0 1
1 0

)
. (39)

IdL+1 denotes the (L + 1) × (L + 1) identity matrix and � is
a diagonal matrix containing the eigenvalues of Mφ (Mc). The
antisymmetry of Mφ implies that its eigenvalues come in pairs
±λ, which is consistent with the solutions of Eq. (35). The
diagonal of � is ordered as λ1,−λ1, . . . λL+1,−λL+1. We fix
the choice between λ j and −λ j by requiring Re λ j � 0.

Let us define another type of Dirac fermions b, b′ as

(b1, b′
1, . . . , bL+1, b′

L+1)t = (V tφ). (40)

These fulfill the usual anticommutation relations of Dirac
fermions [38], but b′ is, in general, not the Hermitian adjoint
of b. Nevertheless, the Hamiltonian H0 becomes diagonal in
terms of b, b′:

H0 =
L+1∑
j=1

λ jb
′
jb j − 1

2

L+1∑
j=1

λ j . (41)

The eigenstates of H0 are given by creation operators b′
j acting

on the vacuum |0〉b, which are 2L+1 in total. But not all eigen-
states correspond to an eigenvalue of H0 given by Eq. (11).
We have to take into account that the Dirac fermions b, b′ are
only defined on fixed parity subspaces.

We numerically find that the parity operator Pb of the b, b′
fermions obeys

Pb = −sPc, (42)

where Pc denotes the parity operator of the c fermions. Recall
that we let s = (−1)LPc at the beginning of this subsection.
Thus, the admissible b′-fermion states must have b-parity
Pb = −(−1)L = (−1)L+1. Especially, the parity of the admis-
sible b-fermion states does not depend on s. Thus, both parity
sectors give rise to the same many-body spectrum of H0 in
Eq. (41), as required.

In summary, the many-body spectrum of the noninteracting
TASEP, subject to a global shift in the complex plane, is
represented by the sums of the L + 1 roots from Eq. (35)
with positive real parts. These are scaled roots of ±1 with
magnitude proportional to (αβ )1/(L+1). Depending on whether
L is odd or even, an even or odd number of summands,
respectively, are included in the sums.

C. Spectral boundary

The emergence of the many-body spectrum of the non-
interacting TASEP with OBCs follows a similar principle
than for PBCs discussed in Sec. III: the many-body spectrum
consists of sums of (scaled) roots of ±1. In the following, we
describe how the spiky spectral boundary emerges for OBCs.
Especially, we will demonstrate that, akin to the PBC case, the
spectral boundary resides on L + 1 circles, each with a radius
of (2αβ )1/(L+1), and provide a comparable parametrization for
this boundary.

In the following, we focus exclusively on the spectral
boundary associated with the most negative real parts. This
is illustrated in Figs. 4(a) and 4(b), where the eigenvalues of
the relevant sectors are marked with blue and red circles. The
rotational symmetry of the spectrum means that the structure
of the boundary is a repetitive pattern reflecting the shape
of sectors with the smallest real parts. Hence, restriction to
sectors with the most negative real part eigenvalues comes
with no loss of generality.

Let us first consider even L. Recall that the many-body
spectrum is given by sums of an odd number of positive real
part roots of the polynomial in Eq. (35). Let us denote the
L + 1 roots with non-negative real part by λ1, . . . , λL+1. Then
the L + 1 many-body eigenvalues with the smallest real parts
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FIG. 4. Many-body spectrum of the noninteracting TASEP with
OBCs on (a) L = 6 and (b) L = 7 sites. Similar to PBCs in Fig. 3(c),
all boundary eigenvalues lie on circles, with midpoints denoted by
crosses.

are eigenvalues lying on the spectral boundary and given by

λ j − 1

2

L+1∑
l=1

λl . (43)

If we label λl by increasing angle with a branch cut on the
negative imaginary axis, then the tips of the spectrum are
given by the indices j = 1 and j = L + 1.

In Fig. 4(a), we show the spectrum of the noninteracting
TASEP with OBCs on L = 6 sites. The spectrum shows L +
1 = 7 spikes. The boundary and tips according to Eq. (43)
are shown as blue and red markers, respectively. The markers
lie on a circle with midpoint − 1

2

∑L+1
l=1 λl and radius |λ j | =

(2αβ )1/(L+1).
Let us now consider the slightly more complicated case of

odd L. In Fig. 4(b), we show the many-body spectrum on L =
7 sites. The tip of the spectral edge with the smallest real part
is given by an empty sum of λ′

ls and thus is − 1
2

∑L+1
l=1 λl . The

boundary eigenvalues are given by the following (shifted) sum
of two single-particle eigenvalues:

λ j + λ1,L+1 − 1

2

L+1∑
l=1

λl , (44)

where 2 � j � L and λ1 corresponds to the lower spectral
boundary in Fig. 4(b) while λL+1 corresponds to the upper
part. The midpoints of the circles are given by λ1,L+1 −
1
2

∑L+1
l=1 λl and the radius again by |λ j | = (2αβ )1/(L+1).

Similar to the PBC case, we can establish a continu-
ous boundary for the many-body spectrum, parametrized by
Eq. (24). In the OBC case, the constants γ1,2 are given by

γ1 = (2αβ )1/(L+1) 1

2 sin (π/(2L + 2))
, (45)

γ2 = (2αβ )1/(L+1), (46)

while the piecewise constant f and the piecewise identify
function g are given by

f (t ) = π

L

(
2

⌊
Lt

2π

⌋
− 1

)
, (47)

g(t ) = π
L + 2

2L + 2
+ L

2L + 2
(t mod 2π ). (48)

The continuous boundary zB(t ) with the above parameters is
illustrated in Fig. 1(d) as a red (gray in print) curve for L = 11.

D. Spikes in the large L limit

The parametrization of the spectral boundary for OBCs
shows a clear link to the spectral boundary for PBCs. Specifi-
cally, in the large L limit with constant α, β, the OBC spectral
boundary aligns with the PBC case at ρ = 1/2. This relation
is immediately evident for γ2, f , and g. Further, a series
expansion of γ1 for large L reveals that its leading term,
γ1 = L/π + O(1), is identical in both cases, with differences
emerging only at O(1).

Consequently, in the large L limit, the spiky spectral
boundary in the OBC case remains pronounced. Rescaling
the spectrum by 1/L, the spectral density approaches filling
the unit disk as L → ∞. For finite L, the tips are spaced by
O(1/L), and the maximum deviation of the boundary from
the unit circle is also O(1/L).

V. PBC TASEP BY BETHE ANSATZ

In Sec. III, we showed that in the noninteracting TASEP
(U = 0) with PBCs, the spiky boundary of the many-body
spectrum emerges essentially as sums of evenly spaced
single-body eigenvalues λ1, . . . , λL. This section expands that
concept to interaction strengths 0 < U . Employing the coor-
dinate Bethe ansatz, we generalize the single-body framework
to Bethe roots, which tend to cluster close to λ1, . . . , λL. This
clustering, combined with TASEP many-body eigenvalues be-
ing sums of Bethe roots, results in a spiky spectral boundary
for any interaction strength 0 � U � 1.

This section focuses on ρ ≈ 1/2, where the most promi-
nent spectral boundary spikes in the noninteracting ASEP
were observed. In the low-density limit (ρ approaching zero),
we anticipate a spectral boundary for the usual ASEP similar
to the noninteracting case, characterized by a smooth, circu-
lar boundary without spikes. Figure 2 partly supports this,
showing similar many-body spectra for TASEP with U = 1
(a) and U = 0 (b), both featuring smooth, nonspiky spectral
boundaries.

In Sec. V A, we express the eigenvalues of H for arbitrary
U in terms of the coordinate Bethe ansatz, with derivation
details and numerical solution methods presented in Ap-
pendixes C and D. In Sec. V B, we demonstrate the clustering
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of solutions to the Bethe equations and in Sec. V C, we estab-
lish how this clustering results in a spiky spectral boundary.

A. Coordinate Bethe ansatz

The coordinate Bethe ansatz has been used extensively for
ASEP [6,9–11,32–34,39–60] and for various variants and ex-
tensions of ASEP [9,58,61–91]. The Bethe ansatz eigenvalues
E for arbitrary U are given by

E =
N∑

j=1

(
qz j + pz−1

j − U
)
, (49)

where z j are complex numbers, the so-called Bethe roots,
which in turn are solutions of the following recurrent
relations:

zL
j =

N∏
k=1;k �= j

(
− p + qz jzk − Uzj

p + qz jzk − Uzk

)
. (50)

The solutions of Eq. (50) are N-tuples (z1, . . . , zN ) and each
N-tuple gives rise to an eigenvalue E of the TASEP H via
Eq. (49).

The Bethe equations for general U have been derived for
TASEP in Ref. [41] and for ASEP in Ref. [92]; although
presented differently from Eqs. (49) and (50). In Appendix C,
we present a derivation of the Bethe equations in terms of U
closely following [32].

Numerical data indicates that in small systems, each eigen-
value is a sum of Bethe roots, although a formal proof of the
completeness of the Bethe ansatz is lacking [93–95]. In our
finite ASEP system investigations, all eigenvalues conformed
to the Bethe ansatz.

For q = 1 and p = 0, the eigenvalue equation simplifies to

E = 1

2

N∑
j=1

(Zj − U ) (51)

and the Bethe equations transform into

(U + Zj )
L−N (U − Zj )

N = −2L
N∏

k=1

Zk − U

Zk + U
, (52)

with

Zk = 2zk − U (53)

representing scaled, shifted Bethe roots. We refer to either
the zk or Zk as the Bethe roots, depending on the context.
In Eq. (52), the main simplification from the general p, q
case is the independence of the right-hand side from j, which
makes the solutions Zj roots of the polynomial P(Z ) = (U +
Z )L−N (U − Z )N − Y , with Y given by the right-hand side of
Eq. (52). This not only simplifies numerical computation of
the Bethe roots Zj , but also ensures their continuity in U [96].
Consequently, we will focus on the specific case of q = 1 and
p = 0 for the rest of this section.

Appendix D details the numerical solution process for the
Bethe Eqs. (52) and the systematic retrieval of all Bethe roots.

Equations (49) and (51) establish that many-body eigen-
values are sums of Bethe roots, up to a global shift. To

FIG. 5. All N × (L
N

)
Bethe roots Zj of the TASEP. (a)–(d) L = 8,

N = 4, for different values of U . (e) L = 14, N = 7, U = 1.

demonstrate a spiky spectral boundary, we will show numeri-
cally a sufficient clustering of Bethe roots, which is the focus
of the rest of this section.

B. Clustering of the Bethe roots

To examine the spectral boundary in terms of the Bethe
roots, we will consider in the complex plane the Bethe roots
(z j or Zj) corresponding to each of the

(L
N

)
eigenstates. There

are thus N × (L
N

)
Bethe roots in total, for any value of U . Such

plots are shown in Fig. 5.
For U = 0, the Bethe roots z j satisfy the equation zL

j =
(Zj/2)L = (−1)N+1 and agree with the single-body eigenval-
ues of H0 as stated in Eq. (14). Therefore, the many-body
spectrum derived via the Bethe ansatz for U = 0 aligns with
that of the noninteracting ASEP model discussed in Sec. III, as
expected. An illustrative example of the Bethe roots Zj = 2z j

for U = 0 is provided in Fig. 5(a) for L = 8 and N = 4.
Here, each solution of the Bethe equations contributes N = 4
roots, which together describe one of the

(8
4

)
eigenstates. We
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FIG. 6. (a) The many-body spectrum of TASEP with L = 14 and
N = 7 (multiplied by 2 and shifted by N). (b) Probability density
function of the many-body spectrum of the random Bethe roots Z for
L = 14 and N = 7 capped at 10−3. Red (gray in print) dots are the
means of the complex Gaussians.

plot all the 4 × (8
4

)
roots together in a single plot. Since for

U = 0 every solution to the Bethe equations is a subset of
the 8 single-body eigenvalues of H0, the union of all solutions
is highly degenerate and only 8 unique markers show up in
Fig. 5(a).

For U > 0, the degeneracy of the U = 0 case is lifted
and the 4 × (8

4

)
Bethe roots Zj become distinct, as observed

in Figs. 5(b)–5(d) for U = 0.33, 0.66, and U = 1, respec-
tively. The continuity of Bethe roots z j in U suggests that for
small U , these roots should be proximate to the Lth roots of
(−1)N+1. Numerically, this is confirmed as the Bethe roots z j

tend to cluster around the Lth roots of (−1)N+1 for small U .
As depicted in Figs. 5(b) and 5(c) for U = 0.33 and U = 0.66,
respectively, the Z ′

js distinctly form L = 8 clusters around the
Bethe roots for U = 0. This clustering is even discernible for
U = 1, as shown in Fig. 5(d), where the L = 8 clusters remain
identifiable.

For larger L, the Bethe root clusters overlap at U = 1,
evident from Fig. 5(e) for L = 14 and N = 7. However, the
statistical width of these clusters diminishes with larger L.
This is demonstrated in Fig. 7, where the average cluster
width decreases as L−1/2 in the thermodynamic limit with
ρ = N/L = 1/2 and N, L → ∞.

We define the locations and widths of these clusters by
fitting a Gaussian mixture model of L independent Gaussians
N with complex means to the Bethe roots. The Bethe roots
distribution is approximated as 1

L

∑L
j=1 f j , with f j represent-

ing Gaussian densities. We label the Gaussians of the optimal

FIG. 7. The width σ of the complex Gaussians fitted to the clus-
ters of the Bethe roots for U = 1 at half-filling N = L/2. The solid
line denotes the average 〈σ j〉 j = 1

L

∑
j σ j of the cluster widths and

the dotted line guides the eye to L−1/2. The inset shows the absolute
value of the centers of the complex Gaussians |μ|. Black solid line
indicates the average.

fit as N j , each characterized by its mean μ j and standard
deviation σ j .

C. Structure of the many-body spectrum

In the following, we will show that by considering only
the centers and widths of Bethe root clusters, and not their
specific structure, we can approximate a many-body spectrum
that mirrors key characteristics of the TASEP many-body
spectrum, particularly its spiky boundary.

Recall that for U = 0, each many-body eigenvalue E is a
sum of N out of L single-body eigenvalues. Specifically, E is
given by

E =
L∑

j=1

s jλ j =
∑
s j �=0

λ j, (54)

where s ∈ {0, 1}L is a configuration with
∑

j s j = N and λ j

are the single-particle eigenvalues determined in Sec. III C. By
Eq. (51), every many-body eigenvalue of the TASEP (U = 1)
corresponds to a sum of N Bethe roots (Z1, . . . , ZN ) and by the
continuation from U = 1 to U = 0 each Bethe root Zj belongs
to one of the L clusters. Instead of summing solutions of the
Bethe Eq. (52), we employ a statistical ansatz and consider
random many-body eigenvalues of the form

Erand =
L∑

j=1

s jN j = Ns, (55)

where Ns denotes a Gaussian with mean
∑L

j=1 s jμ j and vari-

ance
∑L

j=1 s jσ
2
j . We refer to Ns as many-body Gaussians

and denote their densities by fs. The full random many-body
spectrum is then given by

1

Z
∑

s∈{0,1}L

s1+···+sL=N

fs, (56)
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where Z = (L
N

)
is a normalization constant. Keep in mind that

the Gaussians Ns for different configurations s are indepen-
dent. The many-body spectrum of the TASEP is a specific
sample of the distribution in Eq. (56). For U = 0, the random
spectrum becomes deterministic and agrees with the noninter-
acting many-body spectrum presented in Sec. III.

In Fig. 6(b), we present the probability density from
Eq. (56) for L = 14, N = 7, and U = 1, with the density
capped at 10−3 for clarity. The red markers indicate the means∑L

j=1 s jμ j of the many-body Gaussians Ns. Both the discrete
means and the continuous density exhibit pronounced spikes
at the boundary. When these means are compared to the
TASEP many-body spectrum shown in Fig. 6(a), even finer
details of the spectrum are discernible in the structure of the
means.

The boundary of the random many-body spectrum is
mainly determined by Gaussians Ns, associated with domain
wall configurations of one or two domain walls, separated by
at most one empty site, due to the exponential decay of the
Gaussian probability density function. These configurations
are identical to those defining the spectral boundary in the
non-interacting case.

The random Bethe spectrum and the TASEP spectrum
share a remarkably similar overall shape. However, differ-
ences do exist, e.g., the boundary of the random Bethe
spectrum is not skewed leftward in the complex plane. This
is attributed to the additional structure in the Bethe root clus-
ters seen in Fig. 5, not represented by rotationally invariant
Gaussians.

D. Thermodynamic limit

Similar to the noninteracting case with U = 0, we demon-
strate that the spiky boundary persists in the thermodynamic
limit as L and N increase while maintaining a fixed density
ρ = N/L.

Let us first focus on the centers
∑L

j=1 s jμ j of the many-
body Gaussians Ns, depicted as red dots in Fig. 6. According
to the inset of Fig. 7, the absolute values of |μ j | appear to
be independent of L. This independence suggests that the
noninteracting case scenario also applies to the many-body
Gaussian centers. For boundary configurations s, these cen-
ters, being sums of N = ρL nearby μ j , scale with L. Given
that both the tip distance (dt from Sec. III D) and boundary
depth (db from Sec. III D) are proportional to 1, the spiky
structure of the boundary Gaussian centers is maintained in
the thermodynamic limit.

However, this does not automatically mean that the spiky
spectral boundary of the random spectrum, as defined in
Eq. (56), persists in the thermodynamic limit. For this to hold
true, the widths of the Gaussians N j in the mixture model
must decrease sufficiently fast.

Figure 7 displays the widths σ j of N j for the TASEP case
(U = 1) at half-filling (N = L/2), with L ranging from 8 to
22. The cluster widths σ j vary, being larger for clusters with
smaller | Re Z| and smaller for those with larger | Re Z|, as
also observed in Fig. 5(e). Despite this variation, the widths σ j

are centered around their average 〈σ j〉 j = 1
L

∑L
j=1 σ j , which

decreases approximately as ∝ L−1/2, as shown by the dashed

line in Fig. 7. Consequently, the variance σs = ∑L
j=1 s jσ

2
j

of the Gaussians Ns scales as ∝ 1. This indicates that the
standard deviation of the boundary Gaussians Ns remains on
the order of ∝ 1 even as L increases, aligning with the scale
of both the tip distance and spike depths. Therefore, the spiky
structure of the statistical many-body spectrum for U = 1 is
preserved in the thermodynamic limit, as in the U = 0 case
presented in Sec. III.

VI. THE RANDOM MATRIX PICTURE

In the previous sections, we showed that the spikes of
the spectral boundary of the TASEP are a consequence of
the many-body spectrum being generated by summing single-
particle-like clusters.

This section demonstrates that the spiky spectral boundary
is a prevalent characteristic in a broad range of systems, ex-
tending beyond free fermions or those solvable by the Bethe
ansatz. Specifically, this feature is typical in systems where the
many-body graph exhibits a particular cycle structure, with
cycle lengths being integer multiples of the spike count.

A. From TASEP to graphs

The matrix elements of the generator of the noninteracting
TASEP H0 are either zero or one. Thus, the generator matrix
is naturally interpreted as the adjacency matrix of a directed
graph. This graph, which we will call the many-body graph
of TASEP, has vertices representing particle configurations
in the chain and edges indicating permissible transitions. For
TASEP with U = 1, its generator matrix H is the negative
combinatorial Laplacian of this graph.

B. Cycles of TASEP

The permissible transitions between particle configurations
impose constraints on the structure of the many-body graph.
Our focus is on the nature of cycles in the many-body graph,
which are closed walks with only the start and end vertices
being the same.

The cycle lengths in the TASEP many-body graph are
divisible by L for PBCs and by L + 1 for OBCs [33]. This
is evident in cycles among configurations, which only contain
a single particle. These cycles consist of L particle movements
(L + 1 for OBCs) such that the particle arrives at its original
position.

The number of closed walks with length k is related to
entries of the kth power of the adjacency matrix A (A = H0

in the case of ASEP). The element (Ak )i j denotes the num-
ber of distinct walks of length k from vertex i to j. Thus,
(Ak )ii counts the number of distinct closed walks with length
k starting and ending at vertex i and tr(Ak ) aggregates the
total number of closed walks with length k. Especially, if
tr(Ak ) = 0 then the graph does not contain any closed walks,
thus any cycle, of length k.

In Fig. 8(e), we depict tr(Ak ) + 1 as blue squares, where
A = H0, plotted against k = 1, . . . , 2L for a system of L = 12
sites and PBCs with N = 6 particles. The addition of +1
facilitates a logarithmic scale on the y axis. Here, tr(Ak ) equals
zero for all values of k not divisible by L, indicating the
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FIG. 8. TASEP spectrum (PBC) with L = 12 and N = 6 for (a)
U = 0 and (c) U = 1. In (b) and (d), spectral density of random
graphs with cycle length divisible by L; in (b) of the adjacency matrix
and in (d) of the negative (combinatorial) Laplacian. In (e), traces of
powers of the noninteracting TASEP H0 (squares) and random graph
adjacency matrix (circles).

absence of cycles in the graph with length k mod L �= 0. Sim-
ilarly, for OBCs, tr(A)k = 0 if and only if k mod L + 1 = 0
(not shown).

C. Random graph model

To demonstrate the robustness of the spiky spectral bound-
ary, we compare the TASEP spectrum with the spectral
density of a random graph ensemble characterized only by
cycles whose lengths are divisible by L. This comparison
is focused on the TASEP with PBCs, noting that the OBC
scenario can be similarly analyzed by simply adjusting L to
L + 1.

We sample the random graph by initially forming a di-
rected cycle with D vertices. Next, we randomly choose a
vertex and traverse the graph randomly for L − 1 steps. The
vertex reached after L − 1 steps is connected back to the
starting vertex, creating a cycle of length L. This process is
repeated until the graph contains a predetermined total num-
ber n of edges. When the number of vertices D is divisible by
L, the construction of the graph ensures that all cycle lengths
in the random graph are also divisible by L. We provide a
mathematically rigorous argument in Appendix E.

Figure 8 contrasts the random graph ensemble to the
TASEP with L = 12 sites and PBCs with N = 6 particles.
Quantities of the random graph ensemble are averaged over
2000 samples, with the cycle length set to L and the number

of vertices D = 924, matching the Hilbert space dimension of
the TASEP.

In Fig. 8(e), we present tr(Ak ) + 1 for the random graph
ensemble, shown as red circles. In this ensemble, tr(Ak ) is zero
for all k that are not integer multiples of L. Whenever k is an
integer multiple of L, tr(Ak ) for the adjacency matrix A of the
random graph ensemble is comparable in magnitude to tr(Ak )
for A = H0, the generator matrix of TASEP. This similarity
suggests that the number of closed walks in the random graph
ensemble is on par with that in the TASEP many-body graph.

Figures 8(a)–8(d) display a comparison between the ran-
dom graph ensemble and TASEP, matching the parameters
used in Fig. 8(e). In Figs. 8(a) and 8(b), we show the non-
interacting TASEP spectrum alongside the estimated spectral
density of the graph ensemble – both featuring L distinct
spikes.

In Figs. 8(c) and 8(d), the focus is on the spectrum of
TASEP (U = 1) and the spectral density of the negative graph
Laplacian for the random graph ensemble. Notably, the ran-
dom graph Laplacian also presents L pronounced spikes. The
spike patterns, particularly their bending towards the left,
show a resemblance to the TASEP spikes. The overall shape
of the spectral density (ignoring the spikes) takes on a spindle-
like form, characteristic of (sparse) random Markov matrices
[97–100].

VII. CONCLUSION AND DISCUSSION

In this paper, we explored the connections among the spec-
tral problems for ASEP, free fermion models, and random
matrix theory, focusing particularly on the distinctive spiky
shape of the ASEP spectral boundary. We reformulated the
ASEP generator matrices as non-Hermitian fermionic models
with a variable interaction parameter U , where U = 1 corre-
sponds to the standard ASEP. We analytically demonstrated
that in the noninteracting ASEP (U = 0), this spiky spectral
boundary arises from aggregating single-particle eigenvalues
positioned on ellipses (circles for TASEP). For PBCs, we
extended this concept to interacting TASEP, showing that the
spiky boundary remains and originates from the summation
of clustered Bethe roots. Lastly, we confirmed the robustness
of this spiky boundary by considering only the cycle structure
in the many-body graph, revealing that corresponding random
graphs exhibit a similar spiky spectral boundary.

This research opens up several questions for further ex-
ploration. We demonstrated the spiky spectral boundary in
TASEP, largely attributed to Bethe roots clustering. It is in-
triguing to consider whether such clustering also occurs in
ASEP. The straightforward connection between TASEP and
ASEP in their noninteracting forms suggests that the spiky
spectral boundary might extend to standard ASEP (with U =
1) as well. However, it remains to be seen how introducing
interactions influences Bethe roots clustering and the potential
emergence of a spiky spectral boundary.

In this paper, we concentrated on the Bethe ansatz for
PBCs. The ASEP with OBCs is also solvable via the Bethe
ansatz, though the equations are more complex, as detailed
in various studies [81,101–104]. One might ask whether the
spiky spectral boundary in the OBC case is also associated
with a clustering of Bethe roots similar to the PBC case.
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The spectral boundary of random graphs with dominant
cycle lengths typically follows a hypotrochoidic curve, as
noted in Ref. [37]. These graphs usually lack cycles shorter
than L but can have cycles longer than L. However, the
random graph ensemble we introduced deviates from this
standard hypotrochoidic pattern, likely due to its more re-
stricted cycle structure, where all cycles are of lengths
divisible by L. Extending the hypotrochoidic law to en-
compass this specific graph ensemble would be a valuable
advancement.

This paper concentrated on the spiky spectral boundary of
the ASEP. Formation of spikes has as well been observed in
the off-diagonals of reduced density matrices in the symmetric
simple exclusion process (XXX model) [105] and the observ-
able representation of Ising chain Glauber dynamics [106].
These observations together with the robustness of the spiky
spectral boundary to perturbations make the investigation of
other models, both classical and quantum, that possess a simi-
lar cycle structure in their many-body graphs or comparable
trace correlations in their generator matrices, an intriguing
direction for future research.
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APPENDIX A: QUADRATIC FERMION MODEL FOR OBC

In this Appendix, we will show that the noninteracting
ASEP H0 with OBC is a quadratic fermion model. Especially,
we will prove Eq. (11).

Recall

H0 =
L−1∑
j=1

(pσ+
j+1σ

−
j + qσ+

j σ−
j+1) + ασ+

1 + γ σ−
1

+ βσ−
L + δσ+

L . (A1)

For that, we first apply, as mentioned in the main text, the
Kramers-Wannier duality transformation [36]

σ x
j →

j∏
l=1

σ z
l , σ z

j → σ x
j σ

x
j+1, (A2)

where we implicitly have enlarged the chain of length L by
one additional site to a chain of length L + 1. Thus, the
multiplicity of every eigenvalue of the so-transformed H0 is
doubled. Applying a Jordan-Wigner transformation

w j =
⎛
⎝ j−1∏

l=1

( − σ z
l

)⎞⎠σ−
j , w

†
j =

⎛
⎝ j−1∏

l=1

( − σ z
l

)⎞⎠σ+
j , (A3)

and rewriting in terms of Majorana real and imaginary parts
of the Dirac fermions w,w†,

γ j,1 = w
†
j + w j, γ j,2 = i(w†

j − w j ), (A4)

the Hamiltonian H0 is given by

H0 =
L−1∑
j=1

[
p + q

4
(iγ j+1,1γ j+1,2 − iγ j,2γ j+2,1) + p − q

4
(γ j+1,1γ j+2,1 + γ j,2γ j+1,2)

]

+ 1

2
[(α + γ )iγ1,1γ1,2 + (α − γ )γ1,1γ2,1] + 1

2

⎛
⎝L+1∏

j=1

iγ j,1γ j,2

⎞
⎠[(δ + β )iγL+1,1γL+1,2 − (δ − β )γL,2γL+1,2]. (A5)

The string of Majoranas
∏L+1

j=1 (iγ j,1γ j,2) = (−1)L+1Pw equals, up to a sign, the parity operator Pw of Dirac fermions
w,w†, which commutes with H0. Thus, restricted to the subspaces of constant parity, the Hamiltonian H0 becomes
quadratic.

Note that H0 in terms of the Majorana fermions γ j,l is acting nontrivially on the additional site L + 1.
To keep the algebra simpler, let us consider from now on the case p = 1 and q = γ = δ = 0. The following cal-

culations can be straightforwardly generalized to arbitrary p, q, γ , δ. Thus, H0 in terms of the Majorana fermions γ

simplifies to

H0 =
L−1∑
j=1

(σ+
j+1σ

−
j ) + ασ+

1 + βσ−
L

= 1

2
α[iγ1,1γ1,2 + γ1,1γ2,1] + 1

2
(−1)L+1Pwβ[iγL+1,1γL+1,2 + γL,2γL+1,2] + 1

4

L−1∑
j=1

[
(γ j,2, γ j+1,1)

(
1 −i
i 1

)(
γ j+1,2

γ j+2,1

)]
.

(A6)
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The eigenvalues of the 2 × 2-matrix are 0 and 2, while the
eigenvectors are (1,−i)t and (1, i)t , respectively. Thus, the
following pairing of Majorana fermions:

c†
j = 1

2 (γ j,2 − iγ j+1,1), c j = 1
2 (γ j,2 + iγ j+1,1), (A7)

into Dirac fermions c, c† drastically simplifies the bulk term.
By identifying γL+2,1 = γ1,1 the pairing given by Eqs. (A7)
turns the chain on sites 1 to L + 1 into a ring, connecting site
1 and L + 1. The Hamiltonian H0 is given in terms of c, c† as

H0 = α(cL+1 − c†
L+1)c†

1 +
L−1∑
j=1

[c jc
†
j+1]

+ (−1)LPcβcL(cL+1 + c†
L+1),

where Pc denotes the parity of the Dirac fermions c, c†. This
is Eq. (11).

APPENDIX B: DIAGONALIZING Mc

In this Appendix, we calculate the eigenvalues and
eigenvectors of Mc given by Eq. (30) and Eqs. (31)–(33)
thereafter. We denote the eigenvalue equation by Mcu = λu
with the 2L + 2 dimensional vector u. In terms of u =
(u1, . . . , uL+1, u′

1, . . . , u′
L+1), the eigenvalue equation reads

λu1 = −α(uL+1 − u′
L+1), (B1)

λu2 = −u1, (B2)

. . .

λuL−1 = −uL−2, (B3)

λuL = −uL−1, (B4)

λuL+1 = −sβuL − αu′
1, (B5)

and

λu′
1 = u′

2, (B6)

λu′
2 = u′

3, (B7)

. . .

λu′
L−1 = u′

L, (B8)

λu′
L = βs(uL+1 + u′

L+1), (B9)

λu′
L+1 = −βsuL + αu′

1. (B10)

Combining Eqs. (B2)–(B4) with u1, . . . , uL and Eqs. (B6)–
(B8) with u′

1, . . . , u′
L recursively, we get for 2 � j � L:

u j = −λ−1u j−1 = · · · = (−λ)− j+1u1 (B11)

and

u′
j = λu′

j−1 = · · · = λ j−1u′
1. (B12)

Especially, the following holds:

uL = (−λ)−L+1u1, (B13)

u′
L = λL−1u′

1. (B14)

By substituting Eqs. (B13) and (B14) into Eqs. (B5) and
(B10), respectively, we get

u1 = αλ−1(−uL+1 + u′
L+1), (B15)

uL+1 = βs(−λ)−Lu1 − αλ−1u′
1, (B16)

u′
1 = λ−Lβs(uL+1 + u′

L+1), (B17)

u′
L+1 = βs(−λ)−Lu1 + αλ−1u′

1. (B18)

Adding and subtracting Eqs. (B16) and (B18), respectively,
leads to

uL+1 + u′
L+1 = 2βs(−λ)−Lu1 (B19)

−uL+1 + u′
L+1 = 2αλ−1u′

1, (B20)

which, in turn, implies that

u′
1 = 2(−1)Lλ−2Lβ2u1, (B21)

u1 = 2α2λ−2u′
1, (B22)

by using Eqs. (B15) and (B17). Combining the last two equa-
tions leads to

u1 = 4(αβ )2(−1)Lλ−2L−2u1, (B23)

which implies, for u1 �= 0, the eigenvalue Eq. (35):

λ2(L+1) = (−1)L4(αβ )2. (B24)

The roots of this polynomial are given by

λ = (2αβ )
1

L+1

{
exp

(
iπ

2L+2 2k
)

L even

exp
(

iπ
2L+2 (2k − 1)

)
L odd,

where k = 1, . . . , 2L + 2.

APPENDIX C: BETHE EQUATIONS FOR PBC ASEP WITH ARBITRARY U

In this Appendix, we derive the Bethe equations presented in Sec. V A. These results extend the usual U = 1 ASEP Bethe
ansatz [32] to the case of arbitrary U . In different notations, such deformations have appeared in Refs. [41,92].

By |x1, . . . , xN 〉, we denote the state of N particles at positions x1, . . . , xN . In the following, we let x1 < · · · < xN up to an
overall shift in the indices. The wave function |ψ〉 in the basis of |x1, . . . , xN 〉 is given by

|ψ〉 =
∑

x1<···<xN

ψ (x1, . . . , xN )|x1, . . . , xN 〉, (C1)
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where ψ (x1, . . . , xN ) denotes the coefficient of |ψ〉 with respect to |x1, . . . , xN 〉. Now, let |ψ〉 be an eigenstate of the generalized
Markov matrix H with eigenvalue E , i.e., H |ψ〉 = E |ψ〉. Recall that we can write the generator matrix H as

H =
L∑

i=1

(pσ−
i σ+

i+1 + qσ+
i σ−

i+1) + U

4

L∑
i=1

(
σ z

i σ z
i+1 − 1

)
. (C2)

Let us first focus on the action of the off-diagonal term in Eq. (C2) on |x1, . . . , xN 〉. It is easy to see that

L−1∑
i=1

σ−
i σ+

i+1|x1, . . . , xN 〉 =
N−1∑
j=1

(1 − δ(x j+1 − x j, 1))|x1, . . . , x j + 1, . . . , xN 〉 (C3)

and
L−1∑
i=1

σ+
i σ−

i+1|x1, . . . , xN 〉 =
N∑

j=2

(1 − δ(x j − x j−1, 1))|x1, . . . , x j − 1, . . . , xN 〉, (C4)

where δ(x, y) equals one whenever x = y and is zero otherwise. The remaining boundary terms are determined as follows. If
xN �= L, then σ−

L σ+
1 |x1, . . . , xN 〉 = 0, so let xN = L. Then

σ−
L σ+

1 |x1, . . . , xN 〉 = (1 − δ(x1, 1))|1, x1, . . . , xN−1〉 (C5)

= (1 − δ(x1 − xN mod L, 1))|x1, . . . , xN−1, XN + 1〉 (C6)

by identifying |x1, . . . , xN−1, L + 1〉 = |1, x1, . . . , xN−1〉. On the other hand, whenever x1 �= 1 we have σ+
L σ−

1 |x1, . . . , xN 〉 = 0,
while for x1 = 1 we get

σ+
L σ−

1 |x1, . . . , xN 〉 = (1 − δ(xN , L))|x2, . . . , xN , L〉 (C7)

= (1 − δ(x1 − xN mod L, 1))|x1 − 1, x2, . . . , xN 〉, (C8)

where we identified |x2, . . . , xN , L〉 = |0, x2, . . . , xN 〉. Taking everything together, we have

L∑
i=1

σ−
i σ+

i+1|x1, . . . , xN 〉 =
N∑

j=1

(1 − δ(x j+1 − x j mod L, 1))|x1, . . . , x j + 1, . . . , xN 〉, (C9)

L∑
i=1

σ+
i σ−

i+1|x1, . . . , xN 〉 =
N∑

j=1

(1 − δ(x j − x j−1 mod L, 1))|x1, . . . , x j − 1, . . . , xN 〉. (C10)

The diagonal term in Eq. (C2) acts on |x1, . . . , xN 〉 as

1

4

L∑
i=1

(
σ z

i σ z
i+1 − 1

)|x1, . . . , xN 〉 =
N−1∑
j=1

(δ(x j+1 − x j, 1) + δ(x1 − xN , 1 − L) − 1)|x1, . . . , xN 〉

=
N∑

j=1

(δ(x j+1 − x j mod L, 1) − 1)|x1, . . . , xN 〉, (C11)

where we note that σ z
i = 2ni − 1 and thus

1

4

L∑
i=1

(
σ z

i σ z
i+1 − 1

) = 4

4

L∑
i=1

nini+1 − 2

4

L∑
i=1

ni − 2

4

L∑
i=1

ni+1 =
[

L∑
i=1

nini+1

]
− N. (C12)

Summarizing, the action of H on |x1, . . . , xN 〉 is

H |x1, . . . , xN 〉 = p
N∑

j=1

(1 − δ(x j+1 − x j mod L, 1))
∣∣x1, . . . , x j + 1, . . . , xN

〉

+ q
N∑

j=1

(1 − δ(x j − x j−1 mod L, 1))
∣∣x1, . . . , x j − 1, . . . , xN

〉

− U
N∑

j=1

(1 − δ(x j+1 − x j mod L, 1))|x1, . . . , xN 〉. (C13)
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Now, consider the eigenvalue equation H |ψ〉 = E |ψ〉:
H |ψ〉 =

∑
x1<···<xN

ψ (x1, . . . , xN )H |x1, . . . , xN 〉 =
∑

x1<···<xN

ψ (x1, . . . , xN )E |x1, . . . , xN 〉. (C14)

Let us concentrate on the term in Eq. (C13) proportional to p:

p
N∑

j=1

∑
x1<···<xN

ψ (x1, . . . , xN )(1 − δ(x j+1 − x j mod L, 1))
∣∣x1, . . . , x j + 1, . . . , xN

〉
. (C15)

After a change of variables x̃i = xi for i �= j and x̃ j = x j + 1, the above equation reads

p
N∑

j=1

∑
x̃1<···<x̃N

ψ (x̃1, . . . , x̃ j − 1, . . . , x̃N )(1 − δ(x̃ j − x̃ j−1 mod L, 1))|x̃1, . . . , x̃N 〉. (C16)

Let us now focus on the term in Eq. (C13) proportional to q. One finds with the change x̃ j = x j − 1 < x j+1 − 1 = x̃ j+1 − 1, thus
x̃ j+1 − x̃ j > 1 and x̃ j−1 = x j−1 < x j − 1 = x̃ j , that this term equals

q
∑

x̃1<···<x̃N

ψ (x̃1, . . . , x̃ j + 1, . . . , x̃N )(1 − δ(x̃ j+1 − x̃ j mod L, 1))|x̃1, . . . , x̃N 〉, (C17)

where the first constraint is realized via the delta term and the second constraint by the summation.
By orthogonality of |x1, . . . , xN 〉, the eigenvalue equation H |ψ〉 = E |ψ〉 turns into

(L
N

)
equations for the wave-function

coefficients:

p
N∑

j=1

(1 − δ(x j − x j−1 mod L, 1))(ψ (x1, . . . , x j − 1, . . . , xN ) − Uψ (x1, . . . , xN ))

+ q
N∑

j=1

(1 − δ(x j+1 − x j mod L, 1))(ψ (x1, . . . , x j + 1, . . . , xN ) − Uψ (x1, . . . , xN ))

= Eψ (x1, . . . , xN ). (C18)

Here we additionally used that p + q = 1. Now, we make the ansatz for the wave-function coefficient

ψ (x1, . . . , xN ) =
∑
τ∈SN

A(τ )
N∏

j=1

z
x j

τ ( j), (C19)

where the summation runs over all elements of the symmetric group SN and the z′
js and A(τ )′s are complex numbers. Let us

consider a configuration x1 < · · · < xN where all particles have at least distance 1, i.e., no consecutive particles. Plugging the
ansatz into the term proportional to p results in

N∑
j=1

ψ (x1, . . . , x j − 1, . . . , xN ) − Uψ (x1, . . . , xN ) =
N∑

j=1

∑
τ∈SN

A(τ )

⎛
⎝z

x j−1
τ ( j)

N∏
l=1;l �= j

zxl
τ (l ) − U

N∏
l=1

zxl
τ (l )

⎞
⎠ (C20)

=
∑
τ∈SN

A(τ )
N∏

l=1

zxl
τ (l )

N∑
j=1

(
z−1
τ ( j) − U

)
. (C21)

Similarly, one gets the analogous expression for the term proportional to q with the change z−1
τ ( j) → zτ ( j). Thus, Eq. (C18) in

terms of the Bethe ansatz reads

E =
∑
j=1

(
qz j + pz−1

j − U
)
, (C22)

which is Eq. (49) in Sec. V A. Now, consider a configuration |x1, . . . , xN 〉 with two particles adjacent to each other. Then, for
1 � l, k � N , it holds that

A(. . . , l, . . . , k, . . . ) = − p + qzlzk − Uzl

p + qzlzk − Uzk
A(. . . , k, . . . , l, . . . ). (C23)

The periodic boundary condition enforces ψ (x1, . . . , xN−1, L + 1) = ψ (1, x1, . . . , xN−1), which implies

A(τ (1), . . . , τ (N ))zL
τ (N ) = A(τ (N ), τ (1), . . . , τ (N − 1)). (C24)
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Combining both constraints leads to the Bethe equations

zL
j =

N∏
k=1;k �= j

(
− p + qz jzk − Uzj

p + qz jzk − Uzk

)
. (C25)

In the case of TASEP with q = 1 and p = 0 the Bethe equations reduce to

zL
j =

N∏
k=1;k �= j

(
− z jzk − Uzj

z jzk − Uzk

)
= zN

j

(z j − U )N
(−1)N−1

N∏
k=1

zk − U

zk
, (C26)

so

zL−N
j (z j − U )N = (−1)N−1

N∏
k=1

zk − U

zk
. (C27)

Denoting Zk = 2zk − U we get

(U + Zj )
L−N (U − Zj )

N = −2L
N∏

k=1

Zk − U

Zk + U
. (C28)

APPENDIX D: SOLVING THE BETHE
EQUATIONS NUMERICALLY

In this Appendix, we will describe how to self-consistently
solve the Bethe equations numerically. We will mostly follow
the approach in Ref. [9] with some additional tweaks.

Restricting to p = 1 and q = 0 reduces the difficulty of
solving the Bethe equations considerably because the right-
hand side of Eq. (52) does not depend on j, as does the
right-hand side of Eq. (50) for general p, q.

Consider the polynomial P(z),

P(z) = (U + z)L−N (U − z)N − Y, (D1)

where Y denotes an arbitrary complex number and let us
denote the right-hand side of Eq. (52) by

Ỹ (Z1, . . . , ZN ) = 2L
N∏

k=1

Zk − U

Zk + U
. (D2)

Then every solution Z1, . . . , ZN of Eq. (52) are roots of
the polynomial P with Y = Ỹ (Z1, . . . , ZN ). To find a solu-
tion to the Bethe equations, one first calculates the roots
Z (1)

1 , . . . , Z (1)
L of P for an initial Y (1). Of these L roots of P,

one chooses N roots, Z (1)
1 , . . . , Z (1)

N , and evaluates the next
Y (2) = Ỹ (Z (1)

1 , . . . , Z (1)
N ). Again, the roots Z (2)

1 , . . . , Z (2)
L of P

with Y = Y (2) are calculated and N roots Z (1)
1 , . . . , Z (1)

N are
chosen to evaluate the next Y (3) = Ỹ (Z (2)

1 , . . . , Z (2)
N ). This pro-

cedure is then iterated until convergence all of the N chosen
roots is reached, Z (l )

j ≈ Z (l+1)
j for all 1 � j � N .

The convergence of this procedure presupposes consis-
tency of the choice of the N roots out of L roots of the
polynomial P [34,51]. The first choice of Z (1)

1 , . . . , Z (1)
N out

of Z (1)
1 , . . . , Z (1)

L is arbitrary. Subsequent roots Z (l )
1 , . . . , Z (l )

N
are chosen to be closest to the previous roots,

Z (l )
j = argmin

Z (l )
k :1�k�L

∣∣Z (l )
k − Z (l−1)

j

∣∣, (D3)

where the minimum runs over all roots Z (l )
1 , . . . , Z (l )

L of P with
Y = Y (l ). If multiple Z (l )

k are close to Z (l−1)
j we do not update

Y (l+1) with Z (l )
j but with a linear combination of Z (l )

j and

Z (l−1)
j , i.e., Y (l+1) = Ỹ (. . . , dY Z (l )

j + (1 − dY )Z (l−1)
j , . . . ),

where 0 < dY � 1 denotes the fraction of interpolation be-
tween Z (l )

j and Z (l−1)
j .

The above-described procedure typically leads to conver-
gence of Z (l )

1 , . . . , Z (l )
N and thus to a solution of the Bethe

Eqs. (52). In Fig. 9, we show the roots Z (l )
1 , . . . , Z (l )

6 ob-
tained during the above algorithm for L = 6 and N = 3.
The square markers denote the initial Z (1)

1 , . . . , Z (1)
6 with

Y (1) = 10 × 2L, while the triangles denote the final and
converged Z (end)

1 , . . . , Z (end)
6 [relative or absolute error of

Eq. (52) <10−3]. The circles indicate intermediate roots.

FIG. 9. Visualization of solving the Bethe Eqs. (52) of TASEP
(PBCs) for L = 6 and N = 3. All markers are roots of the polynomial
P [Eq. (D1)] for different Y . The outer (square) markers are the
roots for initial Y (1) = 10 × 2L , the inner (triangles) markers for Y
converged, and the circles denote roots of P for intermediate Y . Red
markers (upper complex plane) are chosen to calculate the next Y .
Gray circle has radius |Y (1)|1/L .
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Initially, the three red squares (upper half-plane) are chosen
as Z (1)

1 , . . . , Z (1)
3 and subsequent roots (upper half-plane in

red) according to their previous closest roots. For visualization
purposes, dY was chosen to be dY = 0.5.

To find all solutions to the Bethe Eqs. (52) systematically,
we use different combinations of initial Y (1) and initial root
choices, namely, we typically choose Y (1) with |Y (1)|1/L � U .
This ensures that the roots of P with Y = Y (1) are close to
the circle with radius |Y (1)|1/L. In Fig. 9, the roots of P for
Y = Y (1) = 10 × 26 denoted by the square markers are close
to the circle with radius 2 × 101/6 ≈ 2.9. Then we solve the
Bethe equations for every combination of N roots out of
L. This typically gives us almost all solutions of the Bethe
Eqs. (52). By iterating this procedure for a handful of initial
Y (1), we found all Bethe roots for the systems we investigated
(up to L = 22).

APPENDIX E: PROOF THAT CYCLE LENGTHS
OF GRAPHS IN SEC. VI ARE DIVISIBLE BY L

In this Appendix, we will show that all cycle lengths of the
random graphs introduced in Sec. VI are divisible by L.

We label the vertices {1, . . . , D} and assign to each edge
e = (i, j) the integer

n(e) = n((i, j)) = j − i. (E1)

We argue that all cycle lengths of our random graphs are
divisible by L in two steps. First, we will show that the random
graphs have the property that

n(e) mod L = 1 for all edges e. (E2)

Second, we will prove that cycle lengths in graphs with such
a property are divisible by L.

The random graphs in Sec. VI are sampled by initially con-
sidering a single (Hamiltonian) cycle on D vertices. Without
loss of generality, we label the vertices such that the edges are
given by e = (i, i + 1) for 1 � i < D and e = (D, 1). In the
former case, n(e) = 1, and in the latter case, n(e) mod L = 1
whenever D mod L = 0. Hence, this initial graph obeys the
property in Eq. (E2).

Next, we will argue that Eq. (E2) holds for newly added
edges eL. Such edges eL = ( j, i) are constructed by choos-
ing an arbitrary initial vertex i and traversing along a path
(e1, . . . , eL−1) in the graph to an ending vertex j. Since
e1, . . . , eL−1 obey Eq. (E2), we let n(es) = ns + 1 with
ns mod L = 0. Consequently,

n(eL ) = −
L−1∑
s=1

(ns + 1) = −
(

L−1∑
s=1

ns

)
− L + 1, (E3)

and the added edge eL obeys Eq. (E2) as well. We therefore
have established that the random graphs in Sec. VI obey
Eq. (E2).

To conclude our argument that all cycle lengths are di-
visible by L, we consider an arbitrary cycle (e1, . . . , el ) of
length l in a graph that obeys Eq. (E2). For n(es) = ns + 1
with ns mod L = 0, it holds that

0 =
l∑

s=1

(ns + 1) =
(

l∑
s=1

ns

)
+ l. (E4)

Since the sum in Eq. (E4) is divisible by L, so must l . This
concludes our proof that all cycle lengths of the graphs in
Sec. VI are divisible by L.
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