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Three-state active lattice gas: A discrete Vicsek-like model with excluded volume
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We study a discrete-space model of active matter with excluded volume. Particles are restricted to the sites of a
triangular lattice and can assume one of three orientations. Varying the density and noise intensity, Monte Carlo
simulations reveal a variety of spatial patterns. Ordered states occur in the form of condensed structures, which
(away from the full occupancy limit) coexist with a low-density vapor. The condensed structures feature low
particle mobility, particularly those that wrap the system via the periodic boundaries. As the noise intensity is
increased, dense structures give way to a disordered phase. We characterize the parameter values associated with
the condensed phases and perform a detailed study of the order-disorder transition at (i) full occupation and (ii)
a density of 0.1. In the former case, the model possesses the same symmetry as the three-state Potts model and
exhibits a continuous phase transition, as expected, with critical exponents consistent with those of the associated
Potts model. In the low-density case, the transition is clearly discontinuous, with a strong dependence of the final
state upon the initial configuration, hysteresis, and nonmonotonic dependence of the Binder cumulant upon noise
intensity.
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I. INTRODUCTION

Since the introduction of a model of self-organized motion
of mobile agents by Vicsek et al. [1], active matter (AM)
has motivated enormous theoretical, simulational, and exper-
imental interest among investigators in statistical physics and
allied fields. Active matter, understood as collections of many
interacting particles, each of which consumes free energy to
self-propel, is intrinsically far from equilibrium. Well-studied
examples of AM are groups of macro- or microorganisms
that interact to yield organized collective motion. Subcellular
processes exhibit diverse examples of AM. The cytoskeleton,
for example, maintains polarization dynamics and stresses
far from equilibrium via a chemical free-energy supply; the
plasma membrane, with ion pumps and actin polarization
centers, behaves like an active fluid [2–8].

The Vicsek model (VM) uses simple rules to describe the
continuous-space dynamics of active particles aligning their
direction of motion with that of their neighbors, leading to
a phase transition between collective motion at high density
and low noise and disordered motion in the opposite limit [1].
Subsequent studies showed that the VM and related models
exhibit a regime marked by the coexistence of a condensed
ordered phase and a disordered vapor [9]. The latter falls
between a uniformly ordered phase and a disordered gas phase
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[10]. The VM represents dilute active matter in the sense that
excluded-volume interactions between particles are ignored.

The question naturally arises whether such coexistence
occurs in discrete-space AM systems; it is in fact found
in the active Ising model (AIM) [11,12] as well as in di-
verse lattice models. Similar to the (continuous-space) Vicsek
model, the homogeneously ordered and disordered phases
are separated, in the density and noise-intensity plane, by
a coexistence region. Recent works investigating a general-
ization of the AIM, the q-state active Potts model (APM),
show that as long as there is no restriction on the number of
particles that may occupy a lattice site, phase coexistence is
observed [13,14]. Another discrete-space active matter model
is the q-state active clock model (ACM). Similar to what
is observed in the VM and APM, the active clock model
displays a liquid-vapor-type transition. The ACM coexistence
region features macroscopic phase separation for small-q val-
ues and microscopic separation for large-q values, as in the
VM [15,16].

Since a significant fraction of the available space can be
occupied by the organisms constituting a bird flock or school
of fish, it is important to understand how organization in AM
is affected by excluded-volume interactions. In AM models
with excluded volume (EV), particle mobility decreases with
density, leading to immobile structures such as traffic jams.
Congestion is observed, for example, in vehicular traffic,
embryogenesis, tumor formation, and herds [17–20]. Self-
propelled motion of entities with EV can lead to structures
similar to those found in the Vicesk model and AIM, as well
as traffic jams, in addition to mixed configurations containing
two or more simple structures [21–24].
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Previous studies of AM models with excluded volume in-
clude the four-state active Potts model proposed by Peruani
et al. [23], with four particle orientations on a square lattice.
In this model, a parameter g determines the intensity of align-
ment between particles occupying nearest-neighbor sites; as g
is increased at fixed particle density, the system exhibits three
phases: disordered aggregates for weak alignment, a phase
with local ordering characterized by traffic jams and gliders
(dynamic traffic jams with two opposing orientations), and
immobile bands that emerge under strong alignment.

The present study is motivated by our interest in character-
izing the phases and associated phase transitions in a simple
active-matter model with EV and a minimal set of particle
motions in the plane. Since EV is most efficiently treated in
discrete space, and in the interest of simplicity, we study a
lattice gas in which particle velocities are limited to three
directions on the triangle lattice. Our model includes a Vicsek-
like alignment interaction favoring the formation of ordered
groups; this tendency, which follows a majority-vote scheme,
is nevertheless frustrated by the reduced particle mobility in
dense regions, leading to the emergence of condensed struc-
tures which may be characterized as bands or “traffic jams.”

Using numerical simulation, we find that the model
exhibits a variety of stationary states depending on the param-
eters (density, noise intensity, and system size) and the initial
configuration. We find that the most stable configuration at
low noise intensity is an immobile band of particles that wraps
the system via the periodic boundaries, that is, it forms a
structure that closes via the periodic boundaries. At high noise
intensities, the steady state is disordered, having equal average
particle fractions in the three directions, and spatially uniform.
The model exhibits one or more phase transitions as one in-
creases the noise intensity at fixed density. The order-disorder
transition is discontinuous over most of the range of densities.
In the limiting case of full occupancy, all particles are im-
mobile and the model possesses the permutational symmetry
of the three-state Potts model. We find that, as expected, the
phase transition belongs to the three-state Potts universality
class in this limit.

The remainder of the article is organized as follows. In
the following section we define the model and contrast it
with previously studied discrete-space AM models. In Sec. III
we report and discuss the results obtained via Monte Carlo
simulation. Section IV contains a summary of our main con-
clusions and prospects for future work.

II. MODEL

We consider a set of N particles moving on a triangular
lattice of L2 sites with periodic boundaries. Volume exclusion
is imposed via the condition that at most one particle may
occupy a given site. Although each site has z = 6 nearest
neighbors, velocities are restricted to a set of only three
unit vectors v̂1 = i, v̂2 = −i/2 + √

3j/2, and v̂3 = −i/2 −√
3j/2. This is the smallest unbiased set sufficient for a parti-

cle to travel from the origin to any other site in at most O(L)
steps. Figure 1 shows the three directions of allowed motion.

The update rules for particle positions and velocities par-
allel those of the VM [1] in the context of discrete position
and orientation. At each elementary event, a randomly chosen

FIG. 1. Schematic of the three-state active Potts model. Sites in
orange correspond to the nearest, second-nearest, and third-nearest
neighbors of the site marked in yellow. The set of 19 sites com-
prising the central (yellow) site and its neighbors (orange) constitute
the neighborhood of the yellow site. Red, green, and blue arrows
correspond to velocities v̂1, v̂2, and v̂3, respectively. The system is
periodic in both directions, so all sites possess the same number of
neighbors.

particle i, with current velocity vi, updates its velocity to v′
i. If

the neighboring site in the direction of v′
i is vacant, the particle

moves to this site. Otherwise, the particle remains at its current
position while maintaining v′

i as its velocity. We associate a
time interval of 1/N with each elementary event.

The updated velocity of particle i depends on the velocities
of all the particles in its neighborhood, which we take as the
set of first, second, and third neighbors, as well as particle i
itself, for a total of 19 sites. (Thus the neighborhood of a par-
ticle can never be empty.) The use of an extended interaction
neighborhood improves statistics in simulations and reduces
the likelihood of situations lacking a clearly defined majority
orientation. To update its velocity, particle i performs a “cen-
sus” of the velocities of all particles in its neighborhood. Each
appraisal of a velocity is subject to error: with probability η,
a particle with velocity v j is incorrectly identified as having
one of the other two velocities; this applies to particle i as
well. The updated velocity v′

i is taken as the majority of the
set of perceived velocities. In case of a two-way tie between
velocities v̂k and v̂m, one of the two is chosen at random for
v′

i; in case of a three-way tie, v′
i is chosen at random.

Evidently, η represents the noise intensity; for η = 2
3 all

information about the majority velocity is lost, rendering
alignment impossible. In the fully occupied lattice, naturally,
no movement is possible and the system becomes a three-
state majority-vote model [25], admitting an ordered phase for
η < ηc as discussed below. The fully occupied lattice allows
neither particle displacements nor density fluctuations and
so cannot be considered active matter [10]. We nevertheless
study the order-disorder transition at full occupancy since it is
a limiting case of the model. In the limit of vanishingly small
density, on the other hand, each particle executes a persistent
random walk, with a persistence time of 1/η for small η; the
walk is fully random for η = 2

3 .
The model defined above bears certain similarities to the

four-state square-lattice active Potts model proposed by Pe-
ruani et al. [23]. Like the model studied here, it also has
excluded-volume interactions. Aside from the different lattice
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FIG. 2. Examples of the three kinds of initial configuration used in this study: (a) transverse band, (b) random, and (c) immobile band.
While these images are for L = 1025 and ρ = 0.5, ICs are qualitatively similar for other sizes and densities. In random ICs, particles are
assigned velocities independently, with equal probabilities from the set {v̂1, v̂2, v̂3} and with random positions, respecting the excluded-volume
condition. In both immobile- and transverse-band ICs, the particles are closely packed in a band that wraps the system and whose width
depends on the desired density. In both IB and TB ICs, all particles have the same orientation.

structure and number of allowed velocities, the model studied
in [23] features a different approach to the velocity-update
process compared with our model or the original Vicsek
model. Specifically, the probability that a particle change its
velocity from v to v′ is proportional to a Boltzmann-like factor

Prob(v → v′) ∝ exp

⎛
⎝g

∑
j∈A

v′ ·v j

⎞
⎠, (1)

where the sum is over the occupied nearest-neighbor sites of
the particle under consideration and g � 0 is a parameter that
plays the role of an inverse temperature. (Thus, although there
is no one-to-one mapping, η = 0 in our model corresponds to
g → ∞ in the model of Peruani et al., while η = 2

3 effectively
corresponds to g = 0.) It is unclear, a priori, what effect such
differences between the models might imply for the phase
diagram. A further procedural difference is that Peruani et al.
use random initial configurations (ICs) whereas, as explained
in Sec. III A, we investigate several kinds of ICs (including
random positions and velocities) before concentrating our
study on a particularly stable class of ICs that we call an

immobile band. In light of the above considerations, the set
of phases found in the two models need not be identical.

III. RESULTS AND DISCUSSION

A. Classification of steady-state configurations:
Preliminary survey

The three-state active lattice gas exhibits diverse stationary
configurations, including some previously observed in other
models of active matter [11,21–24]. In a set of preliminary
studies extending to 105 Monte Carlo (MC) steps, we simu-
lated systems of size L = {33, 65, 129, 257, 513}, using three
types of ICs: immobile band (IB), transverse band (TB),
and random (see Fig. 2). In these studies, the number of
independent realizations varies from a minimum of five to
a maximum of 60 for parameters that appear to place the
system near a phase transition, that is, regions that exhibit a
nonunique final configuration type and/or large fluctuations
in stationary properties such as the order parameter (discussed
below). Study of the transverse band IC is motivated by pre-
vious works [21,26], which indicate that in continuous-space
models without volume exclusion (e.g., the Vicsek model)

014109-3



ROSEMBACH, DIAS, AND DICKMAN PHYSICAL REVIEW E 110, 014109 (2024)

FIG. 3. Examples of final configurations observed after 105 MC steps: (a) IB with ρ = 0.1 and η = 0.20, (b) TJI with ρ = 0.3 and
η = 0.42, (c) MBI with ρ = 0.3 and η = 0.38, (d) MBII with ρ = 0.5 and η = 0.4, (e) TJII with ρ = 0.5 and η = 0.44, and (f) DA with
ρ = 0.5 and η = 0.458. All images are for system size L = 513. The white arrows show the majority velocity in each condensed region.

coexistence between ordered and disordered phases is char-
acterized by dense ordered bands propagating perpendicular
to the global velocity. Our results nevertheless indicate that,
due to excluded volume, ordered configurations often consist
of one or more immobile bands, motivating our study of ICs
consisting of a single such band.

The final configurations fall into six categories: IBs, type-1
and type-2 traffic jams (TJI and TJII, respectively), type-1
and type-2 mobile bands (MBI and MBII, respectively), and
disordered aggregates (DAs). This classification, modeled on
that employed by Peruani et al. [23], groups stationary states
according to the shape and mobility of the flocks and/or
particles. While the DA, IB, and TJI states observed here are
similar to those reported in [23], we also find a second traffic-
jam state (TJII), formed by the clash between two bands
with distinct directions of motion. Whereas the MB states are
found here, the so-called glider states reported in [23] are not
observed here.

Figure 3 shows examples of each type of final config-
uration. Immobile-band states are similar in form to the
eponymous ICs, except that in some cases (when using ran-
dom or TB ICs) two or more parallel bands are observed. Most
of the particles in an IB are oriented parallel to the band and so
are blocked from moving forward by the particle immediately
ahead. As a result, activity in this state is restricted mainly to
band edges. At full occupancy, the ordered phase possesses
a nonzero average orientation and may be seen as an IB
occupying the entire lattice.

Non-IB condensed states typically occur at higher noise
intensities than IBs. In the case of MBI, the velocities tend
to align along the band, but small short-lived flocks with
different velocities appear, generating temporary congestion
which is sufficient to prevent the formation of immobile bands
but not to eliminate global order entirely. Particles in these
smaller groups tend to align, creating irregular clusters that
move through space. A similar process occurs in MBII states,
but here a band with irregular edges forms along a direc-
tion different from the direction of propagation, wrapping

the system. Figure 3 suggests that in mobile bands, rough
band edges allow particle movement to coexist with overall
ordering along the band direction.

Type-II mobile bands are slightly reminiscent of the
bands observed in Vicsek-like models without excluded vol-
ume [22,27]. Nevertheless, the MBII structures observed here
have wildly fluctuating boundaries and a jammed bulk, com-
pared to the smooth density variation and uniform motion of
the bands observed without excluded volume.

Excluded volume also gives rise to traffic jams (TJI and
TJII), congested configurations in which flocks of particles
with different velocities block each other’s motion. In TJI
states, two or more clusters with different velocities meet
head-on, leading, in general, to an oval structure. This con-
figuration occurs through the growth of clusters with different
velocities; typically MBIs are precursors. In this type of
configuration, the alignment interaction leads to competition
between groups with different velocities to “capture” new
particles and so to a dynamic process of evaporation and
condensation. By contrast, TJIIs emerge at higher densities
(ρ � 0.5) and consist of two wrapping stripes with different
velocities that again block each other’s motion. Such con-
figurations exhibit a slower evaporation-condensation process
than TJI, suggesting that TJII configurations have a longer
lifetime than do TJIs.

Finally, disordered steady states, characterized as disor-
dered aggregates, are observed, as expected, at low densities
and high noise intensities. At densities ρ � 0.96, condensed
structures, be they bands or traffic jams, coexist with a
low-density disordered vapor. In fact, the vapor and the homo-
geneous DA state are one and the same phase. This conclusion
is based on studies of the radial distribution and velocity
correlation functions described below.

Our first objective is to infer the phase diagram in the ρ-η
plane (i.e., in the infinite-L limit) based on maps of the occur-
rence of the states shown in Fig. 3. To begin, we determine
which regions of parameter space typically yield each type
of configuration. While the fundamental intensive parameters
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FIG. 4. Maps of the occurrence of the states for L = 513 and initial configurations as noted: (a) random, (b) IB, (c) TB, and (d) generic
phase diagram on the ρ-η plane. Note that, in some cases, more than one kind of final state is possible at the same point in parameter space,
particularly for random ICs.

are density ρ and noise intensity η, the boundaries between
regions exhibiting one or another configuration type also vary
systematically with the system size L. Figure 4 shows where
each configuration is observed using a relaxation time of 105

MC steps. (Similar maps for L = 33, 65, 129 and 257 are
provided in the Supplemental Material [28].)

Examination of Fig. 4 reveals that at certain points in the
ρ-η plane, more than one kind of configuration can arise from
a given IC; this multiplicity is most common for random ICs.
Regardless of the initial configuration or the density, the final
state is a DA for sufficiently high noise intensity (η � 0.45).
The value of η marking the transition between a DA and an
ordered state increases rapidly with ρ at low densities and
saturates as ρ → 1.

As noted above, for random initial configurations, a greater
variety of condensed states is observed, including nonunique
outcomes for the same parameters. This is particularly com-
mon for larger systems, suggesting that the evolution becomes
trapped in a metastable state with a lifetime that grows with
system size. A similar observation holds for TB ICs. The
hypothesis that metastability is responsible (at least in part)
for the variety and nonuniqueness of steady states is supported
by the observation that, even when using a TB initial configu-
ration, MBII steady states are only observed in larger systems,
for which the lifetime presumably exceeds the simulation time
of 105 MC steps. We return to this issue in the following
section.

While random or TB initial configurations can, as noted,
lead to multiple-IB states, the number of stripes observed
varies with each realization and tends to shrink with increas-
ing noise intensity η. For example, for random ICs, L = 513,
ρ = 0.1, and η = 0.1, we observe as many as 15 bands,
whereas near the phase transition (η ≈ 0.32) only a single
band is found.

B. Steady states: Detailed study

The results reported in the preceding section represent a
preliminary step in characterizing the phase diagram. To ob-
tain a more precise picture, we use longer simulation times
(107 MC steps) and restrict attention to IB initial configura-
tions, due to the relative simplicity and apparent stability of
IB steady states. We stress that for IB initial configurations,
which employ a single band, multiple-IB steady states are
never observed. Limited computational resources prohibit our
repeating all of the η values and system sizes investigated for
105 MC steps in these more detailed studies.

We begin by probing the stability limits of the IB and DA
phases. Let η−(ρ, L) denote the noise intensity below which
the stationary configuration is always an IB. Similarly, define
η∗(ρ, L) as the noise intensity above which only the DA phase
is observed. Figure 5 shows these stability limits for L = 129
and a simulation time of 107 MC steps and is in qualitative
agreement with Fig. 4(d). In the region between the two
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FIG. 5. Stability limits η− and η∗ versus ρ for system size
L = 129 and a simulation time of 107 MC steps. Dashed lines con-
necting the points are merely an aid for visualization.

stability limits, other condensed states can appear, depending
on the density. We note, however, that MBII configurations are
not observed in studies extending to 107 MC steps and so are
excluded from the set of phases. All the other configuration
types found for the survey using 105 MC steps are also ob-
served in the longer studies; we regard them as phases of the
model. A systematic determination of the MBII lifetime or of

interphase switching times (see below) is beyond the scope of
the present work.

The extended simulations provide clear evidence of bista-
bility in the parameter space between the stability limits (see
Fig. 5) in that the configuration may alternate between phases
over time. For lower densities, we find time series in which
IB and DA phases alternate. At higher densities, we find time
series with alternation between the following pairs of phases:
IB-DA, IB-MBI, IB-TJI, MBI-TJII, TJI-DA, MBI-DA, TJI-
TJII, and, most commonly, MBI-TJI.

Figures 6(a) and 6(b) show η− and η∗ as a function of
system size in the low-density regime. The values for η−
are well fitted by a straight line. On the other hand, η∗ ex-
hibits positive curvature with increasing density. We believe
that this curvature is associated with the fact that, for these
higher densities, the system goes through several states during
the transition from an IB to a DA as we increase the noise
intensity. The intermediate states (MBI, TJI, and TJII) are
readily nucleated at higher densities, thus extending the stabil-
ity of condensed phases to higher noise intensities. Figure 6(c)
shows the extrapolated values for η− and η∗, which again
indicates that the phase diagram is qualitatively as suggested
in Fig. 4(d). The gap between the IB and DA phases is seen
to extend to ρ = 0.95 (the highest density studied), suggest-
ing that the order-disorder transition is discontinuous for any
density smaller than unity.

FIG. 6. Plots of (a) η− versus 1/L at low densities, (b) η∗ versus 1/L, and (c) estimated values of η− and η∗ in the thermodynamic limit.
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FIG. 7. Observed states for noise levels near the order-disorder
transition at low density and L = 513. Note that the number of times
a configuration is indicated at a certain point in configuration space
is not related to its frequency of occurrence.

To gain a better understanding of the transition region at
low densities (0.1 � ρ � 0.2), we perform simulations for
L = 65, 129, 257, and 513, again using 107 MC steps, and
a density increment of �ρ = 0.02. Figure 7 illustrates the
observed states for L = 513. It is evident that as density in-
creases, the number of possible states also grows. At several
points exhibiting nonunique final configurations, the system
alternates between states, confirming bistability, as described
above. Far from transition regions, the states are unique. In
general, the sequence of states observed with increasing noise
is IB, MBI, TJI, and DA states.

Type-2 traffic jams are found at higher densities, presum-
ably because they involve two bands that wrap the system
and so require more particles to remain stable. Studies using
L = 129, densities ρ � 0.5, and noise intensities close to η∗
yield TJII final states. These transitions are often governed
by an evaporation-condensation process alternating with the
TJI state but persisting over the duration of the simulation.
Analyses for other system sizes yield qualitatively similar
behavior.

We close this section with a remark on rather exotic, or-
dered, spatially uniform states with density smaller than unity.
Consider, for example, a configuration in which all sites in one
of the four sublattices of the triangle lattice are occupied by
particles having the same velocity (say, v1) and all other sites
are vacant. For η = 0, this IC evolves to a state in which, on
average, half the particles in each occupied row are mobile.
(Note that for zero noise the system is in fact a stack of in-
dependent rings, each running a totally asymmetric exclusion
process.) Studies of a system with L = 129 extending to 108

MC steps show that this state is unstable to arbitrarily small
nonzero noise intensities. As one increases η, the final state
passes through the sequence of multiple IBs, a single IB, a
TJI, and a DA.

C. Coexistence between condensed and DA phases

As noted above, for densities smaller than unity, condensed
phases coexist with a low-density vapor. Here we show that
the properties of the vapor are those of the DA phase, as

characterized by the radial distribution function g(r) and ve-
locity correlations.

A convenient definition of g(r) for lattice models [30] can
be written as

g(r) = 1

N̄

N̄∑
l=1

1

Nl (r)

N̄∑
m=1

δ(r − |rm − rl |), (2)

where Nl (r) is the number of sites at a distance r from the
lth particle, rm and rl are the positions of particles m and
l , respectively, and the sums are over all N̄ particles in the
vapor-DA phase. In addition, ρ̄ corresponds to the density
of the vapor and/or DA. (In the presence of a condensed
phase, the vapor density is smaller than the overall density.) In
brief, ρ̄g(r) represents the probability that site r is occupied,
given that there is a particle at the origin. Figure 8(a), for
L = 513 and ρ = 0.1, shows that g(r) decreases rapidly with
r, eventually leveling off near unity for r > 10. Note that the
function g(r) varies smoothly with η, suggesting that the vapor
that coexists with the IB, and the DA are the same phase.

The pair correlation function h(r) ≡ g(r) − 1 measures the
extent to which the presence of a particle at the origin is cor-
related to the presence of another at a distance r; the inset of
Fig. 8(a) shows that h(r) decays in a roughly exponential man-
ner. Introducing the correlation length ξpos = 1

2

∑nmax
n=1 |h(rn) +

h(rn+1)|(rn+1 − rn) (where {r1 = 1, r2 = √
3, r3 = 2, . . .} are

the first-, second-, third-, etc., neighbor distances), Fig. 8(b)
shows that ξpos continuously decreases monotonically (and
quite rapidly) with increasing noise. [We note that at the low
density considered in Fig. 8, the transition is discontinuous
(see Sec. III D), so that ξpos remains finite.] These findings
again support the conclusion that the vapor and DA are a
single phase.

The ρ̄ increases with η until saturating at ρ̄ = ρ, as seen in
Fig. 8(c). The apparent discontinuity in dξpos/dη occurs at the
IB-DA phase boundary and can be attributed to the singular
dependence of ρ̄ on η at this point.

We define the velocity (or orientation) correlation function
Cv (r) as

Cv (r) =
∑N̄,N̄

l,m=0 vl · vm δ(r − |rm − rl |)∑N̄,N̄
l,m=0 δ(r − |rm − rl |)

, (3)

where vl and vm, and rl and rm are velocities and positions
of particles l and m, respectively, and the sums are over all
N̄ particles in the vapor or DA phase. Figure 9 shows that
much like g(r), the functions Cv (r) change smoothly with η

in the vicinity of the IB-DA transition, again indicating that
the vapor and DA are the same phase. Curiously, in the limit
of random reorientation (η � 2

3 ), the velocities of particles
occupying neighboring sites are anticorrelated, due to ex-
cluded volume. For these high noise levels and low densities,
there are no condensed structures, but the excluded-volume
interaction prohibits, for example, a particle at the origin with
velocity v1 acquiring a neighbor with the same velocity at the
neighboring site (1,0). Indeed, the inset of Fig. 9 shows that
the anticorrelation vanishes in the absence of the excluded-
volume interaction.

Analyses of g(r) and Cv (r) for ρ = 0.05, 0.2, and 0.5
yield comparable findings. Finally, we compare the properties

014109-7



ROSEMBACH, DIAS, AND DICKMAN PHYSICAL REVIEW E 110, 014109 (2024)

FIG. 8. (a) Plot of g(r) for η values as indicated in the legend, in studies with ρ = 0.1 and L = 513, including the vicinity of the IB-DA
phase transition, which occurs at η = 0.345(5) for this density. The inset shows a plot of ln |h(r)| versus r. (b) Correlation length ξpos versus η

for the same parameter values as in (a). (c) Plot of ρ̄ vs η for ρ = 0.05, 0.1, and 0.5.

studied above in vapor and DA phases having the same density
at the same noise intensity ρ̄ = 0.0597 and η = 0.32 (both
with L = 513). The values of g(r) and Cv (r) are the same to

FIG. 9. Plot of Cv (r) for noise intensities as indicated in the
legend, with L = 513 and ρ = 0.10. The inset shows Cv (r) for the
model without excluded-volume interactions, using the same param-
eters, with η = 0.65.

within uncertainty in the two cases. Since significant differ-
ences in the properties of vapor and DA states are absent, we
conclude that they constitute a single phase whose properties
vary smoothly with η and ρ.

D. Order parameter

As is customary in the study of active matter [1,26], we de-
fine the order parameter as the modulus of the mean velocity

φ = 1

N

∣∣∣∣∣
N∑

i=1

vi

∣∣∣∣∣, (4)

where N is the particle number and vi is the velocity of
particle i. In the disordered phase, φ → 0 as the system size
L approaches infinity. We note that since φ is a measure of
global order, it is not reliable in distinguishing, for example,
between TJI and DA phases. The former features ordering
of particles into high-density regions of comparable size, but
with different directions of movement, so that φ may be close
to zero in a typical configuration.

Figure 10 shows φ as a function of ρ and η for L = 33 and
513, using IB initial configurations. Here, in each independent
realization, the system is allowed to relax for 2 × 104 time
steps, with φ obtained from a temporal average evaluated
over the subsequent 8 × 104 time steps; we then evaluate

014109-8



THREE-STATE ACTIVE LATTICE GAS: A DISCRETE … PHYSICAL REVIEW E 110, 014109 (2024)

(a) (b)

FIG. 10. Order parameter as a function of ρ and η for (a) L = 33 and (b) L = 513 and IB initial configurations. The densities are 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

the mean of φ over the set of independent realizations. As
expected, in the zero-noise limit, the order parameter assumes
its maximum value; for η = 2

3 , particle velocities are chosen
randomly, with equal probabilities, at each update, so that
φ → 0 as L → ∞. Regardless of the density ρ, as the noise
intensity increases, there is an abrupt decrease in φ associated
with the transition to the DA state.

In Fig. 11 the stationary order parameter is plotted versus
η for L = 33 and 513. (For other sizes, see the Supplemental
Material [28].) Comparing these results with those obtained
from analysis of configurations (Figs. 4 and 7), one verifies
that in the IB phase, φ decays monotonically with increasing
noise. In the DA phase, as expected, φ tends to zero.

A more complex situation arises when we examine φ for
ρ = 0.2 and η− < η < η∗, which includes the intermediate
states MBI and TJI [see Fig. 11(b)]. Here φ(η) is non-

monotonic and exhibits rapid variations in curvature. (Similar
behavior is observed for 0.2 � ρ < 1.) We do not find a clear
correspondence between these variations in φ and the phase
boundaries. This is not altogether surprising since, as noted
above, φ is not a good indicator of traffic-jam states.

E. Nature of the order-disorder transition

To identify the nature of the transitions between the disor-
dered and ordered phases, we analyze the Binder cumulant
and look for evidence of finite-size scaling and hystere-
sis [31–33]. Here we concentrate on densities ρ = 0.1 and 1
(full occupancy) using IB initial configurations, since there is
apparently only one transition (IB to DA) as we vary η at these
densities. We defer analysis of the more complex scenarios
observed at intermediate densities to future study.

FIG. 11. Order parameter φ versus η for system sizes (a) L = 33 and (b) L = 513, with densities as per the legend in (a). In almost all
cases, the error bars, which correspond to the standard deviation of the mean, are smaller than the symbols.
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FIG. 12. Plot of χ vs η for full occupancy, with system sizes as
indicated in the legend.

1. Full occupancy

At full occupancy, particles cannot move, so the model,
which enjoys S3 (permutation) symmetry, is equivalent to a
system of spins, suggesting that the order-disorder transition
is continuous and in the three-state Potts model universality
class. The scaled variance χ ≡ L2var(φ) exhibits a peak as
a function of η with an amplitude and sharpness that grow
systematically with system size, as expected at a critical point
(see Fig. 12). The position of the maximum approaches a
limiting value of η = 0.4512(2) as the system size tends to
infinity.

The Binder cumulant [34]

U4 = 1 − 〈φ4〉
3〈φ2〉2

, (5)

shown in Fig. 13, exhibits a series of crossings that converge
to a limiting value ηc as expected at a continuous phase transi-
tion. To estimate ηc from the cumulant crossings, we perform
a series of high-statistics studies for L = 33, 65, 129 and 257,
using 30–60 independent realizations for each η value, and a
relaxation time of 2 × 105 MC steps followed by production
runs of 2.8 × 106 steps. The inset of Fig. 13 plots ηn, the value
marking the crossing of U4 for sizes Ln ≡ 2n + 1 and Ln+1,
versus 1/Ln+1. A least-squares linear fit to these data yields
the estimate limn→∞ ηn = 0.451 002(6).

This estimate for the critical noise intensity is in accord
with that obtained via analysis of χ , but considerably more
precise. It also compares well with the result of a mean-field
(MF) analysis that treats all 19 sites in the neighborhood of
a given particle as statistically independent, yielding ηc =
0.4704. (A discrepancy of about 4% between simulation and
a simple MF analysis is of course hardly surprising.) Details
of this and other MF analyses, including stability estimates
for condensed structures such as immobile bands, will be
presented elsewhere [35].

Considering the results for the scaled variance and Binder
cumulant reported above, as well as the apparent absence of
hysteresis in the order parameter, we conclude that the phase
transition at full occupancy is continuous. This motivates a

FIG. 13. Binder cumulant U4 versus noise intensity η at full
occupancy, with system sizes as indicated in the legend. The inset
shows �η ≡ (ηn − 0.451 00) × 105 (where ηn is the value marking
the crossing of the U4 curves for sizes Ln and Ln+1) versus 1/Ln+1.
The line is a least-squares linear fit to the data, yielding a limiting
value of η = 0.451 002(5) (see the text for details).

finite-size-scaling analysis, based on the usual scaling hypoth-
esis that at ηc, the order parameter and its variance follow
power laws, that is,

φ ∝ L−β/ν, χ ∝ Lγ /ν, (6)

where ν is the critical exponent governing the growth of
the correlation length in the critical region. (While these
asymptotic power laws may receive subdominant correction
terms for smaller sizes, the present data are insufficient to
reliably introduce correction-to-finite-size-scaling terms.) For
off-critical values of η, plots of ln φ or ln χ versus ln L exhibit
significant curvature.

Applying this criterion to a set of high-statistics studies,
using 30–60 independent realizations (with 106 MC relaxation
steps followed by time averages over the subsequent 2 × 106

steps, for a series of η values in the critical region), we obtain
ηc = 0.451 034(1) and 0.451 021(6) based on the data for φ

and χ , respectively. Figure 14 shows the order parameter and
its scaled variance for η = 0.451 034 for the five system sizes
analyzed in this work; these data are well fitted by a linear
expression.

Analysis of the resulting curvatures of log-log plots of
the order parameter and its scaled variance versus L, com-
bined with the value of ηc obtained via analysis of the
cumulant crossings, permits us to restrict ηc to the interval
[0.451 030, 0.451 036]. Interpolating the slopes of the least-
squares linear fits to the data for ln φ (and ln χ ) as a function of
ln L, for η = 0.451 030, 0.451 032, 0.451 034, and 0.451 036,
and taking into account error propagation, we obtain the criti-
cal exponent estimates

β

ν
= 0.138(3),

γ

ν
= 1.70(2). (7)

The values of the corresponding quantities for the three-
state Potts model in two dimensions are β/ν = 2/15 =
0.133 . . . and γ /ν = 26/15 = 1.733 . . . [36]. Thus our

014109-10



THREE-STATE ACTIVE LATTICE GAS: A DISCRETE … PHYSICAL REVIEW E 110, 014109 (2024)

FIG. 14. A log-log plot of (a) φ and of (b) χ for η = 0.451 034. Error bars are smaller than the symbols.

estimates for both β/ν and γ /ν are quite close to the Potts
model values. The small discrepancies (about 4% and 2% for
β/ν and γ /ν, respectively) are likely due to the limited range
of system sizes and possible corrections to finite-size scaling.
(This is reflected in the fact that, while our three estimates for
ηc differ by less than 0.007%, the values, with their respective
uncertainties, are mutually incompatible.)

We conclude that at full occupancy, the critical behavior of
our model is consistent with that of the three-state Potts model
in two dimensions. This is of course to be expected, since the
symmetry of the three-state majority-vote model is precisely
that of the corresponding Potts model [25].

2. Density 0.1

While the phase transition at full occupancy is clearly con-
tinuous, our analysis at the much lower density of 0.1 yields
strong evidence of a discontinuous transition between the IB
and DA phases. In preliminary studies, we perform simula-
tions extending to 106 MC steps, using two kinds of ICs: (i) a
single IB with vapor and (ii) completely random positions and
velocities. Initial configurations for case (i) are prepared by
allowing 30 independent realizations to relax for 106 MC steps
using η = 0.31 and an IC similar to Fig. 2(b) and saving the
final configuration of each realization. Subsequently, for each
independent realization of the ordering studies, we randomly
select one of these 30 configurations as the IC and allow the
system to relax for an additional 4 × 105 MC steps at the new
value of η before collecting data.

Figure 15 shows φ versus η for system sizes L = 257
and 513, yielding several key observations. First, the IB is
the more stable configuration for low noise values. Second,
the steady state depends on the initial configuration for η ∈
[0.310, 0.345]. Third, the order parameter appears to jump
from a positive value to zero at the IB to DA transition.

For both of the sizes studied, the curves for φ obtained
using IB and random ICs are essentially identical for η in the
interval [0.1, 0.3]. In this range, the steady-state configuration
remains a single IB for IB initial configurations and consists
of one or two IBs when using random ICs.

The above results confirm the stability of the IB steady
state for low noise, bistability of the steady state for

intermediate noise, and an apparent jump in the order param-
eter at the IB to DA transition. Taken together, they motivate
a search for hysteresis, which we perform as follows. We gen-
erate 12 independent realizations with L = 513 and ρ = 0.1,
starting from η = 0.28, and gradually increase the noise inten-
sity (using increments �η = 0.003) until the system, initially
in the IB phase, exhibits a transition to the DA phase. We
subsequently reverse the process, slowly decreasing η until
the system returns to the IB phase. Following each change in
η, we allow the system to relax for 105 MC steps. Figure 16
shows φ versus η for the 12 independent realizations; each
exhibits a hysteresis loop.

We note that the upper terminal points of the hysteresis
loops all fall in the η interval [0.343, 0.346], marking the
stability limit of the IB phase. By contrast, transitions from
the DA to the IB occur over a broader interval [0.307, 0.316].
(The mean and standard deviation over the 12 studies are
0.313 and 0.002, respectively.)

Videos of the evolution near the stability limits (see the
Supplemental Material [28]) reveal that in both cases, the
transition requires the formation of a critical nucleus: of an
IB fragment capable of growing until it wraps the system, in

FIG. 15. Order parameter φ vs η for an IB initial configuration
(open circles) and for a random IC (closed circles), with density
ρ = 0.1 and system sizes (a) L = 257 and (b) L = 513.
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FIG. 16. Hysteresis curves obtained from 12 independent real-
izations. Arrows indicate increasing or decreasing η and resulting
upward or downward jumps in φ. The density ρ = 0.1 and system
size L = 513.

the transition from the DA to the IB, and of a critical “bubble”
within the IB at the inverse transition.

We also find clear signs of a discontinuous IB to DA
transition in the Binder cumulant. A key signature of a
discontinuous phase transition [associated with a bimodal
probability distribution for the order parameter (see the Sup-
plemental Material [28]) is a nonmonotonic dependence of U4

on noise intensity, including negative values in the vicinity of
the transition [31]. Figure 17 shows U4 for density ρ = 0.1.
For L � 65, regardless of the initial configuration, the cu-
mulant assumes negative values in the regions with abrupt
changes in φ, indicating that the phase transition is discon-
tinuous. (For L = 33 the behavior is typical of a continuous
transition, as might be expected for such a small system size.)

In summary, there are strong indications that for density
ρ = 0.1, the order-disorder transition is discontinuous. We
expect this to hold for even smaller densities and for some

FIG. 17. Dependence of U4 upon noise intensity for all sizes and
IC IB.

range of densities greater than 0.1, although we defer a precise
determination of this range and analysis of scaling at the
associated tricritical point to future study.

IV. CONCLUSION

We investigate a Vicsek-like model with excluded volume
on a triangular lattice, in which particles can only assume
three different velocities. The model exhibits a wide variety of
steady-state configurations, depending on the noise intensity,
density, initial configuration, and system size. Different from
Vicsek-like models without excluded volume [1,21], in which
the transition to order involves bands of mobile particles, here
excluded volume leads to condensed structures in which most
particles are immobile. For densities smaller than unity, con-
densed phases coexist with a low-density disordered vapor,
whose properties evolve continuously into those of the uni-
form disordered phase. Of the five condensed phases depicted
in Fig. 3, that consisting of a single IB is the most stable at
low noise intensities, regardless of system size, density, or
initial configuration. In certain cases, more than one type of
configuration can appear for the same set of parameters.

A previous study of an active four-state Potts model by
Peruani et al. [23] revealed ordered phases corresponding
(in our terminology) to an immobile band or a traffic jam
(TJI). The present model exhibits these phases as well as two
additional condensed structures: a mobile band and a second
type of traffic jam. The glider configurations reported in [23]
are not observed here. As noted in Sec. II, the differences in
the phase diagrams are quite plausible, given the differences
in lattice structure, number of states, and velocity-update pro-
cedure between the two models. Precisely which differences
allow certain states to appear in our model but not in that of
Ref. [23] nevertheless remains an open question.

Several studies of active matter models, both with
and without excluded-volume interactions, exhibit a dis-
continuous transition between ordered and disordered
phases [14,21,26,37–39]. Similar to the active Potts models
studied in [23,24], the nature of the order-disorder transition in
the present model changes from discontinuous, at low density,
to continuous at high density. This is similar to the behavior
observed in [40], in an active-matter model with geometric
frustration and a tendency to alignment, in continuous space.
While our model exhibits a single phase transition at very high
as well as very low densities, at intermediate densities, we
observe transitions between various phases, such as mobile
bands and traffic jams, at intermediate noise intensities. At
full occupancy, the model can be interpreted as a three-state
majority-vote model having the same symmetry as the three-
state Potts model. A finite-size-scaling analysis yields critical
exponent ratios of β/ν = 0.138(3) and γ /ν = 1.70(2), in fair
agreement with the exact values for the three-state Potts model
in two dimensions.

Our study leaves several open questions for future study:
probing the occurrence and stability of the non-IB con-
densed phases, pinpointing the change from a discontinuous
to a continuous order-disorder phase transition, investigating
the associated tricritical scaling, and understanding dynamic
aspects of the phase transition. A refined analysis of the
phase boundaries of non-IB condensed phases should include
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particle mobility and current, which change significantly at
the transition. Peruani et al. [23] suggested that the change
from a continuous to a discontinuous IB-DA transition coin-
cides when the density is that of the site-percolation threshold,
placing it at ρ = 0.5 on the triangle lattice. This is certainly
possible, although one might question the relevance of inde-
pendent percolation to a model with nontrivial correlations.
In fact, our results for the stability limits η− and η∗ shown in
Fig. 5 reveal a gap for densities as large as 0.96. If these results
(for L = 129) continue to hold for larger system sizes and
densities even nearer unity, it would imply that the transition
is discontinuous for all densities smaller than unity.

While this study has elucidated in some detail the phase
behavior of a simple active-matter system with EV and a
restricted set of velocities, we note that hard-core excluded-
volume interactions with a one particle per site restriction
frustrate flocking, since they cause a decoupling of the density

and ordering fields. Lattice models that relax the one-particle
rule or that employ soft-core repulsion are better suited to the
study of flocking [13,14,24].

Extensions of the present model include (i) incorporating
population dynamics, generating correlations between pop-
ulation and order, and (ii) including attractive interactions,
which should allow one to study ordering free from the artifice
of periodic boundaries.
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