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The k-cardinality unbalanced assignment problem asks for assigning k “agents” to k “tasks” on a one-to-one
basis, while minimizing the total cost associated with the assignment, with the total number of agents N and the
total number of tasks M possibly different and larger than k. While many exact algorithms have been proposed to
find such an optimal assignment, these methods are computationally prohibitive when the problem is large. We
propose an approach to solving the k-cardinality assignment problem using techniques adapted from statistical
physics. This paper provides a full description of this formalism, including all the proofs of its main claims.
We derive a strongly concave free-energy function that captures the constraints of the k-assignment problem at
a finite temperature. We prove that this free energy decreases monotonically as a function of β, the inverse of
temperature, to the optimal assignment cost, providing a robust framework for temperature annealing. We also
prove that for large enough β values the exact solution to the k-assignment problem can be derived using simple
round-off to the nearest integer of the elements of the computed assignment matrix. We show that this framework
can be adapted to handle degenerate k-assignment problems. We describe a computer implementation of our
framework that is optimized for the GPU parallel architecture, using the library CUDA. This implementation
is found to be as efficient as state-of-the-art implementations of parallel Hungarian algorithms on generic
assignment problems, and orders of magnitude faster than those algorithms for pathological assignment cases.
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I. INTRODUCTION

Assigning a certain number of “tasks” to be performed by
“agents,” with each agent-task pairing being associated with a
cost, is a fundamental problem in combinatorial optimization
referred to appropriately as the “assignment problem.” What
is understood as tasks and agents is problem specific. In most
cases, the solution corresponds to the assignment with the
minimal total cost, i.e., the sum of the costs of the agent-
task that are paired. When the numbers of tasks and agents
are equal, each agent is assigned exactly one task, and all
tasks have been assigned. The problem is then referred to as
the balanced assignment problem, or alternatively, using the
language of graph theory, as the bipartite weighted match-
ing problem (for a comprehensive analysis of assignment
problems, see, for example, Ref. [1]). In many applications,
however, the numbers of tasks and agents may differ: the prob-
lem is then referred to as the unbalanced assignment problem.
Interests in solving the balanced and unbalanced problems
have been stimulated by applications in operational research,
economics, and data sciences, among others. With such a wide
range of applications, assignment problems have been and
remain a topic of research of equal importance for mathe-
maticians, statisticians, and computer scientists. In this paper,
we are interested in the unbalanced k-cardinality assignment
problem, in which the number of assignments is preset to
an integer value k, with k smaller or equal to the number of
tasks and agents. We propose an approximate solution to this
problem based on mean-field theory and show that it can be
modified to yield an exact solution in nondegenerate as well
as in degenerate situations in a computer efficient manner.

There are many types of unbalanced assignment problems.
All of them consider a few tasks that differ from the number of
agents. Some problems allow for multiple tasks to be assigned
to the same agent to compensate for the imbalance (when
the number of tasks is bigger than the number of agents),
while the most common problem still assigns a single task
to one agent, leaving some tasks and/or some agents un-
matched. This problem, referred to in the literature as the
k-cardinality assignment problem [2] is the main topic of
this paper. The generalization to unbalanced assignment prob-
lems allowing for agents performing multiple tasks or tasks
performed by multiple agents will be considered in a future
paper.

Let T be the set of tasks, and A the set of agents, with
cardinalities N1 = |T | and N2 = |A|. For sake of simplicity,
we will assume N1 � N2, but all arguments below would stay
the same if it was the reverse. The textbook approach for
solving the corresponding unbalanced assignment problem is
to reduce it to a balanced assignment problem. The simplest
reduction is to add N1 − N2 ghost agents, define arbitrary costs
(usually with value 0) between all the tasks and those agents,
and then solve the balanced assignment problem with N1 tasks
and N1 agents. While simple, this approach is not efficient
in terms of time and space complexities, especially when the
difference between N1 and N2 is large. In addition, it is limited
to assigning a task to all agents (or assigning an agent to all
tasks if N2 � N1), which limits the generality of the problem.
Instead, we introduce a constant k, defined as the cardinality
of the maximum matching between T and A. k is smaller than
N1 and N2 and at most k = min(N1, N2) (the latter being the
most common case). The problem is then to identify a subset
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T1 of T and a subset A1 of A, with |T1| = |A1| = k, and a
bijection f between T1 and A1 such that

V (k) =
∑
i∈A1

C(i, f (i)) (1)

is minimal, where C(i, f (i)) is the cost of assigning i ∈ A
with f (i) ∈ T . There are polynomial time algorithms that
directly solve this k-cardinality assignment problem without
relying to this transformation to a balanced problem. For
example, the Hungarian algorithm can readily be adapted to
the unbalanced case, with a time complexity of O(N1N2k +
k2 ln(min(N1, N2)) [3]. This algorithm is fast when k is
small. Even if we assume N1 > N2 and set k = N2, di-
rect application of this algorithm would be of order N1N2

2 ,
compared to an order N3

1 if we had made the reduction
to a balanced case, a difference that can be significant if
N2 � N1.

The Hungarian and most other existing algorithms [2,4,5]
for solving the unbalanced assignment problem are itera-
tive methods aimed at finding the best bijection f within
the discrete set of all possible partial permutations. These
methods are sequential in nature and therefore not easily
amenable to parallelization. There is still significant effort
put into parallelizing those assignment algorithms, espe-
cially since the introduction of GPGPU (for example, see
Refs. [6,7] and references therein). These efforts are associ-
ated with finding ways to parallelize parts of the algorithms,
and not their actual overall flowchart. We propose instead
to radically change the approach for solving unbalanced k-
cardinality assignment problems using continuous systems.
Our approach is motivated by statistical physics. It is a gen-
eralization of a method we have recently proposed to solve
the balanced assignment problem [8]. Our goals in this paper
are to

(i) Establish and validate a continuous framework for
solving the unbalanced k-cardinality assignment problem us-
ing statistical physics,

(ii) Establish that, in the generic case in which the k-
assignment problem has a unique solution, the framework
proposed above is guaranteed to converge arbitrarily close to
that solution, both in term of energy and assignment matrix,

(iii) Derive a modification of the method that is guaran-
teed to find at least one solution for degenerate k-cardinality
assignment problems with multiple solutions, and

(iv) Demonstrate that the implementation of this frame-
work can be efficiently parallelized on a general-purpose
GPU.

We emphasize that this formalism is not a mere adaptation,
but a full generalization of the framework we develop for
solving assignment problems [8]. In particular, new in this
paper are:

(i) A method to account for the fact that some tasks and/or
some agents are unassigned. We introduce indicator functions
over the sets of tasks and agents that are optimized along with
the transportation plan.

(ii) Establish the proofs of validity and convergence of our
algorithm for both the unbalanced case and the k-cardinality
assignment problem. The main results are provided in the text,
while the proof themselves are relegated to the Appendix for

more clarity. For the general balanced assignment problem,
those proofs relied heavily on the fact that the corresponding
transportation matrices are permutation matrices that are the
extreme points of the well characterized convex set of doubly
stochastic matrices (according to the Birkhoff–von Neumann
theorem [9,10]). For the unbalanced k-cardinality assignment
problem, the transportation matrices are sub-permutation ma-
trices with a fixed total sum of their elements (the value k that
defines the number of assignments). They belong to the con-
vex set of doubly substochastic matrices with fixed sums of
their elements, with properties akin to the Birkhoff–von Neu-
mann theorem (these properties are discussed in Appendix A).
The use of those properties to derive the convergence of our
algorithm for solving the k-cardinality assignment problem
is new.

Finally, we note that the method we introduce in this paper
is designed for unbalanced problems but remains valid for
balanced cases.

The paper is organized as follows. In Sec. II and III we
describe in detail the unbalanced k-cardinality assignment
problem and the framework we propose to solve this prob-
lem. Proofs of all important properties of this framework are
provided in the Appendices. Section IV briefly describes the
implementation of the method in a C++ program, UMatch-
ing. We highlight in this section the steps that have been taken
to parallelize the algorithm, as well as its adaptation to graph-
ics processing units (GPUs). Section V covers specifically the
spacial case of degenerate k-cardinality assignment problems.
In Sec. VI, we present some applications, with comparison
to the standard Hungarian algorithm. We conclude with a
discussion on future developments in Sec. VII.

II. k-CARDINALITY UNBALANCED
ASSIGNMENT PROBLEM

A. k-Cardinality assignment problem

In the Introduction, we related the k-cardinality assignment
problem to assigning k tasks to k agents, among N1 and N2

tasks and agents, respectively. We should note, however, that
the assignment problem is more general than that and that
“tasks” and “agents” should be seen as placeholders. Here
we provide a more general mathematical framework for the
k-cardinality assignment problem.

We consider two sets of points S1 and S2 with cardinalities
N1 and N2, respectively. We encode the cost of transporta-
tion between S1 and S2 as a positive matrix C(i, j) with
(i, j) ∈ [1, N1] × [1, N2]. We set the number of assignments
between points in S1 and S2 to be k, a constant, with k �
min(N1, N2). The unbalanced k-cardinality assignment prob-
lem (or k-assignment problem in short) can then be formulated
as finding a partial permutation matrix G of rank k that defines
the correspondence between points in S1 and points in S2.
This matrix is found by minimizing the matching cost U
defined as

U (G,C) =
∑
i, j

G(i, j)C(i, j), (2)

where the summations extend over all i in S1 and j in S2. In
this equation, C is given, while G is variable. The minimum
of U is to be found for the values of G(i, j) that satisfy the
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following constraints

∀i,
∑

j

G(i, j) = n1(i),

∀ j,
∑

i

G(i, j) = n2( j),

∑
i

n1(i) =
∑

j

n2( j) =
∑

i

∑
j

G(i, j) = k,

∀(i, j), G(i, j) ∈ {0, 1},
∀i, n1(i) ∈ {0, 1},
∀ j, n2( j) ∈ {0, 1}, (3)

where indices i and j are associated with S1 and S2, re-
spectively. In these equations, G(i, j), n1(i), and n2( j) are
unknown, defining a total of N1N2 + N1 + N2 variables, while
k is a constant.

The solution to the unbalanced k-cardinality assignment
problem defines the indicator functions n∗

1 and n∗
2 on S1 and

S2, respectively, which identify the subsets of S1 and S2 that
are in correspondence, the partial permutation matrix G∗ that
defines those correspondence, and the minimum matching
cost U ∗ = U (G∗,C).

Minimizing Eq. (2) under the constraints (3) is a dis-
crete optimization problem, namely an integer linear program
problem. The corresponding transportation matrix G is a k
partial permutation matrix (see Appendix A for a brief re-
view on such matrices and their properties). We solve it
using a statistical physics approach by rephrasing it as a
temperature-dependent problem with real variables, with the
integer optimal solution found at the limit of zero temperature.
This relaxed version of the unbalanced assignment problem is
a special case of a discrete optimal transport (OT) problem
[11,12]. The solutions of the relaxed problem are doubly
substochastic matrices (see Appendix A). Many methods have
been proposed for solving the OT problem, from directly solv-
ing the linear system to solving entropy-regularized version of
this system [13]. Here we introduce a modified version of our
statistical physics approach for solving this problem [14,15].
We had presented a simplified version to solve the balanced
assignment problem [16]. The version that is presented be-
low is more general. It allows for solving the unbalanced
k-cardinality assignment problem as well as the balanced as-
signment problem, since for the balanced case, we just need
to set N1 = N2 and k = N1.

B. Effective free energy for the unbalanced k-cardinality
assignment problem

Solving the unbalanced k-cardinality assignment problem
amounts to finding the minimum of a function defined by
Eq. (2) over the space of possible partial mappings between
the two discrete sets of points considered. If this function
is reworded as an “energy,” then statistical physics allows
for a different perspective on how to solve this problem.
Indeed, finding the minimum of an energy function is then
equivalent to finding the most probable state of the system
it characterizes. In the unbalanced k-cardinality assignment
problem between two sets S1 and S2, the “system” is identified

with the different binary transportation plans between S1 and
S2 that satisfy the constraints (3). Those plans belong to the
polytope of partial permutation matrices of rank k, which
we have denoted as PN1,N2 (k). Each state in this system is
identified with a transportation plan G ∈ PN1,N2 (k), and its
corresponding energy U (G,C) is defined in Eq. (2). The prob-
ability P(G, n1, n2) associated with a transportation plan G
and indicator functions n1 and n2 is defined as

P(G, n1, n2) = 1

Z (β )
e−βU (G,C). (4)

In this equation, β = 1/kBT where kB is the Boltzmann con-
stant and T the temperature, and Z (β ) is the partition function
computed over all states of the system. This partition function
is given by

Zβ = e−βFβ

=
∫

G∈PN1 ,N2 (k)
dG

N1∑
i=1

∑
n1(i)∈{0,1}

N2∑
j=1

∑
n2( j)∈{0,1}

e−βU (G,C), (5)

where F (β ) is the free energy of the system. This free energy
is of limited practical interest as it cannot be computed ex-
plicitly. We propose a scheme for approximating it using the
saddle point approximation.

Taking into account the constraints in Eqs. (3) the partition
function can be written as

Zβ =
∑

G(i, j)∈{0,1}

∑
n1(i)∈{0,1}

∑
n2( j)∈{0,1}

e−β
∑

i, j C(i, j)G(i, j)

×
∏

i

δ

⎛
⎝∑

j

G(i, j) − n1(i)

⎞
⎠

×
∏

j

δ

(∑
i

G(i, j) − n2( j)

)
δ

⎛
⎝∑

i, j

G(i, j) − k

⎞
⎠. (6)

The sums impose that the G(i, j), n1(i), and n2( j) take values
of 0 or 1 only. The constraints are imposed through the δ

functions (with δ(x) = 1 if x = 0, and δ(x) = 0 otherwise).
We use the Fourier representation of those δ functions, thereby
introducing new auxiliary variables x, λ(i), and μ( j), with
i ∈ [1, N1] and j ∈ [1, N2]. The partition function can then be
written as (up to a multiplicative constant), after rearrange-
ments

Zβ =
∫ +∞

−∞

∏
i

dλ(i)
∫ +∞

−∞

∏
j

dμ( j)
∫ +∞

−∞
dxeiβkx

×
∑

n1(i)∈{0,1}

∑
n2( j)∈{0,1}

eβ(
∑

i iλ(i)n1(i)+∑
j iμ( j)n2( j))

×
∑

G(i, j)∈{0,1}
e−β

∑
i, j G(i, j)(C(i, j)+iλ(i)+iμ( j)+ix), (7)

where i is the imaginary square root of unity (i2 = −1). Note
that we have scaled the auxiliary variables x, λ, and μ by a
factor β for scale consistency with the energy term. Perform-
ing the summations over the variables G(i, j), n1(i), and n2( j),
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we get

Zβ =
∫ +∞

−∞

∏
i

dλ(i)
∫ +∞

−∞

∏
j

dμ( j)
∫ +∞

−∞
dxe−βFβ (λ,μ,x),

where Fβ (λ,μ, x) is a functional, or effective free energy that
depends on the variables λ, μ, and x that is defined by

Fβ (λ,μ, x) = − 1

β

∑
i

ln[1 + eiβλ(i)]

− 1

β

∑
j

ln[1 + eiβμ( j)] − ikx

− 1

β

∑
i, j

ln[1 + e−β(C(i, j)+iλ(i)+iμ( j)+ix)]. (8)

The effective free energy Fβ (λ,μ, x) depends on N1 + N2 + 1
unconstrained variables λ(i), μ( j), and x. In the following we
will show how finding the extremum of this function allows
us to solve the augmented assignment problem.

C. Optimizing the effective free energy

Let G(i, j), n1(i), and n2( j) be the expected values of
G(i, j), n1(i), and n2( j), respectively, with respect to the
Gibbs distribution given in Eq. (4). We use a saddle point
approximation (SPA) to compute those values, namely we
compute extrema of the effective free energy with respect to
the variables λ μ, and x:

∂Fβ (λ,μ, x)

∂λi
= 0,

∂Fβ (λ,μ, x)

∂μ j
= 0,

∂Fβ (λ,μ, x)

∂x
= 0. (9)

After some rearrangements, those two equations can be writ-
ten as

∀i,
∑

j

X (i, j) = d1(i), (10a)

∀ j,
∑

i

X (i, j) = d2( j), (10b)

∑
i, j

X (i, j) = k, (10c)

where

X (i, j) = h[β(C(k, l ) + iλ(i) + iμ( j) + ix)],

d1(i) = h(−iβλ(i)), (11)

d2( j) = h(−iβμ( j)),

and

h(x) = 1

ex + 1
. (12)

Note that this system is based on N1 + N2 + 1 variables,
the λ(i) for i ∈ [1, N1], μ( j) for j ∈ [1, N2], and x. As is
often the case, the saddle-point may be purely imaginary. In
the present case, one can easily see from Eq. (10) that the
variables iλ(i), iμ( j), and ix must be real and in the following,
we will replace {iλ(i), iμ( j), ix} by {λ(i), μ( j), x}.

To analyze the SPA, we need to check the existence and
assess the unicity of the critical points of the free energy. The
following theorem shows that Fβ (λ,μ, x) is strictly concave.

Theorem 1. The Hessian of the effective free energy
Fβ (λ,μ, x) is negative definite. Therefore, the free-energy
function is strictly concave.

Proof. See Appendix B. �
We have the following property that relates the solutions

of the SPA system of equations to the expected values for the
transportation plan and indicator functions:

Property 1. Let Sβ be the expected state of the system at
the temperature β with respect to the Gibbs distribution given
in Eq. (4). Sβ is associated with an expected transportation
plan Gβ and expected indicator functions n1β and n2β . Let
λMF (i), μMF ( j), and xMF be the solutions of the system of
Eqs. (10). Then the following identities hold:

Gβ (i, j) = h(β(C(i, j) + λMF (i) + μMF ( j) + xMF )),

= X MF (i, j),

n1β (i) = h(−βλMF (i)) = dMF
1 (i),

n2β ( j) = h(−βμMF ( j)) = dMF
2 ( j). (13)

Note that the solutions are mean-field solutions, hence the
superscript MF .

Proof. See Appendix C. �
For a given value of the parameter β, n1β and n2β are

indicators of the elements of S1 and S2 that are in correspon-
dence and Gβ forms a transportation plan between S1 and
S2 that is optimal with respect to the free energy defined in
Eq. (8). Note that these values are mean values and possibly
fractional. They will only be exactly 0 or 1 at β = +∞, i.e.,
at 0 temperature. We can associate to this transportation plan
an optimal free energy F MF

β and an optimal internal energy

U MF
β = ∑

i, j Gβ (i, j)C(i, j). Those two values are the mean-
field approximations of the exact free energy and internal
energy of the system, respectively. We now list important
properties of U MF

β and F MF
β :

Property 2. F MF
β and U MF

β are, respectively, monotonic
increasing and monotonic decreasing functions of the
parameter β.

Proof. See Appendix D for F MF
β and Appendix E

for U MF
β . �

Theorem 1 and Property 2 highlight a number of ad-
vantages of the proposed framework that rephrases the
unbalanced assignment problem as a temperature depen-
dent process. First, at each temperature the unbalanced
k-cardinality assignment problem is turned into a strongly
concave problem with a unique solution. This problem has
a linear complexity in the number of variables, compared to
the quadratic complexity of the original problem. The con-
cavity allows for the use of simple algorithms for finding a
minimum of the effective free-energy function [Eq. (8)]. We
note also that Eqs. (13) provides good numerical stability for
computing the transportation plan and the indicator functions
n1 and n2, because of the behavior of the function h(x) (see
below). Finally, the convergence as a function of temperature
is monotonic.
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D. Rewriting the free energy

Equation (8) provides an expression for the free energy of
the system as a function of the unconstrained variables λ(i),
μ( j), and x. As written, this free energy does not have a stan-
dard form as seen in thermodynamics as it does not include
the corresponding energy U , nor does it define an entropy S
(both are functions of the same unconstrained variables. We
derive a new form for the free energy. The internal energy is

Uβ (λ,μ, x) =
∑
i, j

C(i, j)X (i, j),

where X (i, j) is defined in Eq. (11). We define the function f
for x ∈ (0, 1):

f (x) = −x ln(x) − (1 − x) ln(1 − x). (14)

We have the following property:
Theorem 2. The effective free energy of the assignment

problem can be written as

Fβ (λ,μ, x)

= Uβ (λ,μ, x) − T Sβ (λ,μ, x)

+ x

⎛
⎝∑

i, j

X (i, j) − k

⎞
⎠ +

∑
i

λ(i)

⎛
⎝∑

j

X (i, j) − d1(i)

⎞
⎠

+
∑

j

μ( j)

(∑
i

X (i, j) − d2( j)

)
, (15)

where we have defined the entropy S as

Sβ (λ,μ, x)

=
∑
i, j

f (X (i, j)) +
∑

i

f (d1(i)) +
∑

j

f (d2( j)), (16)

where X , d1, and d2 are defined in Eq. (11)/ In particular, at
the maximum of the free energy,

U MF
β =

∑
i, j

C(i, j)Gβ (i, j),

SMF
β =

∑
i, j

f (Gβ (i, j)) +
∑

i

f (n1β (i)) +
∑

j

f (n2β ( j)),

F MF
β = U MF

β − T SMF
β . (17)

Proof. See Appendix F. �
The form of the free energy given in Eq. (15) has an

intuitive physical interpretation. The first term is the original
k-cardinality assignment energy, the second is −T times an
entropy term, and the third, fourth, and fifth terms impose
the constraints via Lagrange multipliers. At the saddle point,
those constraints are satisfied, and the free energy has its
generic form of energy minus temperature times entropy. The
entropy term involves the function f applied on the converged
Gβ (i, j), n1β (i), and n2β ( j). This function can be seen as a
double entropic barrier, imposing that those variables remain
within (0,1). It is only at T = 0 (β = +∞) that they will take
either the value 0 or 1.

III. SOLVING THE GENERIC k-ASSIGNMENT PROBLEM

In the previous section, we have described a formalism
based on statistical physics for solving the unbalanced k-
cardinality assignment problem. We have derived an effective
free energy, Fβ (λ,μ, x), that depends on N1 + N2 + 1 uncon-
strained variables λ, μ, and x. We have shown that this free
energy is strictly concave and that its maximum is found
by solving a system of nonlinear equations, at each inverse
temperature β. We have also shown that the trajectory of the
maxima F MF(β ) as a function of β is monotonic, increasing.
We need to establish now that this trajectory allows us to
find the actual solution of the unbalanced k-cardinality as-
signment problem. Recall that this solution is defined by a
transportation matrix G∗ and its corresponding energy U ∗. In
this section, we will assume that the assignment problem is
nondegenerate and that it has a unique solution. We will fully
characterize what it means in the next section.

We first prove that the optimal assignment energy U ∗, is
equal to the infinite inverse temperature limit of both the
mean-field free energy and the internal energy:

Theorem 3.

U ∗ = lim
β→+∞

F MF
β ,

U ∗ = lim
β→+∞

U MF
β . (18)

Proof. See Appendix G. �
As the trajectories of F MF

β and U MF
β as a function of β were

already found to be respectively monotonically increasing and
monotonically decreasing, this theorem adds the information
that at the infinite inverse temperature limit (or equivalently
at the zero-temperature limit), both converge to the opti-
mal assignment energy. These results validate our statistical
physics approach and the saddle-point approximation. Note
however that they define the behavior of the energy and
free energy, and not of the coupling matrix Ḡβ = X MF. As
Gβ (i, j) = h(β(C(i, j) + λMF(i) + μMF( j) + xMF)) and 0 <

h(x) < 1, the coupling matrix at a finite temperature is frac-
tional. We need to show that as β → +∞, the corresponding
matrix G∞ does converge to the partial permutation matrix
G∗, and not to a fractional matrix that would lead to the same
low energy U ∗.

We first establish bounds on the entropy, internal en-
ergy, and free energy at the SPA. Let us define A(N1, N2) =
N1N2 ln(2) + N1 ln(2) + N2 ln(2); then

Theorem 4.
0 � SMF

β � A(N1, N2), (19)

U ∗ − A(N1, N2)

β
� F MF

β � U ∗, (20)

U ∗ � U MF
β � U ∗ + A(N1, N2)

β
. (21)

Proof. See Appendix H. �
The two previous theorems are valid for all unbalanced

k-cardinality assignment problems. We establish now bounds
on the element of the assignment matrix Gβ in the specific case
that this k-cardinality assignment problem has a unique solu-
tion. The matrix Gβ denotes the unique doubly substochastic
matrix associated with the minimum of the free energy at
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the inverse temperature β. The next theorem bounds how
close this doubly substochastic matrix is to the unique partial
permutation matrix, G∗, representing the optimal solution to
the unbalanced assignment problem.

Theorem 5. Suppose that the unbalanced k-cardinality as-
signment problem associated with the N1 × N2 cost matrix C
admits a unique optimal partial assignment matrix, G∗. Let �

be the difference in total cost between the optimal solution
and the second-best solution. Then,

max
i, j

|Gβ (i, j) − G∗(i, j)| � A(N1, N2)

β�
. (22)

Proof. See Appendix I. �
This theorem validates that in the generic case in which the

solution to the unbalanced k-cardinality assignment problem
is unique, the converged solution matrix G∞ is this unique
solution to the unbalanced k-cardinality assignment problem,
G∗. In addition, it provides bounds to how close Gβ is from the
optimal solution at any inverse temperature β. For example,

Theorem 6. Suppose that the unbalanced k-cardinality as-
signment problem associated with the N1 × N2 cost matrix C
admits a unique optimal partial assignment matrix, G∗. Let �

be the difference in total cost between the optimal solution
and the second-best solution. Then, rounding-off each of the
entries of Gβ to the nearest integer yields the partial permuta-
tion matrix G∗ that solves the k-assignment problem whenever

β >
2A(N1, N2)

�
.

The proof follows directly from Theorem 5 and from the
fact that rounding off to the nearest integer will yield the
optimal assignment matrix whenever,

max
i, j

|Gβ (i, j) − G∗(i, j)| < 1
2 .

We conclude that in the generic case we can solve the
unbalanced k-cardinality assignment problem exactly at finite,
although sufficiently high inverse temperature β. We should
highlight, however, that Theorem 6 is not easy to implement
as it is difficult to estimate �. As an alternate to this theorem,
we propose the following theorem:

Theorem 7. Suppose that the unbalanced k-cardinality as-
signment problem associated with the N1 × N2 cost matrix C
admits a unique optimal partial assignment matrix, G∗. Let us
assume that at an inverse temperature β, the current solution
matrix Gβ contains exactly k values that are greater or equal to
1
2 . Then, rounding-off each of the entries of Gβ to the nearest
integer yields the partial permutation matrix G∗ that solves the
unbalanced k-cardinality assignment problem.

Proof. See Appendix J. �
This theorem defines a criterion that is easily implemented

(we will see below) to terminate the annealing process in β

when solving the unbalanced k-cardinality assignment prob-
lem with our method.

IV. IMPLEMENTATION

We have implemented the unbalanced k-cardinality as-
signment framework described here in a C++ program
UMatching that is succinctly described in Algorithm 1.

ALGORITHM I. UMatching: a temperature dependent frame-
work for solving the unbalanced k-cardinality assignment problem.

Input: The sizes associated to the problem: N1 and N2, the
number of agents and tasks, and k, the expected number
of assignments; the cost matrix C. Initial value β0 for β

Initialize: Initialize arrays λ and μ to 0 and initialize x = 0. Set
ST EP = √

10.
for i = 1, . . . until convergence do

(1) Initialize β i = ST EP ∗ β i−1.
(2) Solve nonlinear Eqs. (10) for λ, μ, and x at saddle point
(3) Compute corresponding Gβ , n1β , n2β , and U MF

β

(4) Check for convergence: if Gβ contains exactly k values
that are greater than 0.5, stop

end for
Output: The converged assignment matrix 	Gβ
, the indicator
functions 	n1β
, 	n2β
 over the agents and tasks, and the
minimal associated cost Uβ .

UMatching is based on an iterative procedure in which
the parameter β (inverse of the temperature) is gradually
increased. At each value of β, the nonlinear system of equa-
tions defined by Eq. (10) is solved. We write this system as

Aλ = 0, Aμ = 0, Ax = 0,

where A = (Aλ, Aμ, Ax ) is a vector of predicates defined as

Aλ(i) =
∑

j

1

eβ(C(i, j)+λ(i)+μ( j)+x) + 1
− 1

e−βλ(i) + 1
,

Aμ( j) =
∑

i

1

eβ(C(i, j)+λ(i)+μ( j)+x) + 1
− 1

e−βμ( j) + 1
,

Ax =
∑
i, j

1

eβ(C(i, j)+λ(i)+μ( j)+x) + 1
− k.

This system has N1 + N2 + 1 equations, with the same
number of variables. It is solved using an iterative Newton-
Raphson method (for details, see, for example, Refs. [8,15]).
Once the SPA system of equations is solved, the assignment
matrix Gβ , the indicator functions n1β , n2β and the corre-
sponding transportation energy U MF(β ) are computed. Using
Theorem 7, the iterations over β are stopped if the matrix Gβ

contains exactly k values that are larger than 0.5. Otherwise,
β is increased, and the current values of λ, μ and x are
used as input for the following iteration. At convergence, the
values of the assignment matrix and indicator functions are
rounded to the nearest integer (indicated as 	
 in the output of
Algorithm 1). The minimal energy is then computed using the
corresponding integer matrix.

As for any annealing scheme, the initial temperature, or,
in our case, the initial value β0 is a parameter that signifi-
cantly impacts the efficiency of the algorithm. Setting β0 to
be too small (i.e., a high initial temperature) will lead to inef-
ficiency as the system will spend a significant amount of time
at high temperatures, while setting β0 too high will require
many steps to converge at the corresponding low temperature,
thereby decreasing the efficiency brought by annealing. The
value of β scales the cost matrix C and as such is related to
the range of this matrix, more specifically to its largest value,
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Cmax. We found that setting β0Cmax = 1 provides satisfactory
annealing efficiency for all test cases presented in the numeri-
cal simulation sections. We cannot exclude that there are cases
for which this settng is not optimal. This is a general concern
with annealing procedures.

The main computing cost of this algorithm is associated
with solving the nonlinear set of equations corresponding to
the SPA at each value of β. As the free-energy function asso-
ciated with this system is concave (see Theorem 1), we use
the Newton-Raphson method. This method works by itera-
tively linearizing the system of equations. It therefore requires
solving linear systems of equations. We have implemented the
MINRES [17] iterative method to solve those linear system.
This method, as well as all the linear algebra involved in the
algorithm can easily be implemented on a graphics processor
unit (GPU), using the CUDA toolkit and the associated opti-
mized cuBLAS library [18].

V. SOLVING DEGENERATE ASSIGNMENT PROBLEMS

Our statistical physics approach is basically a relaxation
approach to the unbalanced assignment problem. Indeed, we
build a collection of real matrices Ḡβ that minimizes the
assignment cost and that are doubly substochastic. Those
matrices are strictly doubly substochastic, i.e., their entries
and non integer values in the interval (0,1). If the unbalanced
k-cardinality assignment problem is known to have a unique
integer solution, then we have shown that those matrices con-
verge to a binary partial permutation matrix G∗ that solves
the problem when β → +∞. We have even established a
criterion for terminating the numerical procedure to reach that
convergence. The question remains as to what happens when
the problem is degenerate, i.e., when it may have multiple
integer solutions.

The unbalanced k-cardinality assignment problem is a lin-
ear programming problem. Checking if such a problem is
degenerate is unfortunately often NP complete [19,20]. The
degeneracies occur due to the presence of cycles in the linear
constraints, i.e., in the cost matrix for the assignment problem.
If this is the case, then we propose to randomly perturb that
matrix to bring it back to the generic problem. Megiddo and
Chandrasekaran [21] have shown that a ε-perturbation of a
degenerate linear programming problem reduces this problem
to a nondegenerate one. We state this result as follows for the
unbalanced assignment problem:

Property 3. Suppose that the solution Gβ to the unbalanced
k-cardinality assignment problem associated with the N1 × N2

cost matrix C has a nonzero entropy SMF (β ) when β → +∞.
Let � be the difference in total cost between the optimal
solution and the second-best solution. Then, adding random
uniform noise with support [0, α] to each value of C and
solving the unbalanced assignment problem on this perturbed
matrix will generate one integer solution that is also a solution
to the unperturbed unbalanced assignment problem, whenever
α < �

2k .
Proof. The result on the use of a perturbation to get a

nondegenerate solution follows from Ref. [21]. The result
on the bound for α is very similar to the equivalent result
for the balanced assignment problem that can be found in
Appendix H of Ref. [16]. �

This proposition gives us a general strategy for solving a
minimum cost unbalanced k-cardinality assignment problem
for any cost matrix C:

(a) Solve the unbalanced k-cardinality assignment prob-
lem using the statistical physics approach described in the
previous section. If the entropy converges to 0 as β → +∞,
then the solution is guaranteed to be a partial permutation.
This matrix can be derived by rounding-off each element of
Gβ whenever it contains exactly k values that are greater
than 0.5.

(b) If the approach described in option (a) fails, i.e., the
entropy does not converge to 0 or Gβ never contains k values
that are greater than 0.5, then the problem is deemed degener-
ate. To remove this degeneracy, we propose to scale the values
of the cost matrix so that they become integer, in which case �

is necessarily an integer value. We then start by assuming that
� = 1 and set α = 1/(2k). We then repeat the optimization
of the transportation plan. If it still does not converge [i.e.,
based on the criteria of option (a)], then we can increase α

by a factor of 2 iteratively, until the system converges, The
solution to this perturbed problem will also be a solution to
the original problem.

VI. NUMERICAL SIMULATIONS

In this section we describe numerical experiments de-
signed to illustrate the behavior and assess the validity and
convergence of our algorithm (A), as well as its efficiency
compared to other generic algorithms for solving balanced
and k-cardinality assignment problems (B).

A. Correctness of our algorithm

The next three subsections relate to assessment for contin-
uous random cost matrices, for discrete random cost matrices,
and for special matrices corresponding to hard assignment
problems for the Hungarian algorithm [22,23], respectively.

1. Random k-cardinality assignment problems
with continuous cost matrices

Results of assignment problems are anecdotic in the sense
that they are problem dependent. Random assignment prob-
lems are exceptions, however, as they are many theoretical
results associated with them (for review, see Ref. [24]). Let
us consider the k-cardinality assignment problem between
two sets of points of size N1 and N2, respectively. If the
elements C(i, j) of the cost matrix are independent and iden-
tically distributed (iid) exponential with mean of 1, then the
expected value of the minimum k-assignment cost, U ∗

N1,N2
has

the form

E
[
U ∗

N1,N2

] =
∑
i, j�0
i+ j<k

1

(N1 − i)(N2 − j)
, (23)

where (i, j) ∈ [1, N1] × [1, N2]. This equality was first con-
jectured and verified for the cases k = 1, k = 2, k = N1 =
3, k = N1 = N2 = 4 by Ref. [25]. It was validated again
by Ref. [26] for k � 4, k = N1 = 5, and k = N1 = N2 = 6,
and finally proven independently by Refs. [27,28] (see also
Ref. [29]). Note that in the special case k = N1 = N2, the
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FIG. 1. Convergence of the internal energy U MF
β (circle, red) and

free energy F MF
β (star, blue) as a function of β when solving a random

k-assignment problem with a cost matrix C of size 2000 × 3000
whose elements are independent identically distributed values drawn
from exponential distributions with mean 1, with k = 1000. We show
the bounds on the internal energy and on the free energy computed
from the theoretical bounds given in Theorem 4 as a light shaded
red patch (positive part of the plot) and as a shaded blue patch
(negative part of the plot), respectively. The dotted horizontal line
show the expected value for the minimal cost of an exponential
random k-assignment problem of the same size.

equality is equivalent to

E
[
U ∗

N1,N2

] =
N1∑

i=1

1

i2
.

This equality for the balanced assignment problem was ini-
tially conjectured by Parisi [30] and proved by Linusson and
Wästlund [27]. We note that such random problems are guar-
anteed to have a unique solution: as the elements of the cost
matrix are iid variables, there is a zero probability that they
can form cycles; the corresponding assignment problem has a
unique solution matrix whose entries are 0 or 1.

As a first illustration of our procedure, we ran UMatch-
ing on a random cost matrix with exponential distributions
with mean 1 of size 2000 × 3000, solving the k-assignment
problem with k = 1000. In Fig. 1, we show the correspond-
ing trajectories of the internal energy U MF

β and free energy
F MF

β as well as the theoretical bounds on those values given
in 4. As expected, the internal energy is monotonically de-
creasing while the free energy is monotonically increasing,
and both converge to the same value, 0.119. Note that from
Eq. (23), the expected value of the minimum cost associated
with a matrix of this size and k = 1000 is E [U ∗] = 0.115,
i.e., very close to the value observed with the specific cost
matrix that was generated for this example. Note also that
both the internal energy and the free energy have basically
converged for β > 107. This is confirmed as we found that the
matrix Gβ contained exactly k = 1000 values that are greater
than 0.5 when β > 107, i.e., the procedure could have been
stopped then.

FIG. 2. The converged internal energy U MF
+∞ as a function of k

when solving a random k-cardinality assignment problem with a cost
matrix C of size 2048 × 2048 (left, red), 4096 × 4096 (center, blue),
and 8192 × 8192 (right, black), whose elements are independent
identically distributed values drawn from exponential distributions
with mean 1. At each value of k, 10 experiments were performed; the
mean values are shown as a solid line and the corresponding standard
deviations are illustrated with a shaded area. The corresponding
theoretical values given by Eq. (23) are shown as dashed lines; in
all three cases, they overlap with the mean value lines.

Our second experiment considers three types of random
cost matrices with exponential distributions with mean 1 of
size N × N , with N = 2048, 4096, and 8192, respectively.
For each matrix we solve the k-cardinality assignment prob-
lem for values of k varying from 128 to N . For each value
of k, we ran 10 different random instances and computed
the mean value and standard deviation of the corresponding
converged minimal costs, U ∗, where convergence is detected
based on Theorem 7. In Fig. 2, we plot the converged en-
ergies as a function of k for each value of N , as well as
the corresponding theoretical values for the expectancy of
U ∗, given by Eq. (23). Note that the curves of the mean
values of the converged energy and of the theoretical values
for the expectancies of those energies overlap, showing full
agreement.

2. Random balanced assignment problems
with discrete cost matrices

One of the advantages of using continuous random cost
matrices is that the assignment problem is nondegenerate. Dis-
crete random cost matrices offer an interesting departure from
this, as they are likely to include cycles and therefore to lead to
degenerate assignment problems. To assess the ε-perturbation
approach described in the previous section is able to solve
such degenerate problems, we considered the four types of
discretely distributed random cost matrices C of size N × N
considered by Parviainen [31]:

(a) Each row of Ca is an independent random permutation
of the set {1, 2, . . . , N}, chosen uniformly from the set of
permutations.
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(a) (b)

(c) (d)

FIG. 3. The converged normalized minimal cost as a function of N when solving a discrete random assignment problem with a cost matrix
of size N × N whose elements are randomly selected based on schemes (a) [panel (a)], (b) [panel (b)], (c) [panel (c)], and (d) [panel (d)] (see
text for details on those schemes). At each value of N , 100 experiments were performed; the mean values are shown as a solid line and the
corresponding standard deviations are illustrated with a grey shaded area. The limits on corresponding theoretical values given by Eq. (24) are
shown as dashed red lines.

(b) Each element of Cb is an independent random number
chose uniformly in {1, 2, . . . , N}.

(c) Cc is an independent random permutation of the
set {1, 2, . . . , N2}, chosen uniformly from the set of
permutations.

(d) Each element of Cd is an independent random number
chose uniformly in {1, 2, . . . , N2}.

Note that all these problems are balanced, with k = N .
In all four problems, the minimal cost is a function of N .

To remove this dependence, we normalize the cost as follows:

La
N = 1

N
U (G∗,Ca),

Lb
N = 1

N
U (G∗,Cb),

Lc
N = 1

N2
U (G∗,Cc),

Ld
N = 1

N2
U (G∗,Cd ),

where the superscripts (a, b, c, and d refer to the type
of discrete assignment problem considered. Parviainen [31]

established the following properties of the expected val-
ues for the minimal costs when N → +∞ (i.e., E [L] =
limN→+∞ E [LN ]):

π2

6
� E [La] � 2,

π2

6
+ 12

24
� E [Lb] � π2

6
+ 13

24
, (24)

E [Lc] = E [Ld ] = π2

6
.

We ran four type computational experiments, one for each
type of discrete random cost described above. In each ex-
periment, we considered 100 random discrete cost matrices.
For each matrix, we solved the assignment problem using
UMatching for values of N varying from 100 to 2000 using
an ε-perturbation of the cost matrix, with ε = 5 × 10−4. We
computed the mean value and standard deviation of the cor-
responding converged normalized minimal costs, LN , where
convergence is detected based on Theorem 7. In Fig. 3, we
plot the normalized costs, La

N , Lb
N , Lc

N , Ld
N as a function of
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N . We also plotted the boundaries for the corresponding limit
expected values, as given by Eqs. (24). Note that the agree-
ment between the computed mean and the theoretical limits
improve as N increases.

3. Hard assignment problem: Machol-Wien cost matrices

Let us consider the special assignment problem be-
tween two sets of points of cardinality N , with a
cost matrix referred to as the Machol-Wien cost matrix
[23,32] (note that this matrix was originally proposed by
Silver [22]):

C(i, j) = (i − 1) × ( j − 1) ∀(i, j) ∈ [1, N]2.

The unique optimal solution to the corresponding bal-
anced assignment problem is G(i, j) = 1 if i + j = n + 1 and
G(i, j) = 0 otherwise, with (i, j) ∈ [1, N]2 with a total cost
W given by

WN = N (N − 1)(N − 2)

6
. (25)

This type of cost matrices was designed to be hard for the
Hungarian algorithm as it leads to a worst-case scenario
[22,23]. In a survey of multiple algorithms and codes for solv-
ing dense assignment problems, Dell’Amico and Toth [33]
showed that assignment problems based on these matrices are
very difficult for all the methods they have tested.

Equation (25) can be extended to the case of the k-
cardinality assignment problem,

WN,k = k(k − 1)(k − 2)

6
. (26)

Compared to the balanced Machol-Wien problem, the corre-
sponding k cardinality problem is degenerate and does not
have a unique solution. There are in fact N − k + 1 degenerate
solutions with the same energy given by Eq. (26). The Mth
solution (1 � M � N − k + 1) is given by

G(i, j) =
⎧⎨
⎩

1 if i + j = k + 1,

1 if i = M + k, j = 1,

0 otherwise,

with (i, j) ∈ [1, N]2. Note that Eq. (26) is independent of N .
To verify numerically Eq. (26), we considered Machol-

Wien cost matrices of size N × N , with N = 8192. For each
matrix we solve the k-cardinality assignment problem for
values of k varying from 128 to N . In Fig. 4, we plot the
converged energies as a function of k (red circles), as well as
the corresponding theoretical values for the expectancy of U ∗
(solid black line), given by Eq. (26). Note the full agreement.

B. Computing efficiency of UMatching

We have developed a method for solving the k-cardinality
assignment problem that extends to the balanced and un-
balanced assignment problems. We have claimed that this
method provides fast and robust solutions to those assignment
problems. To check that it is indeed the case, we have bench-
marked its running times with those of existing solutions for
solving balanced assignment problems as well as k-cardinality
assignment problems. We have implemented two versions of

FIG. 4. The converged internal energy U ∗
+∞ as a function of k

when solving a k-cardinality assignment problem for the Machol-
Wien cost matrix C of size 8192 × 8192. At each value of k, the
computed value is shown as a red circle and the corresponding
theoretical value [Eq. (26)] shown as a solid black line.

UMatching, one that runs on CPUs, and another that runs
on GPUs.

For the CPU version of UMatching, we compared it with
2 different codes that solve the balanced assignment problem
using the Hungarian algorithm, which we refer to as LAP and
LAPJV, respectively, and with one program that solves the k-
cardinality assignment problem, SKAP.

The Hungarian algorithm remains a standard for solving
balanced as well as unbalanced assignment problems. This
algorithm is either order O(N4) or O(N3) for the balanced
problem of size N , depending on its implementation. A typi-
cal O(N4) implementation is based on a matrix formulation
of the assignment problem: it follows the original idea of
Munkres [34] and is described in detail in a tutorial by Pilgrim
[35]. We used a Fortran-90 implementations of those ideas,
available at [36]. Better (in terms of computing complexity)
implementations of the Hungarian algorithm follow its graph
formulation. Such implementations are global and are based
on improving a matching along augmenting paths (i.e., al-
ternating paths between unmatched vertices). They are order
O(N3). We used the version originally proposed by Jonker
and Volgenant [37] and available at [38]. Finally, Dell’Amico,
Lodi, and Martello developed specialized code to solve the
k-cardinality assignment problems for dense [2] as well as for
sparse [39] graphs. Their code, SKAP, handles both types of
graph and is able to solve balanced and unbalanced assign-
ment problems, as well as k-cardinality assignment problems.
It is available at [40]. Note that this code is specific to integer
cost matrices.

For the GPU version of UMatching, we considered two
different GPU implementations of the Hungarian algorithm.
There are many efforts aimed at parallelizing this algorithm
(see, for example, Refs. [6,7,41] and references therein). The
first implementation we considered, HunCUDA, is based on
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(a) (b)

(c) (d)

FIG. 5. Solving integer assignment problems. The computing times based on CPU (a), (c) and on GPU (b), (d) implementations of different
programs designed for solving balanced assignment problems. We consider integer random balanced problems of size N (a), (b) as well as
integer Machol-Wien problems of size N (c), (d) (see text for details). On CPU, four programs are tested: LAP (circle, black) and LAPJ
(x, blue), two different implementations of the Hungarian algorithm, SKAP (square, magenta), a specialized program for the k-cardinality
assignment problem, and UMatching (+, red), introduced in this study. On GPU, three programs are tested: HungCUDA (circle, black),
RAPIDS (square, blue), and UMatching (x, red). See text for a brief introduction on all these methods. The mean values over 10 different
runs are plotted as solid lines, while the dotted lines represent linear fits in the log domain. The slopes of those lines, which correspond to the
observed computational complexity, are given in Table I. All computations were run on a computer with an AMD Ryzen Threadripper PRO
3975WX with 32 CPUs (64 cores) and a NVIDIA GPU RTX A5000.

the parallel version developed using CUDA by Lopes et al.
[41] and available at [42]. The key feature of HunCUDA
is an implementation of the alternating path search phase
of the Hungarian algorithm that is distributed by several
blocks, thereby minimizing global device synchronization.
Note that this implementation is specific to balanced assign-
ment problems whose sizes are powers of two. The second
implementation considered, which we refer to as RAPIDS, is
based on the implementation of the Hungarian algorithm in
the recent package cugraph that is itself part of the suite of
program RAPIDS [43] developed by NVIDIA for data science
pipelines on the GPU. It is available in open-source format at
[44]. We used the C++ implementation of cugraph.

All benchmarks were run on a computer with an AMD
Ryzen Threadripper PRO 3975WX with 32 CPUs (64 cores)
and a NVIDIA RTX A5000. Note that the computing times
vary little with k, with larger values for k, respectively, small
and large.

1. Comparing UMatching with fast implementations
of the Hungarian algorithms for balanced assignment problems

We first tested the different programs described above
(both CPU and GPU based) on balanced assignment prob-
lems based on random matrices. As SKAP only applies to
integer cost matrices, our test sets includes the Cd matrices
of Ref. [31], whose elements are independent integer random
numbers chose uniformly in {1, 2, . . . , N2}. These matrices
are described in Sec. VI A. We ran simulations on such cost
matrices of sizes N ranging in size between 128 and 8192
for the CPU-based programs, and between 128 and 32 768
for the GPU-based programs, with two exceptions. As LAP
has a time complexity of O(N4), we limited its application
to matrices up to size 4096. Second, the available version
of HunCUDA is limited to N � 8192. For each value of N ,
10 simulations were performed. The average computing times
over the 10 simulations for the different programs are plotted
against this size N in Figs. 5(a) and 5(b). The corresponding
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TABLE I. Time complexities of different algorithms for solving integer assignment problems.

Processor Method Worst case complexitya Random matricesb Machol-Wien matricesc

CPU LAP [35] O(N4) 3.7d 4.0
CPU LAPJV [37] O(N3) 2.2 2.9
CPU SKAP [39] O(N3) 2.8 2.9
CPU UMatching O(N3) 1.6 1.4
GPU HunCUDA [41] O(N3) 1.9 2.8
GPU RAPIDS [43] O(N3) 1.4 2.2
GPU UMatching O(N3) 1.4 1.3

aWorst case complexity of the corresponding algorithm. See text for details.
bCost matrices include elements are an independent integer random numbers chose uniformly in {1, 2, . . . , N2}, see Ref. [31].
cCost matrix C defined as C(i, j) = (i − 1) × ( j − 1) for (i, j) ∈ [1, N]2.
dTime complexity, as evaluated from of linear fit of the log of the computing time verse the log of the size of the problem (see Fig. 5).

apparent time complexities for all programs that are tested are
given in Table I.

For the CPU-based programs, setting aside small values of
N (i.e., below 1000) for which initialization costs dominate,
we observe that, as expected, LAPJV and SKAP are signifi-
cantly faster than LAP and UMatching. LAP has a worst case
complexity of O(N4); its apparent complexity on the random
integer cost matrices is close to this worst case. LAPJV and
SKAP, both based on improving a matching along augmenting
paths, are fast, with observed time complexity better than 3.
Computing times for UMatching are found to be between
those of LAPJV/SKAP and those of LAP. Its interest, how-
ever, comes in its apparent time complexity, 1.6 (see Table I),
i.e., significantly better than those of LAP, LAPJV, and SKAP.
We first note that our implementation relies heavily on linear
algebra, as at each inverse temperature we solve a non linear
system of equation iteratively. Each step requires solving a
linear system of equations, for which we use an iterative
procedure (see details in the implementation section). We have
relied on the optimized BLAS and LAPACK libraries for all
those operations involving linear algebra. Those libraries are
optimized for the processors we use and make efficient use of
the multiple cores available. Such operations would therefore
benefit from even more parallelization available for example
on the GPU.

UMatching is found to be between 2 and 4 times slower
that Hungarian RAPIDS on the random integer assignment
problems, but faster than HunCUDA for N � 1000. We note
that HunCUDA is based on the O(N4) version of the Hun-
garian algorithm (see Ref. [41]) and as such is expected to
underperform for large N . Both RAPIDS and UMatching have
similar apparent time complexities, O(N1.4) (see Table I).

Our second benchmark test involves the Machol-Wien cost
matrices. As described above, those matrices are considered
hard for the Hungarian algorithm, both for its matrix-based
implementation and its graph-based implementation. We ran
similar tests as those described above for random integer cost
matrices, for all the CPU-based and GPU-based programs
considered. The mean computing times over 10 simulations
for the different programs are plotted against the size N of
the square cost matrix in Figs. 5(c) and 5(d). The correspond-
ing apparent time complexities for all programs are given in
Table I.

As expected, LAP has an apparent time complexity of
O(N4) and it is the slowest of the 4 CPU-based program on
those Machol-Wien cost matrices. LAPJV and SKAP also
have apparent time complexities close to their worst case
values. In addition, all three programs run significantly slower
on those matrices than on the random integer cost matrices.
In contrast, UMatching is found to run faster on the Machol-
Wien matrices than on the random inter cost matrices (by
close to a factor of 3), with a similar apparent time complexity
(O(N1.4) for Machol-Wien matrices, compared to O(N1.6) for
random integer matrices). IUMatching CPU is found to be
faster than LAPJV and SKAP for matrices of size 8192. The
difference is even more striking when we consider the GPU-
based programs. UMatching GPU is found to be significantly
faster on the Machol-Wien matrices than all GPU implemen-
tations of the Hungarian algorithm we have tested, including
the fast implementation available in the RAPIDS suite. Com-
pared to the CPU case, UMatching computing times on the
GPU do not differ significantly between the random integer
cost matrices and the Machol-Wien matrices. While we can-
not fully exclude that there could some types of matrices that
could lead to worst-case scenario for UMatching, we believe
that differences in computing time will remain small for all
types of matrices.

2. Comparing UMatching and SKAP for genuine
k-cardinality assignment problems

In the previous subsection, UMatching was compared with
fast CPU and GPU implementations of the Hungarian algo-
rithm on different types of balanced assignment problems.
We further assessed UMatching on explicit k-cardinality as-
signment problems. Of all programs considered above, only
SKAP can solve genuine k-cardinality problems. We com-
pared it with the CPU and the GPU versions of UMatching.
We considered both integer random matrices and the specific
case of the Machol-Wien matrices. Results are presented in
Fig. 6.

We considered first random integer cost matrices whose
elements are independent integer random numbers chose uni-
formly in {1, 2, . . . , N2} of size 8000 × 8000, for which we
solve the k-cardinality assignment problem for values of k
varying from 1000 to 8000. The expected minimal cost of
such a k-cardinality assignment is given by Eq. (23). For each
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(a) (b)

FIG. 6. The computing time T as a function of k when solving a k-cardinality assignment problem with either an integer random cost
matrix C of size N × N with N = 8000 whose elements are independent integer random numbers chose uniformly in {1, 2, . . . , N2} (a), or
with a Machol-Wien cost matrix (see text for details) of the same size (b). At each value of k, 10 experiments were performed; the mean
values are shown as a solid line and the corresponding standard deviations are illustrated with a shaded areas. All computations were run on a
computer with an AMD Ryzen Threadripper PRO 3975WX with 32 CPUs and a NVIDIA RTX A5000.

value of k, we ran 10 different random instances and computed
the mean value and standard deviation of the corresponding
computing time at convergence. UMatching CPU is found
to be 2.5 times slower than SKAP, while UMatching GPU
is found to be 5 times faster than SKAP. As observed in
Fig. 6(a), the computing times associated with both versions
of UMatching (CPU and GPU), as well as the computing
times associated with SKAP are relatively constant with re-
spect to k. While in the original paper describing SKAP [39]
there were no mentions of time complexity, experimental
evidence showed that its computing time is relatively indepen-
dent of k, at least for random matrices (Table 4 in Ref. [39]).
For UMatching, the dependency with respect to k is more
complex. Note first that the number of unknowns in the SPA
system of equations is independent of k, and therefore the
computing time for solving this system is expected to be also
independent of k. However, as the annealing procedure in
function of the inverse temperature β is stopped when the
transport plan Gβ contains exactly k values that are greater
or equal to 1

2 , a dependency of the computing time with k is
expected. This dependency, however, is observed to be weak,
at least for random integer cost matrices.

We then considered Wachol-Wien matrices of size 8000 ×
8000, for which we solve the k-cardinality assignment prob-
lem for values of k varying from 1000 to 8000. For each
value of k, we ran 10 different optimizations and computed
the mean value and standard deviation of the corresponding
computing time at convergence. Note that as this problem
is deterministic, fluctuations over the different runs are ex-
pected to be small. A comparison of Figs. 6(a) and 6(b) shows
that all the computing times of SKAP, UMatching CPU, and
UMatching GPU differ significantly between the two types
of matrices. While SKAP’s computing times are relatively
constant with respect to k for random integer matrices, they
increase as a function of k for the Machol-Wien matrices. In
contrast, both versions of UMatching show relatively constant
computing times for k < N , and a significant drop when k =
N . We assign this behavior to the fact that the k-cardinality

assignment problem for Machol-Wien matrices is degenerate
for k < N while it has a unique solution when k = N . For
k < N , UMatching CPU is found to be 5.5 times slower than
SKAP, while UMatching GPU is found to be 5.5 times faster
than SKAP. For k = N , however, both UMatching CPU and
UMatching GPU are found to be faster than SKAP, by factors
of 4 and 40, respectively.

VII. CONCLUSION

In this article, we developed a statistical physics framework
to solve the unbalanced k-cardinality assignment problem.
Given two sets of points S1 and S2 with possibly different
cardinalities N1 and N2, a cost matrix for assignments between
points of those sets, and an imposed number of assignments k,
we have constructed a free energy parametrized by tempera-
ture that captures the constraints of the k-assignment problem.
This free energy is concave, and its maximum defines an op-
timal k-assignment between the two sets of points. We proved
that it decreases monotonically as a function of the inverse of
temperature to the optimal assignment cost, lending itself to
temperature annealing. We also proved that for small enough
temperatures, the exact solution to the generic k-assignment
problem can be derived directly by simply rounding off to the
nearest integer the elements of the computed assignment ma-
trix. We have also provided a provably convergent method to
handle degenerate k-assignment problems. We have described
two implementations of our methods that are optimized for
the CPU and GPU parallel architectures, respectively. We
have shown that the latter is competitive with state-of-the-art
parallel codes that implement the Hungarian algorithms for
generic assignment problems, and significantly faster (orders
of magnitude) than those implementations for hard assign-
ment problems.

The framework we have proposed can be applied to bal-
anced as well as to k-cardinality assignment problems. In
its formulation introduced in this paper, it suffers the same
limitations as the Hungarian problem and cannot be directly
applied to augmented assignment problems in which multiple
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tasks can be assigned to a single agent, or in which a single
task requests multiple agents. Analyses of those augmented
assignment problems will be the topic of a future paper.
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APPENDIX A: REMINDER ON DOUBLY STOCHASTIC
AND DOUBLY SUBSTOCHASTIC MATRICES

An N × N matrix A = (a(i, j)) is said to be doubly
stochastic if and only if it satisfies the following conditions:

a(i, j) � 0,

N∑
i=1

a(i, j) = 1,

N∑
j=1

a(i, j) = 1,

for all (i, j) ∈ [1, N]2. The set of doubly stochastic matrices
of size N × N is a convex polytope whose vertices are the
permutation matrices with the same size. This is expressed by
the following theorem, established by Birkhoff [9] and von
Neumann [10]:

Theorem 8. An N × N matrix A is doubly stochastic if and
only if it can be written as a weighted sum of permutation
matrices, i.e.,

A =
∑

π∈
N

aππ,

where 
N is the set of permutation matrices of size N , aπ is a
positive real number and

∑
π∈
N

aπ = 1.
Doubly stochastic matrices and their properties associated

to the Birkhoff–von Neumann theorem above proved useful to
establish convergence properties of statistical physics frame-
works for solving the balanced assignment problem [16,45].

For the unbalanced k-cardinality assignment problem,
however, we need to consider a different, although related set
of matrices, those that are doubly substochastic. A N1 × N2

matrix A = (a(i, j)) is double substochastic if it satisfies

a(i, j) � 0,

N∑
i=1

a(i, j) � 1,

N∑
j=1

a(i, j) � 1,

for all (i, j) ∈ [1, N1] × [1, N2]. The set of doubly substochas-
tic matrices of size N1 × N2 is also a convex polytope whose

vertices are the partial permutation matrices with the same
size [46,47].

Our need is in fact even more specific as it relies on the
subset of doubly substochastic matrices with a fixed total sum
of all their elements. Let us define

σ (A) =
N1∑

i=1

N2∑
j=1

a(i, j).

A partial permutation matrix π of size N1 × N2 and of rank
k is a doubly substochastic matrix of size N1 × N2 whose
elements belong to {0, 1}, with no more than one 1 on any row
or any column, and with σ (π ) = k. We will write PN1,N2 (k) the
set of such partial permutation matrix. A matrix π of this set
can be wcharacterized with the following injection fπ :

fπ : [1, N1] → {0} ∪ [1, N2],

i �→ fπ (i) =
{

0 if
∑N2

j=1 π (i, j) = 0,

j if π (i, j) = 1.
(A1)

The set of doubly substochastic matrix A with σ (A) = k, k
fixed, satisfies a property similar to the Birkhoff–von Neu-
mann theorem, as established by Mendelsohn and Dulmage
for square matrices [48], and later by Brualdi and Lee for
rectangular matrices [49]:

Theorem 9. An N1 × N2 doubly substochastic matrix A
with σ (A) = k can be written as a weighted sum of partial
permutation matrices of rank k, i.e.,

A =
∑

π∈PN1 ,N2 (k)

aππ,

where aπ is a positive real number and
∑

π∈PN1 ,N2 (k) aπ = 1.
Finally, we note that any doubly substochastic matrix A of

size N1 × N2 can be augmented to a doubly stochastic matrix
Aa of size N1 + N2:

Aa =
[

A IN1 − D1

IN2 − D2 AT

]
, (A2)

where IN is the identify matrix of size N × N , D1 and D2 are
the diagonal matrices containing the row sums and column
sums of the matrix A:

D1(i, i) =
∑

j

A(i, j),

D2( j, j) =
∑

i

A(i, j).

APPENDIX B: PROOF OF THEOREM 1: CONCAVITY OF THE EFFECTIVE FREE ENERGY

We first prove that the effective free energy Fβ (λ,μ, x) is weakly concave, by showing that its Hessian H is negative definite.
H is a symmetric matrix of size (N1 + N2 + 1) × (N1 + N2 + 1), such that its rows and columns correspond to all N1 λ values
first, followed by all N2 μ values, and finally to the value x. Let h′ be the derivative of the function h(x) = 1/(1 + ex ), i.e.,

h′(x) = − ex

(1 + ex )2
. (B1)
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We note first that h′(x) ∈ [−1
4 , 0) ∀x ∈ R, i.e., that h′(x) is always strictly negative. We define the matrix X ′ and the vector d′

1
and d′

2 such that

X ′(i, j) = h′(β(C(i, j) + λ(i) + μ( j) + x), d ′
1(i) = h′(−βλ(i)), d ′

2( j) = h′(−βμ( j)).

From Eqs. (10), we obtain

H (i, i′) = ∂2Fβ (λ,μ, x)

∂λ(i)∂λ(i′)
= βδii′

⎛
⎝∑

j

X ′(i, j) + d ′
1(i)

⎞
⎠,

H (i, j) = ∂2Fβ (λ,μ, x)

∂λ(i)∂μ( j)
= βX ′(i, j),

H (i, N ) = ∂2Fβ (λ,μ, x)

∂λ(i)∂x
= β

∑
j

X ′(i, j),

H ( j, j′) = ∂2Fβ (λ,μ)

∂μ( j)∂μ( j′)
= βδ j j′

(∑
i

X ′(i, j) + d ′
2( j)

)
,

H ( j, N ) = ∂2Fβ (λ,μ, x)

∂μ( j)∂x
= β

∑
i

X ′(i, j),

H (N, N ) = ∂2Fβ (λ,μ, x)

∂x2
= β

∑
i

∑
j

X ′(i, j),

where δ are Kronecker functions, the indices i and i′ belong to [1, N1] and the indices j and j′ belong to [1, N2], and we have
defined N = N1 + N2 + 1.

Let x = (x1, x2, x3) be an arbitrary vector of size N . The quadratic form Q(x) = xT Hx is equal to

Q(x) =
∑
i,i′

x1(i)H (i, i′)x1(i′) +
∑
j, j′

x2( j)H ( j, j′)x2( j′) + x3H (N, N )x3

+ 2
∑
i, j

x1(i)H (i, j)x2( j) + 2
∑

i

x1(i)H (i, N )x3 + 2
∑

j

x2( j)H ( j, N )x3

= β
∑
i, j

(x1(i) + x2( j) + x3)2X ′(i, j) + β

⎛
⎝∑

i

x1(i)2d ′
1(i) +

∑
j

x2( j)2d ′
2( j)

⎞
⎠.

As X ′(i, j), d ′
1(i), and d ′

2( j) are all based on the function h′ that is strictly negative, the summands in the equation above are
negative for all i ∈ [1, N1] and j ∈ [1, N2], and therefore Q(x) is negative for all vector x. The Hessian H is negative, semidefinite.

As Q(x) is a sum of negative terms, it is 0 if and only if all the terms are equal to 0. As the function h′(x) is strictly negative,
this means that ∀(i, j),

(x1(i) + x2( j) + x3)2 = 0, x1(i)2 = 0, x2( j)2 = 0.

This is realized when all x1(i), x2( j), and when x3 are zero, namely thet x = 0. Therefore, H is negative, definite, and the free
energy is strictly concave.

APPENDIX C: PROOF OF PROPOSITION 1: RETRIEVING THE TRANSPORTATION PLAN AND THE INDICATOR
FUNCTIONS FROM THE SPA SOLUTIONS

In the unbalanced k-cardinality assignment problem between two sets S1 and S2, the “system” is characterized with a partition
function [Eq. (6)],

Z (β ) =
∑

G(i, j)∈{0,1}

∑
n1(i)∈{0,1}

∑
n2( j)∈{0,1}

e−β
∑

i, j C(i, j)G(i, j)
∏

i

δ

⎛
⎝∑

j

G(i, j) − n1(i)

⎞
⎠

×
∏

j

δ

(∑
i

G(i, j) − n2( j)

)
δ

⎛
⎝∑

i, j

G(i, j) − k

⎞
⎠,
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with a corresponding effective free energy,

Fβ (λ,μ, x) = − 1

β

∑
i

ln (1 + eβλ(i)) − 1

β

∑
j

ln (1 + eβμ( j)) − 1

β

∑
i, j

ln (1 + e−β(C(i, j)+λ(i)+μ( j)+x)) − kx.

Fβ is a function of N1 + N2 + 1 variables, namely λ(i) for i ∈ [1, N1], μ( j) for j ∈ [1, N2], and x. The values of these variables
that solve the SPA conditions are referred to as λMF(i), μMF( j), and xMF, respectively. Those values define X MF(i, j), dMF

1 (i), and
dMF

2 ( j), as given in Eq. (11). We show that those values are the solutions to the unbalanced k-cardinality assignment problem.
To find those solutions, namely the expected values G(i, j), n1(i), and n2( j) for the transportation plan, and indicator functions

of the elements of S1 and S2 that are in correspondence, respectively, we need to introduce three vector fields u, v, and w, and a
variable s and modify the partition function:

Z (β ) =
∑

G(i, j)∈{0,1}

∑
n1(i)∈{0,1}

∑
n2( j)∈{0,1}

e−β
∑

i, j C(i, j)G(i, j)eβ(
∑

i, j G(i, j)u(i, j)+∑
i v(i)n1(i)+∑

j w( j)n2(( j)+xs)

×
∏

i

δ

⎛
⎝∑

j

G(i, j) − n1(i)

⎞
⎠∏

j

δ

(∑
i

G(i, j) − n2( j)

)
δ

⎛
⎝∑

i, j

G(i, j) − k

⎞
⎠.

Following the same procedure as described in the main text for evaluating this modified partition function, we find

F = Fβ (u, v, w, s) = − 1

β

∑
i

ln[1 + eβ(λ(i)+v(i))] − 1

β

∑
j

ln[1 + eβ(μ( j)+w( j))]

− 1

β

∑
i, j

ln[1 + e−β(C(i, j)+λ(i)+μ( j)+x−u(i, j))] − kx − sx.

The expected transportation matrix G(i, j) between point i in S1 and point j in S2 is given by

G(i, j) = − ∂F

∂u(i, j)

∣∣∣∣∣
u=0,v=0,w=0,s=0,λ=λMF,μ=μMF,x=xMF

,

i.e.,

G(i, j) = 1

1 + eβ(C(i, j)+λMF(i)+μMF( j)+xMF )
= h(β(C(i, j) + λMF(i) + μMF( j) + xMF)) = X MF(i, j).

Similarly, the expected indicator function n1(i) over S1 are

n1(i) = − ∂F

∂v(i)

∣∣∣∣∣
u=0,v=0,w=0,s=0,λ=λMF,μ=μMF,x=xMF

,

n2( j) = − ∂F

∂w( j)

∣∣∣∣∣
u=0,v=0,w=0,s=0,λ=λMF,μ=μMF,x=xMF

,

i.e.,

n1(i) = 1

1 + e−βλMF(i)
= h(−βλMF(i)) = dMF

1 (i),

n2( j) = 1

1 + e−βμMF( j)
= h(−βμMF( j)) = dMF

2 ( j).

Finally,

x = −∂F

∂s

∣∣∣∣∣
u=0,v=0,w=0,λ=λMF,μ=μMF,x=xMF

,

i.e.,

x = xMF,

which concludes the proof of Proposition 1.
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APPENDIX D: MONOTONICITY OF FMF
β

The effective free energy Fβ (λ,μ, x) defined in Eq. (8) is a function of the cost matrix C and of real unconstrained variables
λ(i), μ( j), and x. For the sake of simplicity, for any (i, j) ∈ [1, N1] × [1, N2], we define

y(i, j) = C(i, j) + λ(i) + μ( j) + x, yMF(i, j) = C(i, j) + λMF(i) + μMF( j) + xMF.

The effective free energy is then

Fβ (λ,μ, x) = − 1

β

∑
i

ln (1 + eβλ(i)) − 1

β

∑
j

ln (1 + eβμ( j)) − 1

β

∑
i, j

ln (1 + e−βy(i, j)) − kx. (D1)

As written above, Fβ (λ,μ, x) is a function of the independent variables β, λ(i), μ( j), and x. However, under the saddle point
approximation, the variables λ(i), μ( j), and x are constrained by the conditions

∂Fβ (λ,μ, x)

∂λ(i)
= 0,

∂Fβ (λ,μ, x)

∂μ( j)
= 0,

∂Fβ (λ,μ, x)

∂x
= 0, (D2)

and the free energy under those constraints is written as F MF
β . In the following, we will use the notations

dF MF
β

dβ
and

∂F MF
β

∂β
to

differentiate between the total derivative and partial derivative of F MF
β with respect to β, respectively. Based on the chain rule,

dF MF
β

dβ
= ∂Fβ (λ,μ, x)

∂β
+

∑
i

∂Fβ (λ,μ, x)

∂λ(i)

∂λ(i)

∂β
+

∑
l

∂Fβ (λ,μ, x)

∂μ( j)

∂μ( j)

∂β
+ ∂Fβ (λ,μ, x)

∂x

∂x

∂β
.

Using the constraints (D2), we find that

dF MF
β

dβ
= ∂Fβ (λ,μ, x)

∂β
,

namely that the total derivative with respect to β is in this specific case equal to the corresponding partial derivative, which is
easily computed to be

dF MF
β

dβ
= 1

β2

∑
i

(
ln(1 + eβλMF(i) ) − βλMF(i)

1 + e−βλMF(i)

)
+ 1

β2

∑
j

(
ln(1 + eβμMF( j) ) − βμMF( j)

1 + e−βμMF( j)

)

+ 1

β2

∑
i, j

(
ln(1 + e−βyMF(i, j) ) + βyMF(i, j)

1 + eβyMF(i, j)

)
. (D3)

Let t (x) = ln(1 + e−x ) + x
1+ex . The function t (x) is continuous and defined over all real values x and is bounded below by 0, i.e.,

t (x) � 0 ∀x ∈ R. As

dF MF
β

dβ
= 1

β2

(∑
i

t (−βλ(i)) +
∑

j

t (−βμ( j)) +
∑
i, j

t (βy(i, j)

)
,

we conclude that

dF MF
β

dβ
� 0,

namely that F MF
β is a monotonically increasing function of β.

APPENDIX E: MONOTONICITY OF UMF
β

Let

Uβ (λ,μ, x) =
∑
i, j

C(i, j)Ḡ(i, j), (E1)
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and let the corresponding mean-field approximation of the internal energy at the saddle point

U MF
β = Uβ (λMF,μMF, xMF). (E2)

Before computing
dU MF

β

dβ
, we prove the following property.

Property 4.

U MF
β = F MF

β + β
dF MF

β

dβ
, (E3)

i.e., it extends the well known relationship between the free energy and the average energy to their mean-field counterparts.
Proof. Using Eqs. (D1), (D3), (13), and the definition of h(x) = 1/(1 + ex ), we find that

β
dF MF

β

dβ
= −F MF

β − kxMF −
∑

i

λMF(i)n1β (i) −
∑

j

μMF( j)n2β ( j) +
∑
i, j

yMF(i, j)G(i, j).

Let us recall that

yMF(i, j) = C(i, j) + λ(i)MF + μ(l )MF + xMF.

In addition, all mean-field values correspond to the maximum of the effective free energy, for which the constraints are satisfied,
namely

∑
j G(i, j) = n1β (i) and

∑
i G(i, j) = n2β ( j). Replacing in Eq. (E4), we get

β
dF MF

β

dβ
= −F MF

β − kxMF −
∑
i, j

λMF(i)n1β (i) −
∑
i, j

μMF( j)n2β ( j) +
∑
i, j

(C(i, j) + λMF(i) + μMF( j) + xMF)G(i, j),

i.e.,

β
dF MF

β

dβ
= −F MF

β +
∑
i, j

C(i, j)G(i, j) = −F MF
β + U MF

β , (E4)

which concludes the proof. �
Based on the chain rule,

dU MF
β

dβ
= ∂U MF

β

∂β
+

∑
i

∂U MF
β

∂λ(i)

∂λ(i)

∂β
+

∑
j

∂U MF
β

∂μ( j)

∂μ( j)

∂β
+ ∂U MF

β

∂x

∂x

∂x
.

Let us compute all partial derivatives in this equation using the Property 4 proved above:

∂U MF
β

∂λ(i)
= ∂F MF

β

∂λ(i)
+ β

∂

∂λ(i)

(
∂F MF

β

∂β

)
= ∂F MF

β

∂λ(i)
+ β

∂

∂β

(
∂F MF

β

∂λ(i)

)
= 0,

where the zero is a consequence of the SPA constraints. Similarly, we find

∂U MF
β

∂μ( j)
= 0,

∂U MF
β

∂x
= 0.

Finally,

∂U MF
β

∂β
= 2

∂F MF
β

∂β
+ β

∂

∂β

(
∂F MF

β

∂β

)
= 2

∂F MF
β

∂β
+ β

(
− 2

β

∂F MF
β

∂β

)
+

∑
i

(−λ(i)t ′(−βλMF(i))

+
∑

j

(−μMF( j)t ′(−βμMF( j)) +
∑
ki, j

yMF(i, j)t ′(βyMF(i, j)),

where t (x) is the function define above, and t ′(x) its derivative: t ′(x) = − xex

(1+ex )2 . Let us define g(x) = xt ′(x); g(x) is negative,
bounded above by 0. Then,

∂U MF
β

∂β
= 1

β

∑
i

g(−βλMF(i)) + 1

β

∑
j

g(−βμMF( j)) + 1

β

∑
i, j

g(βyMF(i, j)).

Therefore,

dU MF
β

dβ
= ∂U MF

β

∂β
� 0,

and the function U MF
β is a monotonically decreasing function of β.
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APPENDIX F: REWRITING THE EFFECTIVE FREE ENERGY

Recall that we have defined h(x) = 1
1+ex for x ∈ R and f (x) = −(1 − x) ln(1 − x) − x ln(x), for x ∈ (0, 1). Let us define

t (x) = ln(1 + e−x ) + xh(x). We establish first the following identity.
Property 5.

t (x) = ln(1 + e−x ) + xh(x) = −(1 − h(x)) ln(1 − h(x)) − h(x) ln(h(x)) = f (h(x)). (F1)

Proof. Let x be a real number and let y = h(x). We know that y ∈ (0, 1). We rewrite 1 + e−x and x as functions of y:

1 + e−x = 1

1 − y
x = ln(1 − y) − ln(y).

Then,

t (x) = ln

(
1

1 − y

)
+ ln(1 − y)y − ln(y)y = −(1 − y) ln(1 − y) − y ln y,

which concludes the proof, as y = h(x). �
Recall now that we have defined

y(i, j) = C(i, j) + λ(i) + μ( j) + x, X (i, j) = h(βy(i, j)), d1(i) = h(−βλ(i)), d2( j) = h(−βμ( j)).

Let us now rewrite the free energy,

Fβ (λ,μ, x) = − 1

β

∑
i

ln (1 + eβλ(i)) − 1

β

∑
j

ln (1 + eβμ( j)) − 1

β

∑
i, j

ln (1 + e−βy(i, j)) − kx.

The internal energy is

Uβ (λ,μ, x) =
∑
i, j

C(i, j)X (i, j).

Adding, and subsequently subtracting the internal energy in the equation defining the free energy, we get

Fβ (λ,μ, x) = Uβ (λ,μ, x) −
∑
i, j

C(i, j)h(βy(i, j)) − 1

β

∑
i

ln[1 + eβλ(i)] − 1

β

∑
j

ln[1 + eβμ( j)] − 1

β

∑
i, j

ln[1 + e−βy(i, j)] − kx.

Replacing C(i, j) with y(i, j) − λ(i) − μ( j) − x, we get (after reorganization)

Fβ (λ,μ, x) = Uβ (λ,μ, x) − 1

β

∑
i

(ln(1 + eβλ(i) ) + βλ(i)h(−βλ(i))) − 1

β

∑
j

(ln(1 + eβμ( j) ) + βμ( j)h(−βμ( j)))

− 1

β

∑
i, j

(ln(1 + e−βy(i, j) ) + βy(i, j)h(βy(i, j))) + x

⎛
⎝∑

i, j

X (i, j) − k

⎞
⎠

+
∑

i

λ(i)

⎛
⎝∑

j

X (i, j) − d1(i)

⎞
⎠ +

∑
j

μ( j)

(∑
i

X (i, j) − d2( j)

)
.

Therefore, using Property 5 above,

Fβ (λ,μ, x) =Uβ (λ,μ, x) − 1

β

∑
i

f (h(−βλ(i)))− 1

β

∑
j

f (h(−βμ( j))) − 1

β

∑
i, j

f (h(βy(i, j))) + x

⎛
⎝∑

i, j

X (i, j) − k

⎞
⎠

+
∑

i

λ(i)

⎛
⎝∑

j

X (i, j) − d1(i)

⎞
⎠ +

∑
j

μ( j)

(∑
i

X (i, j) − d2( j)

)
,

which concludes the proof of Eq. (15), taking into account that T = 1
β

.
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APPENDIX G: PROOF OF THEOREM 3: CONVERGENCE OF THE MEAN-FIELD FREE ENERGY AND THE INTERNAL
ENERGY TO THE OPTIMAL k-ASSIGNMENT COST

For simplicity in notation, we define F MF(∞) = limβ→+∞ F MF
β and U MF(∞) = limβ→+∞ U MF

β .

1. Proof that FMF(∞) = UMF(∞)

Proof. The mean-field free energy and internal energy are related by Eqs. (17). Based on these equations, the mean-field
entropy can be written as

SMF
β =

∑
i, j

f (Gβ (i, j)) +
∑

i

f (n1β (i)) +
∑

j

f (n2β ( j)),

where n1β and n2β are the mean-field indicators of the elements of S1 and S2 that are in correspondence and Gβ forms the
optimized transportation plan between S1 and S2, and f (x) = −x ln(x) − (1 − x) ln(1 − x) for x ∈ (0, 1). The function f defines
an entropy that is positive, bounded above by ln(2). Therefore, the entropy satisfies the following constraints:

0 � SMF
β � (N1N2 + N1 + N2) ln(2). (G1)

Using Eq. (17), after rearrangement we obtain,

U MF
β − 1

β
(N1N2 + N1 + N2) ln(2) � F MF

β � U MF
β .

Taking the limits when β → +∞, we get

F MF(∞) = U MF(∞). (G2)

�

2. Proof that U∗ � FMF(∞)

Let U MF(β ) be the mean-field internal energy at the inverse temperature β:

U MF
β =

∑
i, j

C(i, j)X MF
β (i, j),

where X MF
β is the solution the the SPA system of equations. At a finite inverse temperature β, X MF

β is strictly non integral, as
each of its terms is of the form h(β(y(i, j))) where h(x) = 1/(1 + ex ), and therefore strictly in (0,1). In addition, X MF

β satisfies
constraints on row sums and column sums that makes it a doubly substochastic matrix with fixed total sum k. Based on Theorem
9, X MF

β can be written as a linear combination of the partial permutation matrices of rank k,

X MF
β =

∑
π∈PN1 ,N2 (k)

aππ,

with all aπ ∈ [0, 1] and
∑

π∈PN1 ,N2 (k) aπ = 1. Therefore,

U MF
β =

∑
i, j

C(i, j)X MF
β (i, j) =

∑
π∈PN1 ,N2 (k)

aπ

∑
i| fπ (i)�=0

C(i, fπ (i)), (G3)

where fπ is the injection associated with π , see Eq. (A1). As U ∗ is the minimum matching cost over all possible partial
permutations in PN1,N2 (k), we have ∑

i| fπ (i)�=0

C(i, fπ (i)) � U ∗. (G4)

Combining Eqs. (G3) and (G4), we get

U MF
β �

∑
π∈PN1 ,N2 (M )

aπU ∗ �

⎛
⎝ ∑

π∈PN1 ,N2 (M )

aπ

⎞
⎠U ∗,

from which we conclude that at each β,

U ∗ � U MF
β .

Therefore, U ∗ � U MF(∞) and, consequently, U ∗ � F MF(∞), based on Eq. (G2).
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3. Proof that U∗ � FMF(∞)

Let us first recall the definition of the free energy,

Fβ (λ,μ, x) = − 1

β

⎛
⎝∑

i

ln (1 + eβλ(i)) +
∑

j

ln (1 + eβμ( j))

⎞
⎠ − 1

β

∑
i, j

ln (1 + e−βy(i, j)) − kx.

Note this property of limits:

lim
β→+∞

ln(1 + e−aβ )

β
=

{
0 if a � 0,
−a if a � 0.

Therefore,

lim
β→+∞

Fβ (λ,μ, x) = −
∑

i|λ(i)�0

λ(i) −
∑

j|μ( j)�0

μ( j) +
∑

(i, j)|y(i, j)�0

y(i, j) − kx. (G5)

Let us consider a permutation π in PN1,N2 (k) and fπ its associated injection [see Eq. (A1)]. We can write∑
i| fπ (i)�=0

C(i, fπ (i)) =
∑

i| fπ (i)�=0

(C(i, fπ (i)) + λ(i) + μ( fπ (i)) + x) −
∑

i| fπ (i)�=0

λ(i) −
∑

j∈Im( fπ )

μ( j) − kx,

where Im( fπ ) = {l ∈ [1, N2] | ∃k ∈ [1, N1], fπ (k) = l}. Note that |Im( fπ )| = k. The equation above can be rewritten as∑
i| fπ (i)�=0

C(i, fπ (i)) =
∑

i| fπ (i)�=0

y(i, fπ (i)) −
∑

i| fπ (i)�=0

λ(i) −
∑

j∈Im( fπ )

μ( j) − kx.

For each index i, the summand included in the first term on the right is always larger or equal to the sum of all the corresponding
terms that are negative: ∑

i| fπ (i)�=0

y(i, fπ (i)) �
∑

i|y(i, j)�0

y(i, j).

Similarly, ∑
i| fπ (i)�=0

λ(i) �
∑

i|λ(i)�0

λ(i),
∑

j∈Im( fπ )

μ( j) �
∑

j|μ( j)�0

μ( j).

Therefore, ∑
i| fπ (i)�=0

C(i, fπ (i)) �
∑

(i, j)|y(i, j)�0

y(i, j) −
∑

i|λ(i)�0

λ(i) −
∑

j|μ( j)�0

μ( j) − kx,

i.e., using Eq. (G5), ∑
i| fπ (i)�=0

C(i, fπ (i)) � lim
β→+∞

Fβ (λ,μ, x). (G6)

Equation (G6) is valid for all partial permutations π in PN1,N2 (k). It is therefore valid for the optimal permutation π∗ that
solves the unbalanced k-cardinality assignment problem. Since U ∗ = ∑

i| fπ (i)�=0 C(i, fπ∗ (i)), we have

U ∗ � lim
β→+∞

Fβ (λ,μ, x).

As this equation is true for all λ, μ, and x it is true in particular for λ = λMF, μ = μMF, and x = xMF, leading to

U ∗ � lim
β→+∞

F MF
β = F MF(∞).

We have shown that U ∗ � F MF(∞) and F MF(∞) � U ∗, therefore U ∗ = F MF(∞). The corresponding result for the internal
energy, U ∗ = U MF(∞) follows directly from Eq. (G2).

APPENDIX H: PROOF OF THEOREM 4: BOUNDS ON THE ENTROPY, INTERNAL ENERGY, AND FREE ENERGY

1. Bounds on the entropy

In Appendix G, we have shown that [Eq. (G1)]:

0 � SMF
β � (N1N2 + N1 + N2) ln(2).

We define A(N1, N2) = (N1N2 + N1 + N2) ln(2). While this is not a tight bound, it will be enough for all subsequent properties.
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2. Bounds on the free energy

In Appendix E, we have shown that [see Eq. (E4)]

β
dF MF

β

dβ
= −F MF

β + U MF
β .

Using this equation and the relationship between free energy, energy, and entropy at SPA [see Eq. (17)], we obtain

dF MF
β

dβ
= 1

β2
SMF

β .

From the bounds on the entropy,

0 �
dF MF

β

dβ
� A(N1, N2)

β2
.

By integrating over β between +∞ and β,

0 � F MF(∞) − F MF
β � A(N1, N2)

β
.

Finally, as F MF(∞) = U ∗,

U ∗ − A(N1, N2)

β
� F MF

β � U ∗. (H1)

3. Bounds on the energy

As U MF
β = F MF

β + 1
β

SMF
β , using the inequalities in Eqs. (G1) and (H1), we get

U MF
β � U ∗ + A(N1, N2)

β
. (H2)

In addition, U MF
β is monotonic, decreasing, with limit U ∗ as β → +∞, U ∗ � U MF

β . Therefore,

U ∗ � U MF
β � U ∗ + A(N1, N2)

β
.

APPENDIX I: PROOF OF THEOREM 5: BOUNDS ON THE k-ASSIGNMENT MATRIX Gβ

This proof is inspired by the proof of Theorem 6 in Appendix 2 of Ref. [45] and by Appendix F of Ref. [16].
We first recall that Gβ , is a doubly substochastic matrix with σ (Gβ ) = k. As such, it can be written as a linear combination

of the partial permutation matrices of rank k, π ∈ PN1,N2 (k),

Gβ =
∑

π∈PN1 ,N2 (k)

aππ,

with all aπ ∈ [0, 1] and
∑

π∈PN1 ,N2(k) aπ = 1.
We assume that the unbalanced k-cardinality assignment problem considered has a unique solution. We want to prove

that maxi, j |Gβ (i, j) − G∗(i, j)| � A(N1,N2 )
β�

, where G∗ is the optimal solution of the unbalanced k-cardinality assignment

problem, � = U 2∗ − U ∗ the difference in total cost between the second best solution and the optimal solution, and
A(N1, N2) = (N1N2 + N1 + N2) ln(2). We use for that a proof by contradiction. We assume that there exists a pair (i, j) such that

A(N1, N2)

β�
< |Ḡβ (i, j) − G∗(i, j)|.

Let us denote B(i, j) = |Ḡβ (i, j) − G∗(i, j)|. As G∗ is a partial permutation matrix, G∗(i, j) = 0 or G∗(i, j) = 1.
In the first case,

B(i, j) = Ḡβ (i, j) =
∑

π∈PN1 ,N2 (k)

aππ (i, j).

Since G∗ is a partial permutation matrix of rank k, it is included in the decomposition of Gβ , and therefore,

B(i, j) = aG∗G∗(i, j) +
∑

π∈PN1 ,N2 (M )−{G∗}
aππ (i, j) =

∑
π∈PN1 ,N2 (k)−{G∗}

aππ (i, j) <
∑

π∈PN1 ,N2 (k)−{G∗}
aπ = 1 − aG∗ ,

where the final equality follows from the fact that the sum of all coefficients a is equal to 1.
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In the second case, G∗(i, j) = 1,

B(i, j) = 1 − Gβ (i, j) = 1 −
∑

π∈PN1 ,N2 (k)

aππ (i, j).

Again, as G∗ is included in the decomposition of Gβ ,

B(i, j) = 1 − aG∗G∗(i, j) −
∑

π∈PN1 ,N2 (k)−{G∗}
aππ (i, j) = 1 − aG∗ −

∑
π∈PN1 ,N2 (k)−{G∗}

aππ (i, j) < 1 − aG∗ ,

where the final inequality follows from the fact that
∑

π∈PN1 ,N2 (k)−{G∗} aππ (i, j) is positive.
In conclusion, in both cases, we have

A(N1, A2)

β�
< 1 − aG∗ . (I1)

Now, let us look at the energy associated with Ḡβ :

U MF
β =

∑
i, j

C(i, j)Gβ (i, j) =
∑

π∈PN1 ,N2 (k)

aπ

∑
i| fπ (i)�=0

C(i, fπ (i)) = aG∗U ∗ +
∑

π∈PN1 ,N2 (k)−{G∗}
aπ

∑
i| fπ (i)�=0

C(i, fπ (i))

� aG∗U ∗ +
⎛
⎝ ∑

π∈PN1 ,N2 (k)−{G∗}
aπ

⎞
⎠U 2∗ � aG∗U ∗ + (1 − aG∗ )U 2∗ � U ∗ + (1 − aG∗ )�.

In Theorem 4, we have shown that

U ∗ � U MF
β � U ∗ + A(N1, N2)

β
.

Therefore,

U ∗ + (1 − aG∗ )� � U ∗ + A(N1, N2)

β
,

i.e.,

(1 − aG∗ ) � A(N1, N2)

β�
, (I2)

as � is strictly positive.
We have shown that A(N1,N2 )

β�
< 1 − aG∗ [Eq. (I1)] and (1 − aG∗ ) � A(N1,N2 )

β�
[Eq. (I2)], i.e., we have reached a contradiction.

Our hypothesis is wrong, and therefore maxi, j |Ḡβ (i, j) − G∗(i, j)| � A(N1,N2 )
β�

.

APPENDIX J: PROOF OF THEOREM 7: TERMINATION CRITERIA FOR THE GENERIC ASSIGNMENT PROBLEM

Let us start by proving the following lemma.
Lemma 1. Let S1 and S2 be two sets of points with cardinalities N1 and N2 and let C be a real-valued cost matrix between S1

and S2. Let G be a transportation matrix between S1 and S2 with the sums of all rows and columns smaller or equal to 1, and a total
sum of k, namely G is a doubly substochastic matrix with fixed total sum. Let U (G,C) be the total assignment cost associated
with G, namely U (G,C) = ∑

k,l C(k, l )G(k, l ). Let a and b be any two real-valued vectors of size N1 and N2, respectively, and
let c be a real number. Let Da,b,c be the matrix defined as Da,b,c(i, j) = C(i, j) + a(i) + b( j) + c for (i, j) ∈ [1, N1] × [1, N2].
Then,

U (G, Da,b,c) = U (G,C) + m,

where m = ∑
i a(i) + ∑

j b( j) + ck is a constant, independent of G.

Proof. Let n1(i) = ∑N2
j=1 G(i, j) and n2( j) = ∑N1

i=1 G(i, j), and let D1 = diag(n1) and D2 = diag(n2). We consider an
augmented balanced assignment problem of size N1 + N2. We define the matrix Ca as

Ca =
[
C 0
0 0

]

and Ga as [see Eq. (A2)]

Ga =
[

G I − D1

I − D2 GT

]
.
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Both matrices Ca and Ga are square matrices of size (N1 + N2) × (N1 + N2). In addition, it can be shown that Ga satisfies

N1+N2∑
l=1

Ga(k, l ) = 1,

N1+N2∑
k=1

Ga(k, l ) = 1,

i.e., Ga is a doubly stochastic matrices.
It is easy to see that

U (G,C) = U (Ga,Ca). (J1)

Let us now define the augmented vectors aa = (a, 0, . . . , 0) and ba = (b, 0, . . . , 0) both of size N1 + N2, and the matrix
Da

a,b,c(k, l ) = Ca(k, l ) + aa(k) + ba(l ) + c, for (k, l ) ∈ [1, N1 + N2]2. This matrix can be written as

Da
a,b,c =

[
Da,b,c cE1

cE2 cET
3

]
,

where E1 and E2 are square matrices of size N1 × N1 and N2 × N2, respectively, and E3 is a rectangular matrix of size N1 × N2.
All elements of these three matrices are 1. We compute U (Ga, Da

a,b,c) is two different ways.
(i) Direct product of Ga with Da. From the definitions of Ga and Da

a,b,c, we get

U
(
Ga, Da

a,b,c

) = U (G, Da,b,c) + c
∑
i,i′

(I (i, i′) − D1(i, i′))E1(i, i′) + c
∑
j, j′

(I ( j, j′) − D2( j, j′))E1( j, j′) + c
∑
i, j

G(i, j)E3(i, j),

where the sums extend over all (i, i′) ∈ [1, N1]2 and (i, j′) ∈ [1, N2]2. Considering the values of the matrices and the fact that G
is a doubly substochastic matrix of total sum k,

U
(
Ga, Da

a,b,c

) = U (G, Da,b,c) + c

(∑
i

I (i, i) −
∑

i

n1(i)

)
+ c

⎛
⎝∑

j

I ( j, j′) −
∑

j

n2( j)

⎞
⎠ + c

∑
i, j

G(i, j),

i.e.,

U
(
Ga, Da

a,b,c

) = U (G, Da,b,c) + c

⎛
⎝N1 −

∑
i, j

G(i, j)

⎞
⎠ + c

⎛
⎝N2 −

∑
i, j

G(i, j)

⎞
⎠ + c

∑
i, j

G(i, j).

Considering the values of the matrices and the fact that G is a doubly substochastic matrix of total sum k, we get

U
(
Ga, Da

a,b,c

) = U (G, Da,b,c) + c(N1 + N2) − ck. (J2)

(i) Using the definition of the matrix Da
a,b,c:

U
(
Ga, Da

a,b,c

) =
N1+N2∑
i, j=1

(Ca(i, j) + aa(i) + ba( j) + c)Ga(i, j)

= U (Ga,Ca) +
N1+N2∑

i=1

aa(i)
N1+N2∑

j=1

Ga(i, j) +
N1+N2∑

j=1

ba( j)
N1+N2∑

i=1

Ga(i, j) +
N1+N2∑
i, j=1

cGa(i, j).

Ga is a doubly stochastic matrix of size (N1 + N2)2. Therefore,

U
(
Ga, Da

a,b,c

) = U (Ga,Ca) +
N1+N2∑

i=1

aa(i) +
N1+N2∑

j=1

ba( j) + c(N1 + N2) = U (Ga,Ca) +
N1∑

i=1

a(i) +
N2∑

l=1

b( j) + c(N1 + N2). (J3)

Combining Eqs. (J1)–(J3), we get

U (G, Da,b,c) = U (G,C) +
N1∑

i=1

a(i) +
N2∑
j=1

b( j) + ck, (J4)

which concludes the proof. �
It is clear from Lemma 1 that solving the unbalanced k-cardinality assignment problem between S1 and S2 with the cost

matrix C is equivalent to solving the k-cardinality assignment problem with the cost matrix Da,b,c. This is generally of no use,
with one significant exception, the setting of Theorem 7.

Indeed, let us consider an inverse temperature β and let λMF, μMF, and xMF be the mean-field solutions of the k-cardinality
assignment problem at that temperature. Let us suppose that the corresponding matrix ḠMF

β contains exactly k values that are
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greater than 1
2 . Since ḠMF

β is a solution to the k-cardinality assignment problem,
∑

i ḠMF
β (i, j) � 1 and

∑
j ḠMF

β (i, j) � 1.
Therefore, no two of the values fall on the same row, and similarly no two of those values fall on the same column. We can then
define a function π such that π (i) = j if (i, j) are the two indices of one of the k values considered, and π (i) = 0 otherwise. π

is in fact a partial permutation of rank k.
We know that ḠMF

β (i, j) = h(yMF(i, j)), where yMF(i, j) = C(i, j) + λMF(i) + μMF( j) + xMF. We also know that 0 < h(x) �
1
2 when x � 0 and 1

2 � h(x) < 1 when x � 0. Therefore,

yMF(i, π (i)) < 0 when π (i) �= 0,

yMF(i, j) > 0 otherwise.

By setting the vectors a and b and the constant c in Lemma 1 to be λMF, μMF, and xMF, respectively, we have
DλMF,μMF,xMF (i, j) = yMF(i, j), and, therefore,

DλMF,μMF,xMF (i, π (i)) < 0 when π (i) �= 0,

DλMF,μMF,xMF (i, j) > 0 otherwise.

The unbalanced assignment problem of size k associated with this cost matrix DλMF,μMF,xMF is then simple: element i in S1 is
trivially associated with element π (i) in S2 when π (i) �= 0, as the corresponding cost is negative and therefore minimal compared
to all the other costs that are positive. Its solution is then the partial permutation matrix π , and based on Lemma 1, it is also the
solution to the original unbalanced k-cardinality assignment problem. The matrix G∗ can then be obtained by rounding off the
elements of ḠMF

β to the nearest integer.
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[47] P. Čihák, Commentationes Mathematicae Universitatis Carolinae

11, 385 (1970).
[48] N. S. Mendelsohn and A. L. Dulmage, Proc. Am. Math. Soc. 9,

253 (1958).
[49] R. A. Brualdi and G. M. Lee, Linear Alg. Appl. 19, 33

(1978).

014108-26

https://doi.org/10.1016/S0166-218X(00)00301-2
https://site.unibo.it/operations-research/en/research/library-of-codes-and-instances-1
https://doi.org/10.1016/j.jpdc.2019.03.014
https://github.com/paclopes/HungarianGPU
https://doi.org/10.2196/preprints.23246
https://github.com/rapidsai
https://doi.org/10.1016/0893-6080(94)90081-7
https://doi.org/10.1007/BF01240767
https://dml.cz//handle/10338.dmlcz/105284
https://doi.org/10.1090/S0002-9939-1958-0095128-8
https://doi.org/10.1016/0024-3795(78)90004-6

