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Self-gating stochastic-resonance-based autoencoder for unsupervised learning
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Incorporating additive noise components to an ensemble of McCulloch-Pitts neurons can enhance the infor-
mation representation of the input, asymptotically approaching the average firing probability for large enough
ensembles. We further multiply the input by the average firing probability to control the higher probability of
self-gating, thereby forming a unified noise-boosted activation model with learnable noise-related hyperparam-
eters. This gating strategy plays a crucial role in improving the performance of neural networks, as evidenced
by the optimization of the autoencoder loss at nonzero optimal-noise-scaling hyperparameters, a phenomenon
termed self-gating stochastic resonance. Experiments with designed autoencoders using noise-boosted activation
functions demonstrate the potential applications of the self-gating stochastic resonance effect in the field of
unsupervised learning.
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I. INTRODUCTION

Noise injection, as a powerful method of improving neu-
ral network generalization ability, has attracted the attention
of researchers for unsupervised learning [1–5]. It is widely
recognized that dropout [6] can be viewed as injecting
multiplicative noise into synaptic weights to prevent neural
networks from overfitting. This is because a random zero
denotes weight pruning while a random one preserves it. Con-
sequently, the dropout rate, as a hyperparameter, is applied
during network training to prevent over-reliance on specific
neurons or features and promote a more robust data repre-
sentation. In contrast to multiplicative noise, some interesting
results for enhancing neural network ability benefit from ad-
ditive noise. In the last few years, in particular, regularizing
denoising [1], contractive [2], variational [3], and graph au-
toencoders [7] through noise injection has become a research
focus. It has been demonstrated that training with adding
noise into the input [1,7–9], the hidden units [4], or the latent
space [10] can yield desired low-dimensional representations
and high-fidelity reconstructions of input data.

However, it must be noted that, in the context of nonlinear
mappings such as a neural network employing sigmoid or
rectified linear unit (ReLU) activations, the equivalence of the
noise injection with Tikhonov regularization holds true only in
the asymptotic regime of small injected noise [1,11–13]. For
large injected noise level, the rigorous expansion of infinites-
imal parameters becomes impracticable, thereby invalidating
the equivalence of noise injection to a smoothing regulariza-
tion term [1]. In addition, both theoretical and experimental
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results clearly show the lack of equivalence between the two
approaches under the conditions of the injected noise scaled
by the nonlinear activation function and the weights [11,14].

Nonlinearity of a neural network has its origin in acti-
vation functions that endow the network with the ability to
process data and learn features [5,15–18]. Now, the widely
used activation function is the ReLU max(x, 0) [16] in train-
ing deep neural networks for image-related tasks, because it
allows a network to easily obtain sparse representations [17].
Supporting the biological plausibility, the activation functions
modeling vertebrate retinal neurons, similar to the ReLU, also
exhibit the inactivation below zero and yield the unbounded
response above zero [19,20]. Nevertheless, the nonsmooth-
ness and the monotonicity of ReLU do not accord with the
pointwise nonlinearity of vertebrate retinal neuron [19,20],
and hence, certain smooth and nonmonotonic activation func-
tions, e.g., parametric ReLU [21], the Gaussian error linear
unit (GELU) [22], the sigmoid linear unit (SiLU) [22–24],
the active or not (ACON) unit [25], the parametric rectified
linear unit (PRLU) [26], and the nonbistable rectified linear
unit [27], have been proposed. The learning of hyperparam-
eters associated with these activations [28] has also been
introduced to mimic the adaptation of visual neurons [19,20].
Moreover, these proposed units with adjustable characteris-
tics can improve the neural network performance with only
a small increase in the complexity of the network archi-
tecture [19–25,28]. As a result, the exploration of learnable
activation functions has emerged as a prominent research di-
rection in the domain of machine learning.

Naturally, some interesting questions arise. In contrast
to the ReLU activation function, these learnable activation
functions [19–25,28] typically exhibit negative responses for
negative inputs near zero, but with saturation for very small
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FIG. 1. Noise-boosted activation functions based on the SSR
model.

negative inputs. This observation motivates us to investigate
the following questions: does the negative region of these
functions within the subthreshold regime hold any physi-
cal significance, and how does it relate to the firing rate of
neurons? What intricate interconnections are established by
learning among these nonlinear activations [22–26,28,29]?
Is it possible to consolidate these diverse activations into a
unified neuron model also capable of eliciting novel ones?
How can we elucidate the physical significance and evaluate
the role of learnable hyperparameters in this neuron model?
To address these critical questions, this paper proposes a
unified noise-boosted activation model with learnable noise-
related hyperparameters. This model incorporates elements
from existing activation functions while introducing learnable
parameters that can be optimized during the training process.
We investigate the impact of these learnable parameters on the
network performance and also explore the potential biological
relevance of the resulting activation dynamics.

II. ACTIVATION MODEL

In order to address the aforementioned queries, we first in-
vestigate the interconnections among these activations from a
perspective of the suprathreshold stochastic resonance (SSR)
model [30] illustrated in Fig. 1, which consists of an array of
McCulloch-Pitts [31] or bipolar neurons [19,20]

h(x) = 1
2 [1 + sgn(x)] (1)

subjected to a common input x and mutually independent
noise components ηt for t = 1, 2, . . . , T . Here, sgn(x) de-
notes the signum function. Facilitated by the nonzero optimal
noise components ηt , the output of the SSR model

ḡ(x) = 1

T

T∑
t=1

h(x + ηt ) (2)

effectively aggregates information from each neuron [30]. As-
sume that the injected noise components ηt have the common
probability density function (PDF) fη(η), then each neuron
yields a response of unity with probability

p(x) =
∫ ∞

−x
fη(η)dη = 1 − Fη(−x), (3)

where Fη(u) = ∫ u
−∞ fη(η)dη denotes the cumulative distri-

bution function (CDF). For a sufficiently large number T
of neurons [30,32], the output ḡ(x) of the SSR model ap-
proaches close to the average firing probability p(x), i.e.,
limT →∞ ḡ(x) = p(x). Within the framework of McCulloch-
Pitts neurons, the firing probability p(x) is emphasized to
persist even for negative inputs (x < 0) under the influence of
background noise η(t ). This can be attributed to the possibility
of the summation x + ηt exceeding zero, which triggers a
firing response of unity from the neuron.

Gates play a critical role in enabling long short-term
memory (LSTM) networks to excel at processing sequential
data [33]. Within each gate, a nonlinear activation function
modulates the information flow through a subsequent multi-
plication operation. The activation function generates outputs
ranging from 0 to 1, effectively representing the likelihood of
the gate being open or closed. Values close to unity indicate an
open gate, allowing uninhibited information flow. Conversely,
values close to zero signify a closed gate, thereby imped-
ing information transmission [33]. Motivated by the gating
mechanism of the LSTM network [33], we conceptualize the
SSR model as a gating operator acting on the input, as shown
in Fig. 1. Alternatively, this gating operator deactivates and
yields a zero output with probability 1 − p(x), while trans-
mitting the input with probability p(x). Therefore, we obtain
a noise-boosted activation function expressed as

g(x) = xp(x) = x [1 − Fη(−x)]. (4)

Interestingly, without the injection of noise η, the ag-
gregation

∑T
t=1 h(x + ηt )/T = h(x) simplifies to a single

McCulloch-Pitts neuron, and g(x) = xh(x) = max(x, 0) rep-
resents the ReLU [16]. By injecting diverse noise types
into the SSR model of Fig. 1, the existing activations in
Refs. [22–24] can be deduced from Eq. (4). For instance,
when introducing logistic noise η with its PDF fη(x) =
e−x/σ /[σ (1 + e−x/σ )2] and CDF Fη(x) = 1/(1 + e−x/σ ) for
the scale parameter σ > 0, Eq. (4) evolves into the
SiLU [22–24] given by

g(x, σ ) = x

1 + e− x
σ

. (5)

When considering injected noise with a Gaussian PDF
fη(x) = exp(−x2/2σ 2)/

√
2πσ 2, the noise-boosted activation

function of Eq. (4) becomes the GELU [22] defined as

g(x, σ ) = x�(x/σ ) (6)

and can also be derived from Eq. (4). Here, �(x) = 1
2 +

1
2 erf (x/

√
2) denotes the CDF of a standard Gaussian random

variable (σ = 1). Moreover, novel activation functions can be
derived from Eq. (4) according to various noise distributions.
For example, considering the exponential noise PDF fη(x) =
(e−x/σ )/σ on the support interval x ∈ [0,∞), we obtain the
exponential linear unit (ExLU) as

g(x, σ ) =
{

x, x � 0,

xex/σ , x < 0.
(7)

Similarly, for the Rayleigh noise PDF fη(x) =
x exp(−x2/2σ 2)/σ 2 over the interval x ∈ [0,∞), the
corresponding activation function is referred to as the
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FIG. 2. (a) Noise-boosted activations of ReLU, GELU, SiLU,
ExLU, and RayLU with (b) the corresponding average firing proba-
bilities p(x). Here, the noise-scale parameter σ = 1 for GELU, SiLU,
ExLU, and RayLU.

Rayleigh linear unit (RayLU), defined as

g(x, σ ) =
{

x, x � 0,

xe− x2

2σ2 , x < 0.
(8)

As illustrated in Fig. 2(a), the activations derived from
Eq. (4), namely, GELU, SiLU, ExLU, and RayLU, are smooth
and thus differentiable across all input values, distinguishing
them from ReLU. Significantly, these noise-boosted activa-
tions exhibit a nonmonotonic behavior in the negative input
region attributed to the nonzero hyperparameter σ , converg-
ing to ReLU as the hyperparameter σ approaches zero.
When the hyperparameter σ > 0, the noise-boosted activa-
tions of GELU, SiLU, ExLU, and RayLU explicitly manifest
a nonzero nonlinear transformation within the negative do-
main of x. This alteration arises from the integration of noise,
thereby endowing even negative x inputs below the threshold
with a firing probability, as indicated in Fig. 2(b). We propose
that the interpretation of continuous-valued neuronal output
depends on the stage of information processing. At the post-
synaptic level, it is typically construed as an average firing
rate, reflecting the overall activity of the neuron. However, at
the presynaptic stage, where neurons communicate with each

FIG. 3. Diagram of the designed autoencoder with the hyper-
parameter set {σ j, j = 1, 2, . . .} in hidden layers, as introduced in
Eq. (4).

other, the continuous activity can be more accurately inter-
preted as an average membrane potential, or depolarization.
In this context, the significance of negative activity becomes
readily apparent. Negative values in our model represent hy-
perpolarization of the presynaptic membrane, which serves to
inhibit the firing probability of the postsynaptic neuron.

III. MAIN RESULTS OF THE AUTOENCODER BASED ON
NOISE-BOOSTED ACTIVATIONS

Next, we integrate these noise-boosted activation functions
into the autoencoder for tasks such as dimensional reduction
or denoising and explore the physical significance of learnable
hyperparameters. As depicted in Fig. 3, the input x originating
from a potentially high-dimensional space X is transformed
by the encoder � into the latent variable y = �(X ) within a
low-dimensional space Y . The decoder D generates the output
x̂ = D(y) to reconstruct the input x from the latent variable y.
Here, the training criterion for autoencoders involves mini-
mizing the reconstruction error L = ∑

x∈X ‖x − x̂‖2.
It is worth noting that the noise-boosted activation func-

tions described in Eq. (4) introduce hyperparameters in both
the encoder and the decoder, thereby forming a set of hyperpa-
rameters {σ j, j = 1, 2, . . .} to be optimized. It is noteworthy
that the introduction of the noise-scale hyperparameter σ

is limited to the corresponding hidden layer, resulting in a
relatively modest increase in the design complexity of the
proposed autoencoder. Therefore, we can adaptively learn hy-
perparameters through the minibatch gradient descent (GD)
approach [13,15]:

σ t
j = σ t−1

j − αt
∑
x∈B

∂L(x; σ j )

∂σ j

∣∣∣∣
σ j=σ t−1

j

, (9)

where B is a minibatch sampled from the space X , and αt > 0
represents the learning rate at the t th training epoch.

A. Motivated experiment of the GELU autoencoder and
stochastic resonance

Henceforth, we demonstrate the manifestation of stochas-
tic resonance phenomenon within the proposed autoencoder,
incorporating noise-boosted activation functions of Eq. (6).
An illustrative fully connected autoencoder with five lay-
ers is constructed (source codes are provided in Ref. [34]),
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FIG. 4. Mean-squared-error surface of the GELU autoencoder as
a function of hyperparameters σ1 and σ2 on the Iris dataset.

comprising the encoder � (4 × 10 × 2) and the decoder D
(2 × 10 × 4). In the architecture of this devised autoencoder,
the input x of the Iris dataset [35] comprises four features
and undergoes transformation through ten GELU activation
functions within the encoder �, yielding a two-dimensional
latent variable y. Conversely, the decoder D maps the latent
variable y to the reconstructed output x̄ using a layer of ten
GELU neurons. It is noteworthy that both the encoder and the
decoder utilize a single layer comprised of GELU activation
functions with a common hyperparameter: σ1 for the encoder
� and σ2 for the decoder D. This configuration results in a
parsimonious model with only two additional hyperparame-
ters σ1 and σ2, which will be optimized concurrently with the
weight coefficients of linear layers in the autoencoder by the
gradient descent methodology as indicated in Eq. (9).

After 200 training epochs on the Iris dataset consisting
of 150 data points, the designed autoencoder achieves a
minimum reconstruction error of L = 0.05 at the converged
hyperparameter values σ1 = 0.88 and σ2 = 1.37. Subse-
quently, with the autoencoder weights fixed at their optimal
values, the performance landscape of the reconstruction error
L is plotted in Fig. 4 as a function of σ1 and σ2 within their re-
spective ranges of [0, 2] × [0, 2.5]. It is observed in Fig. 4 that
the reconstruction error L attains a local optimum of 0.05 at
the optimal coordinate pair (σ1 = 0.88, σ2 = 1.37). This ob-
servation manifests the phenomenon of stochastic resonance
with nonzero optimal levels (σ1, σ2) minimizing the recon-
struction error values of L. It is noteworthy in Eq. (6) that an
excessively small value of the hyperparameter σ corresponds
to the ReLU activation, while an excessively large value of
σ corresponds to the linear activation function. Therefore,
an optimal nonzero hyperparameter σ in Eq. (6) signifies a
nonlinear transfer function exhibiting curvature at all input
values of x with increasing the noise scale σ . This experi-
ments demonstrates the physical significance of the proposed
noise-boosted activation model of Eq. (4) within the context
of the stochastic resonance mechanism. Given the interpreta-
tion of the hyperparameter σ in the noise-boosted activation
function of Fig. 1, a nonzero value of σ demonstrates the

beneficial action of a noise-driven probability gate for the
input x. Hence, we call this phenomenon depicted in Fig. 4
the self-gating stochastic resonance effect observed during
autoencoder learning.

B. Experiments on the MNIST dataset

However, there is a possibility for the noise parameter σ

to converge to a value outside its defined domain or to fail
to converge. As depicted in Fig. 4, upon initialization with
(σ1, σ2) = (0.15, 0.15), the optimization procedure, employ-
ing gradient descent methodology, may lead to convergence
issues, wherein the hyperparameter pair (σ1, σ2) tends towards
negative values or suffers the problem of exploding gradients.
For instance, the gradient of the ExLU function defined by
Eq. (7) with respect to the scale parameter σ can be expressed
as

∂g(x, σ )

∂σ
= − x2

σ 2
e

x
σ , (10)

approaching infinity as σ approaches zero and the input x > 0.
For such situations, we can utilize the tree-structured

Parzen estimator (TPE) approach [36] to optimize the hy-
perparameter σ by the acquisition function of the expected
improvement:

μEI(σ ) = EL[max{Lmin − L(σ ), 0}], (11)

where the loss L is assumed to be a Gaussian random variable
L ∼ N [ĉ(σ ), v̂ar(σ )] and EL means the expectation operator
with respect to this Gaussian distribution of L. Here, the mean
ĉ(σ ) represents the model prediction, and the variance v̂ar(σ )
indicates the posterior uncertainty [36]. The continuous hy-
perparameter σ is assumed to have a uniform prior over the
interval [0, a]. It is important to note that in the subsequent
experiments, the upper bound is set to a = 10, and the hyper-
parameter optimization software utilized is OPTUNA [37].

We perform an experiment on the MNIST dataset employ-
ing a fully connected vanilla autoencoder. The architecture
comprises an encoder � with dimensions 784 × 2000 × 256,
a ten-dimensional latent variable y, and a decoder D with
dimensions 256 × 2000 × 784 (source codes are provided
in Ref. [34]). Here, the sigmoid function employed in the
final layer of D confines the output to the interval [0, 1].
Three layers of � and two layers of D pass through ReLU
or noise-boosted activation functions defined in Eq. (4). We
randomly select 50 000 images as the training data and 10 000
images as the test data and calculate the reconstruction error
L between the original image and the reconstructed one. In
addition, aiming to assess the representation capability of the
low-dimensional latent variable y, we also utilize the support
vector machine classifier for classification. It is important to
note that the labels of the MNIST dataset are utilized for
classification, but not for training designed autoencoders.

As presented in Table I, the autoencoders utilizing SiLU,
ExLU, GELU, and RayLU activation functions exhibit lower
reconstruction errors L and higher accuracies compared to the
autoencoder using ReLU activation functions. By compress-
ing the high-dimensional data into a ten-dimensional latent
variable y, Table I demonstrates that, utilizing the minibatch
GD learning rule of Eq. (9), the SiLU, ExLU, GELU, and
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TABLE I. Results of the designed autoencoder on the MNIST
dataset.

Minibatch GD OPTUNA�������g(x)
Approach

L (10−2) Accuracy (%) L (10−2) Accuracy (%)

ReLU 1.80 91.74 – –
SiLU 1.05 94.24 1.06 94.13
ExLU 1.05 93.84 1.10 94.93
GELU 1.06 94.29 1.08 94.61
RayLU 1.09 93.69 1.14 95.20

RayLU autoencoders exhibit superior representational abil-
ities in comparison to the ReLU autoencoder, resulting in
classification accuracies that exceed the ReLU autoencoder
by 2.50%, 2.10%, 2.55%, and 1.95%, respectively. More-
over, the ExLU autoencoder exhibits a significant decrease
in the reconstruction error L, achieving a value of 1.06 com-
pared to the 1.79 obtained with the ReLU autoencoder. This
corresponds to a 41% reduction in L, indicating a superior
ability of the ExLU architecture to capture the underlying data
representation.

We argue that the enhanced representational capacity of the
autoencoder stems from the five learnable hyperparameters
σ j for j = 1, 2, . . . , 5. In Fig. 5, the learning curve of the
reconstruction error L for the designed GELU autoencoder
and the corresponding hyperparameters σ j for j = 1, 2, . . . , 5
are presented. It is evident that σ2 exhibits a constant growth,
while the remaining hyperparameters σ j start from the same
initial value and converge to distinct but nonzero optima.
Interestingly, the value of σ2 being significantly larger than
unity does not impact the convergence of L and results in
g(x) behaving as a linear activation function in the proximity
of zero.

To circumvent the issue of nonconvergence, we employ
the TPE Bayesian optimization approach [36] described in
Eq. (11) to optimize the hyperparameters of the designed
autoencoders, and we also present the corresponding experi-
mental results in Table I. For the designed GELU autoencoder,
the level of the added noise converges to the optimal values σ j

for j = 1, 2, . . . , 5 that are determined to be 2.22, 3.49, 9.64,
1.22, and 1.38, respectively. As shown in Fig. 6, the level
curves of the reconstruction error L for the GELU autoen-
coder illustrate the convergence process of hyperparameters
σ1 and σ2. For simplicity, other level curves of the recon-
struction error L versus hyperparameters σ j are not shown
here. Furthermore, the RayLU autoencoder attains the highest
classification accuracy of 95.20% among all considered au-
toencoder models, surpassing the ReLU one by 3.46%. This
outcome once again highlights the useful contribution from
the generalization of the unified model in Eq. (4) and from the
tunable level of added noise with the hyperparameter.

Figure 6 also reveals that the reconstruction error L
exhibits an increasing trend for both high and low val-
ues of hyperparameters σ1 and σ2. Hence, the presence of
nonzero converged noise hyperparameters σ j in Fig. 6 pro-
vides evidence for the occurrence of the self-gating stochastic
resonance effect in the designed autoencoder optimized by the
TPE Bayesian approach. This phenomenon is characterized

FIG. 5. Plots of (a) the reconstruction error L and (b) the hy-
perparameters σ versus the epoch numbers for training the fully
connected GELU autoencoder on the MNIST dataset.

by the deliberate introduction of nonzero optimized noise lev-
els into the activation model of Eq. (4), strategically employed
to enhance the autoencoder performance.

C. Experiments of convolution autoencoders on
the Olivetti face dataset

Next, we construct a convolution autoencoder with three
convolution layers and four layers passing through the ReLU
or noise-boosted activation functions in both the decoder D
and the encoder � (source codes are provided in Ref. [34]).
The latent variable y is with the dimension 30, and the Olivetti
face dataset images are employed. In order to avoid the limited
original size of the Olivetti face dataset, we augmented this
dataset by performing random rotations and crops, resulting in
a total 4000 of images. Then, 3200 images were selected from
the augmented dataset as the training set, and the remaining
800 images were used for the testing. In addition, besides the
reconstruction error L, we also calculated the peak signal-to-
noise ratio (PSNR) during testing to assess the quality of the
reconstructed image.

Experimental results of the designed convolution autoen-
coder on the augmented Olivetti face dataset are listed in
Table II. It is seen again that the designed autoencoders
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FIG. 6. Level curves of the reconstruction error as a function
of hyperparameters σ1 and σ2 for the GELU autoencoder, and the
dashed line indicates the convergence process of hyperparameters at
nonzero optimal levels of the added noise. The yellow colored star
represents the final converged coordinate.

with the noise-boosted activation functions of SiLU, ExLU,
GELU, and RayLU outperform the ReLU autoencoder in
both the measures of the reconstruction error and the PSNR
of recovered images. For comparison, Fig. 7 illustratively
presents the original images and the reconstructed ones by the
ReLU and GELU autoencoders, respectively. We can visually
appreciate how the GELU autoencoder optimized through
hyperparameters yields reconstructed images with heightened
clarity.

D. Experiments of denoising convolutional autoencoders on
scanned texts

Finally, we design the denoising convolutional autoen-
coders to process a dataset of images of scanned text [38]. The
detailed autoencoder architecture consists of two convolution
layers and two layers passing through ReLU or noise-boosted
activation functions in both the decoder and the encoder
(refer to source code [34] for implementation details). The
comparison results of the reconstructed error L are provided
in Table III, and the reconstructed image samples of ReLU
and RayLU autoencoders are illustrated in Fig. 8, respec-
tively. Substantially outperforming the ReLU autoencoder,
the RayLU autoencoder achieves remarkable reconstruction
accuracy and generates noticeably sharper denoised images.

TABLE II. Results of the designed autoencoder on the Olivetti
face dataset.

Minibatch GD OPTUNA�������g(x)
Approach

L (10−3) PSNR (dB) L (10−3) PSNR (dB)

ReLU 3.01 25.21 – –
SiLU 2.78 25.56 2.79 25.54
ExLU 2.94 25.32 2.89 25.39
GELU 2.85 25.45 2.76 25.58
RayLU 2.94 25.32 2.89 25.39

FIG. 7. Original image samples of the Olivetti face dataset and
reconstructed image samples of ReLU and GELU autoencoders.

IV. DISCUSSION

To summarize, in this paper we proposed and analyzed
a set of noise-boosted activation functions derived from the
stochastic resonance model. This framework serves as a
bridge connecting stochastic resonance principles with deep
learning methodologies within the domain of data science. For
considered unsupervised learning tasks, we incorporate these
noise-boosted activation functions, such as SiLU, GELU,
ExLU, and RayLU, to assess their efficacy in both fully
connected and convolutional autoencoders. Experimental re-
sults indicate that the devised autoencoders outperform the
commonly employed ReLU-based counterparts, particularly
in tasks related to image reconstruction.

It is foreseeable that the approach of injecting noise to
hidden layer nodes and constructing noise-boosted activation
functions can be generalized to various neural network archi-
tectures, extending beyond fully connected and convolutional
neural networks. Furthermore, innovative noise-boosted acti-
vation functions can be obtained through statistical averages
in probability-based structures, potentially harnessing their
effectiveness in deep learning and exhibiting more intriguing
characteristics of the self-gating stochastic resonance effect.

The fundamental characteristic of stochastic resonance
phenomena is the existence of an optimal nonzero noise
level that amplifies system performance. We integrate the
noise parameter into the formulation of the activation
function, wherein the nonzero optimized noise level corre-

TABLE III. Results of the designed autoencoder on the scanned
text dataset.

���������g(x)
Approach

Minibatch GD L Optuna L

ReLU 0.13 –
SiLU 0.12 0.12
ExLU 0.12 0.11
GELU 0.12 0.12
RayLU 0.11 0.11
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FIG. 8. Reconstructed images by ReLU and RayLU autoencoders for two original image samples of the scanned text.

sponds to a noise-boosted activation function that evolves
between the ReLU and linear activation functions. Moreover,
this optimized activation function exhibits nonmonotonic
transmission characteristics across the entire input domain,
particularly within the negative input region. Hence, such
noise-boosted activation function models exploit the stochas-
tic resonance mechanism, introducing beneficial adaptations
to neural network architectures in the domain of machine
learning and enhancing their learning efficacy.

The negative portion of these activation functions within
the subthreshold range does not contradict the firing rate of
neurons. Within the framework of the noise-boosted activa-
tion model, the observed firing probability can be attributed
to the introduction of noise that facilitates the activation of
neurons even when their inputs fall within the subthreshold
regime. Furthermore, negative activity at the presynaptic stage
meaningfully represents an inhibitory hyperpolarization of the
neuron membrane. This is incorporated into the established
neuron model of Eq. (4), where negative activity reduces the
firing probability of the postsynaptic neuron. An essential

feature is that the neural transfer functions, with their variabil-
ity across hyperparameters, are obtained here uniformly via a
process of addition of noise that we interpret as a stochastic
resonance mechanism. This finding demonstrates that a whole
range of useful neural transfer functions, currently exploited
in machine-learning applications, can be obtained from simple
two-state McCulloch-Pitts neurons engaged in a noise-aided
structure where the added noise is appropriately optimized.
This capability of control by noise of the response from non-
linear neurons, through a uniform mechanism of stochastic
resonance, arguably carries nontrivial physical significance
while bridging a gap between neuronal dynamics and machine
learning [22–26,28,29].
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