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Explanation of flicker noise with the Bak-Tang-Wiesenfeld model of self-organized criticality
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With the original Bak-Tang-Wisenefeld (BTW) sandpile we uncover the 1/ϕ noise in the mechanism maintain-
ing self-organized criticality (SOC)—the question raised together with the concept of SOC. The BTW sandpile
and the phenomenon of SOC in general are built on the slow time scale at which the system is loaded and the
fast time scale at which the stress is transported outward from overloaded locations. Exploring the dynamics of
stress in the slow time in the BTW sandpile, we posit that it follows cycles of gradual stress accumulation that
end up with an abrupt stress release and the drop of the system to subcritical state. As the system size grows,
the intracycle dynamics exhibits the 1/ϕ-like spectrum that extends boundlessly and corresponds to the stress
release within the critical state.
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I. INTRODUCTION

We address the problem of the 1/ϕ-noise construction
with the sandpile model of self-organized criticality (SOC).
Scholars have looked for a universal mechanism that explains
the appearance of the 1/ϕγ noise in various physical sys-
tems. The superposition of exponentially decaying pulses is
characterized by a flat low-frequency content of the spectrum
that turns to the 1/ϕ2 decay [1]. If the rates of the decays
are drawn from a uniform distribution over some interval of
frequencies, then the spectrum of the superposition consists of
three components: a constant, 1/ϕ, and 1/ϕ2 at low, moderate,
and high frequencies, respectively [2]. The change from 1/ϕ

to 1/ϕγ in the spectrum is provided by the appropriate choice
of the rate distribution. However, a single power law in the
spectrum is not obtained with this method.

Bak, Tank, and Wiesenfeld (BTW) introduced a sandpile
model as a mechanism generating power spectra [3]. This
mechanism consists of a slow stress accumulation, its instant
transport from overloaded locations called an avalanche, and
a rare stress release at the system boundary. The BTW model
has been notably influencing statistical physics for decades
[4–9], revealing SOC: the critical state is attained without
parameter tuning and characterized by power laws in sig-
nals themselves rather than in their spectrum [10]. Examples
of SOC are associated with numerous phenomena includ-
ing extremes, earthquakes, solar flares, natural language, and
neuronal networks [11–16]. Nevertheless, the relationship be-
tween SOC and the flicker noise has not been fully understood
yet. Papers [17,18] established that the signal generated by the
linear superposition of the avalanche sizes exhibits just the
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flat and 1/ϕ2 spectrum parts mentioned above if the dynamics
is considered at so-called fast time, at which the transport
of stress occurs. Reference [19] demonstrated the appearance
of the 1/ϕγ spectrum component where the exponent γ is
located between 1 and 2 with the consequent avalanche sizes.
Further studies have dealt with other time scales (considering
the slow time scale at which the system is loaded or the mix
of the fast and slow time scales), explored the dynamics of
the stress in the system, and turned to other models of SOC
[4,18,20–26]. For example, the study in Ref. [4] ends up with
the 1/ϕ spectrum exhibited by the system stress within the
slow time scale introducing a specific driven mechanism and
a preferable direction of the transport. Reference [22] also
investigates the stress in a SOC system and introduces a dissi-
pative transport. This generates the 1/ϕ spectrum component
at the moderate frequencies but ruins the criticality because
of dissipation. Reference [27] proposes a general mechanism
resulting in various flicker noises from an initial flicker noise
obtained, e.g., with SOC models.

The purpose of this paper is to uncover that the depart
from the BTW-like sandpiles in the search for the 1/ϕ noise
was premature. Revisiting the BTW model, we focus on the
dynamics of stress in the system in the slow time, in con-
trast to the sequence of avalanche sizes, and reveal its 1/ϕ

spectrum.

II. METHODS

A. Model

We consider the BTW model on the N × N lattice A =
{(i, j)}N

i, j=1 following the original formulation [3]. Integers
zi j interpreted as the system stress are set to the correspon-
dence to cells (i, j) ∈ A. The cells (i, j) with zi j � 4 are
called unstable. At the initial time moment t = t0, all zi j
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are set to 0. Three following rules define the transition of
stress {zi j (t )} −→ {zi j (t + 1)} accumulated by the beginning
of time moments t and t + 1.

(i) Graduate constant loading: A cell (i, j) ∈ A is chosen
at random and the corresponding integer is increased by one:
zi j (t ) = zi j −→ zi j + 1.

(ii) Instant transport of stress: If the updated value of
zi j is less than 4, nothing more occurs at this time mo-
ment. Otherwise, let N (i, j) = {(i ± 1, j), (i, j ± 1)} be the
set of four neighbors of the inner cell (i, j). Then the unsta-
ble cell (i, j) ∈ A loses 4 units of stress zi j −→ zi j − 4, but
each neighbor gets 1: zi′ j′ −→ zi′ j′ + 1 ∀ (i′ j′) ∈ N (i, j). This
transport of stress can generate other unstable cells and the
same rule is applied to them.

(iii) Stress-release at a boundary cell (i, j): The set N (i, j)
of neighbors consists of less than 4 elements. Then (ii) reads
that the lattice stress is decreased by 4 but then increased only
by the number of neighbors, which is 3 (or 2), so that the stress
dissipates at the boundary.

The absence of unstable cells at t indicates the beginning of
the time moment t + 1 with the obtained set {zi j} assigned to
{zi j (t + 1)}. The transport of stress defined by (ii) and (iii) is
called an avalanche. Its size is the number of the usage of rules
(ii) and (iii) within the time moment. The dissipation at the
boundary provides that the avalanches are finite [7]. The grad-
ual loading, instant transport of stress, and boundary stress
release constitute a general mechanism of self-organized crit-
icality. After transient time the system attains a critical state
where the avalanches exhibit a truncated power-law probabil-
ity distribution of sizes with the tail exhibiting multifractal
properties with respect to the lattice linear scale [28].

B. Spectrum of the mean stress

a. General idea. We examine the dynamics of the mean
stress ρ(t ) accumulated by the lattice at the beginning of
each time moment t dealing with up to 109 added units of
stress. Our main claim presented within the results section is
that the spectrum of the mean stress contains the 1/ϕ com-
ponent and this component constitutes the essential feature
of self-organized criticality. The result is justified with the
spectrum binned over the intervals that are uniform in the
logarithmic scale. The current section explains the necessity
of such binning, initially focusing on the visualization of the
spectrum as it is and the computation of the ensemble average,
which produces less-dispersed spectrum curves.

b. Spectrum as it is. We start recording the catalog
of the mean stress ρ(t ) = N−2 ∑N

i, j=1 zi j (t ) as soon as it
is stabilized. The stabilization is around the value ρ̄ =
limθ→∞ θ−1 ∑2θ

t=θ ρ(t ). Zero on the time axis is assigned
to the moment of the first catalog record. The dynamics of
ρ(t ) on the interval is studied through the computation of
the spectrum S(ϕ; ρ) defined at frequencies ϕ = 0, 1, 2, . . ..
A shorter notation, S(ρ), is usually used. To speed up the
computation we thin out the signal ρ(t ) narrowing the domain
to each ν = 25th point: 0, 25, 50, . . . denoting ρ ′(t ) the
thinned out function (verifying that the conclusions are stable
with respect to the perturbations of ν). The spectra S(ρ) and
S(ρ ′) follow each other everywhere except high frequencies
corresponding to periods that are at most hundreds. However,

FIG. 1. Spectrum S(ρ ′) computed with ρ̄ defined on [0, T ∗],
where T ∗ = 2 × 108, for 128 × 128 and 512 × 512 lattices; highest
frequencies are omitted. The blue and black lines give the best fits.
The power laws of the type S ∼ ϕ−γ imply the dependence S ∼ T γ .

the high-frequency content is well defined by earlier works.
Therefore, the usage of the spectrum S(ρ ′) instead of S(ρ)
affects the part of the frequencies that is unimportant for this
study.

We display the spectrum S(ρ ′) obtained with 128 × 128
and 512 × 512 lattices (Fig. 1). The inspection of both graphs
(in green and light blue) signals that the spectrum consists
of at least three parts: a quasiconstant low-frequency part,
a power-law decay at moderate frequencies, and a high-
frequency content decaying faster; T̂l and T̂h denote the visual
estimates of the corresponding transition points Tl and Th.
The best fits (the dashed and solid black and blue lines in
Fig. 1) computed within [T̂h, T̂l ] are sensitive to the interval
of computation; we note the drop in the exponent from 0.96
to 0.76 and from 1.13 to 0.70 found with N = 128 and 512,
respectively. The fits are written with frequencies, whereas we
discuss the corresponding periods; the transformation of the
fits T γ → ϕ−γ is evident.

c. Ensemble average. The uncertainty in the high- and
moderate-frequency contents of the spectrum is potentially
reduced through the ensemble average. Namely, the domain
[0, T ] of any initial signal, {ρ(t )} or {ρ ′(t )} in our case, is
split into n successive parts; each of them extends to T ∗ =
T/n time moments. The spectrum of each part is computed
and the average of the obtained spectra is found. The result
is denoted by Sn(ρ) or Sn(ρ ′), respectively. The ensemble
average for N = 256 and N = 1024 performed with ρ(t ),
t ∈ [0, 2 × 107], is displayed by the yellow and green graphs
in Fig. 2(a). With n = 100, we substantially reduce the uncer-
tainty in the spectrum (with respect to Fig. 1). At the right,
these graphs agree with the ∼1/ϕ2 curves served as illustra-
tions, not fits. The 1/ϕ graph represented by the black dashed
line in Fig. 2(a) highlights the convexity of the spectrum
part located to the left of the 1/ϕ2 law (already noticed with
Fig. 1).

Note, just-discussed yellow and green graphs in Fig. 2(a)
are obtained with the relatively short catalog of ρ(t ) with
t ∈ [0, 2 × 107], and no thinning are applied to. We have
a longer catalog of ρ(t ) obtained when simulating 8 × 108

subsequent acts of the stress adding with N = 1024. Speeding
up the computation, we find the spectrum with ρ ′(t ) instead
remaining with accurate values of moderate frequencies [the
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FIG. 2. Ensemble-averaged spectrum. Right part labeled (a) con-
tains: (i) yellow and green curves Sn(ρ ) computed with the initial
catalog ρ(t ), t ∈ [0, 2 × 107] split into n = 100 segments of the
length of T ∗ = 2 × 105 each for N equaled to 256 and 1024, respec-
tively; (ii) blue curve Sn(ρ ′) computed with the thinned catalog ρ ′(t ),
t ∈ [0, 8 × 108], T ∗ = 8 × 106, n = 100, N = 1024 (the latter as
for the green curve). Left part (b) sharing the horizontal axis with
(a) and having the stretched vertical axis displays same blue curve
but shown on partly different interval.

blue curve in Fig. 2(a) represents the part of the spectrum
computed with ρ ′, T ∗ = 8 × 106, n = 100, and N = 1024].
The spectra Sn(ρ) and Sn(ρ ′), the green and blue curves,
respectively, are similar on the periods from [103, 104] as
expected. We cannot compare these graphs at larger periods
(i.e., lower frequencies) because only a few points of Sn(ρ)
are available there.

The ensemble average allows one to partly explore the
spectrum at moderate frequencies. We zoom in the vertical
axis in Fig. 2(a) and redisplay the blue curve focusing on
moderate frequencies located to the left of the 1/ϕ2 content
in Fig. 2(b). Part (b) of the figure is located to the left of
the part (a) sharing the same horizontal axis. The displayed
curve consists of two parts, both of which admit rather an
accurate linear approximation in the double logarithmic scale.
We’ve verified (not supporting the claim by graphs) that this
pattern of two quasilinear parts is stable but the exponent of
the left fit, 1.12 in Fig. 2(b), is not. We recall that system
stress exhibits a quasicycle dynamics, where properties of
each quasicycle are related to the drop in the level of stress
release caused by a characteristic avalanche starting the qua-
sicycle. This may explain the instability of the exponent γ at
the time scales covered by our catalog. A significant extension
of the catalog is required to get the reliable value of γ , which
is unlikely to achieve with modern computer power.

Note that our choice n = 100 balances two potential
drawbacks. A decrease in n reduces the accuracy of each
spectrum point, whereas an increase constrains the extension
of the spectrum toward low frequencies [the time coordinate
of the leftmost points in Fig. 2(b) is too small], which becomes
the issue for large lattices.

d. Logarithmic binning. The logarithmic binning of the
spectrum is used in the paper to describe the shape of the mod-
erate spectrum more accurately. This procedure, averaging the
spectrum and, thus, stabilizing each reported value, preserves
the power laws and more precisely describes the quasilinear
pattern highlighted above. In more detail, put S∗(ϕ; ρ ′, τ ) =∑

ϕ′∈[ϕ/τ,ϕτ ) S(ϕ′; ρ ′)/(ϕ(τ − 1/τ )), where τ > 1, and reduce

−

−

FIG. 3. Scheme of the spectrum: four components shown with
solid lines.

notation to S∗(ρ ′) when possible. One may argue that the log-
arithmic binning is inspired by the very nature of the definition
of the spectrum because the logarithmic binning contributes to
the equal representation of the periods in the spectrum points,
equidistant on the logarithmic axis. Focusing on the spectrum
component that is close to 1/ϕ, we display S∗ϕ instead of S∗
to simplify the visual consideration of the explored spectrum
part (because then the comparison with a constant is required
to verify that S∗ ∼ 1/ϕ).

We have already (Figs. 1 and 2) observed four spec-
trum components resembling power laws. They are the
high-frequency 1/ϕ2 part, the moderate-frequency content
consisting of two parts 1/ϕγ1 and 1/ϕγ2 with γ2 < γ1 < 2,
where the exponent γ1 corresponds to lower frequencies than
γ2, and the low-frequency content represented by an ap-
proximately constant spectrum. In the (ϕ, S∗ · ϕ) coordinate
system, the exponents are increased by 1, and the spectrum
components can be roughly represented by the scheme dis-
played in Fig. 3.

Here H and L denote the transition points from high-
to moderate-frequency contents and from moderate- to low-
frequency contents whereas M corresponds to the transition
between two parts of the moderate-frequency spectrum. Our
technical problem is that the segment LM is badly estimated
numerically. However, we are able to derive the scaling of
the periods Tl , Tm, and Th, which correspond to the points L,
M, and H, respectively, with respect to the lattice length N .
Finally, the scaling exponents and the slopes of the triangle’s
sides are tied through a single equation (see Appendix A) that
unifies regularities derived with specific values of N .

III. RESULTS

A. Power-law spectrum components

Two power laws at moderate frequencies are displayed
with S∗ϕ, the binned spectrum S∗ multiplied by ϕ, in Fig. 4.
Let us first comment the borders L, M, and H of the spectrum
parts announced by Fig. 3, specifying the corresponding peri-
ods Tl , Tm, and Th. We conjecture a linear relationship Th ∼ N
and find its agreement with the data. The transition within the
moderate spectrum occurs at the point M with Tm ∼ NσM ,
where the scaling exponent σM is separated from 1 and 2.
We estimate σM ∈ [1.2, 1.4] and fix σM = 1.3, avoiding at-
tempts to uncover a more precise value. The points L∞ in
Fig. 4 marked as proxies to the left border L of the moderate
frequency content satisfy a natural conjecture Tl ∼ N2, hardly
verifiable by a brute force with current computer capacities.

The slopes 	MH of the fit to the spectrum over the peri-
ods [Th, Tm] are stable with respect to the parameters of the
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FIG. 4. Normalized spectrum S∗ · ϕ in circles, found with loga-
rithmic bins of the length τ = √

1.2 for four lattices. The triangles
L∞MH corresponds to the triangles LMH displayed on Fig. 3.
The fits ϕ	 are found for MH and L′M instead of L∞M. The
periods corresponding to the points L∞, L′, M, and H scale as ∼N2,
∼N1.5, ∼N1.3, and ∼N1, respectively.Inset, shared period axis: the
coefficient of variation of the values of the spectrum S∗ related to
N = 512.

computation. In Fig. 4, they are 0.255, 0.339, 0.375, 0.392
when N varies from 128 to 1024. These slopes saturate to
a limit as N increases. We locate this limit to the interval
[0.40, 0.50], but the estimate of the exact value is outside the
scope of the study.

In contrast, the fit over the periods [Tm, Tl ] correspond-
ing to the segment ML∞ is unstable. The accuracy of the
spectrum values drops with the growth in the periods T as
shown with the coefficient of variation v of the spectrum
values in the inset of Fig. 4. To display the inset, we split the
full catalog found with the 512 × 512 lattice and defined on
[0, 2 × 108] into 16 subcatalogs, compute S∗ for each, and
report v as the ratio of the standard deviation of these S∗ to
the mean. Overcoming the problem with the inaccuracy of
the points in the right neighborhood of L∞ we find the fits
with the points L′ that are located between L∞ and M. We
assert that each point L′ ∈ [M,L∞] admits its own scaling
NσL′ , where σL′ varies from σM to 2 while L′ moves along
[M,L∞]. The variety of scaling exponents may be related
to the multifractality of the tail of avalanches’ size-frequency
relationship revealed in Ref. [28]. The values of the L′M fit,
written in the legend and considered as a proxy for the L∞M
fit, signal that the spectrum part which they represent are close
to 1/ϕ.

Note that if the vertices of the triangle L′MH do satisfy
scaling relationships then the exponents σH, σM, and σL′

and the slopes 	L′M, 	MH, and 	HL′ are constrained by the
equation

(σL′ − σM)	L′M + (σM − σH)	MH

+ (σH − σL′ )	HL′ = O(1/ log N ),

where O in the right-hand side is the standard O-big nota-
tion and the proof is relegated to Appendix A. We check
the constrain in support of the above conjecture, obtaining

that the left-hand side attains the values 0.017, 0.024, 0.019,
0.022 when N varies from 128 to 1024. These values are
not dispersed and located in a proximity of 0 supporting our
estimates of the L∞M and MH spectrum parts.

Thus, we formulate our main result arguing that the mod-
erate spectrum associated with the parts L∞M and MH
on Fig. 4 and located between a constant at low frequencies
and the high-frequency 1/ϕ2 component exhibits a complex
pattern, which is close to two power laws such that the power
law at lower frequencies is approximately 1/ϕ. The numerical
analysis is stable with respect to the parameters of the compu-
tation (see additionally Appendix B).

B. Power spectrum with exponential pulses

The spectrum pattern further referred to as the 0-γ -2 pat-
tern after the values of the exponents and consisting of a
constant at low frequencies, 1/ϕ2 at high frequencies, and
the power-law decay 1/ϕγ with γ ≈ 1 between them can be
generated by the following simple mechanism [10]. Let

∑
k

R(t ; tk ), R(t ; tk ) = e−λk max{t−tk ,0}, (1)

be the sum of relaxation processes, where the decay rates λk

are drawn from a uniform distribution over some [λ∗, λ∗].
Then the spectrum of the superposition exhibits the desired
0-1-2 pattern. In more detail, the Fourier transform and the
spectrum of

∑
k R(t ; tk )e−iϕt , R(t ; tk ) = e−λ max{t−tk ,0}, is, see

Ref. [10],

F (ϕ) =
∫ +∞

−∞

∑
k

R(t ; tk )e−iϕt dt = 1

λ + iϕ

∑
k

e−iϕtk

S(ϕ) = lim
T →+∞

1

T
〈|F (ϕ)|2〉 = r

λ2 + ϕ2
,

where r is the average pulse rate and the triangle brackets
denote an ensemble average. If the process is given by the su-
perposition of the relaxation processes, where the decay rates
are drawn from a uniform distribution over some [λ1, λ2] then
the integration of the above spectrum results in the equation

S(ϕ) = r

ϕ(λ2 − λ1)

(
arctan

λ2

ϕ
− arctan

λ1

ϕ

)
. (2)

Equation (2) describes the 0-γ -2 spectrum pattern with the
intermediate power-law decay with the exponent γ = 1 since
S(ϕ) ≈ rπ/(2ϕ(λ2 − λ1)) as λ1  ϕ  λ2.

We argue that the sum of exponential decays corresponds
to the stress accumulation ρ̄ − ∑

k R(t ; tk ) toward a mean
level ρ̄ triggered at different lattice parts in the BTW model.
Indeed, let ρ̄ be the catalog average of ρ(t ), and λ(ρ∗) be the
mean of the linear trend slopes derived from μ subsequent
values of ρ(t ) following the cross of the level ρ∗ in any
direction. According to Fig. 5, the rate of the stress deficit
λ, associated with d

dt (ρ̄ − ∑
k R(t ; tk )), is proportional to the

stress deficit ρ̄ − ∑
k R(t ; tk ) itself, thus in line with the expo-

nents in Eq. (1). The rates λ are from some interval [λ∗, λ∗]
as in Eq. (1), and the range λ∗ − λ∗ widens as the stress
approaches the critical level. Smaller slopes observed with
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FIG. 5. Mean rate of the stress accumulation computed as the
ensemble average of the slopes of the ρ(t ) trends that lasts μ time
moments after the stress level ρ∗ is passed; N = 1024.

larger values of μ indicate that the stress deficit is washed
out more slowly with time and, consequently, with the level
of stress itself, again in line with Eq. (1). Clearly, Eq. (1) only
mimics the dynamics of the mean stress in the BTW sandpile.
The acts of dissipation correspond to pulses, but the sign is
different, as the dissipation causes the fall in stress. When the
system restores after an act of dissipation, the stress grows,
gradually corresponding to the decay in model Eq. (1). The
BTW sandpile as well as Eq. (1) exhibit the 1/ϕ spectrum
fragment and this property is in favor of the analogy between
two models.

IV. DISCUSSION

We have exposed the details of the 0-1-2 spectrum pattern
with the constant 1/ϕ, and 1/ϕ2 components at low, moderate,
and high frequencies respectively—exhibited by the dynamics
of stress ρ(t ) in the BTW model. Earlier observations regard-
ing the constant spectrum turning to the 1/ϕ2 decay without
an intermediate component between them in SOC models are
made with the avalanche size [18] or specific examples of
non-BTW SOC models [29]. Studies [4,30] uncovered the
1/ϕ spectrum component in the dynamics of the stress ρ(t )
in a directed version of the BTW model. The 0-1-2 power-law
spectrum or its modification can be obtained with the super-
position of exponential pulses. This explanation agrees with
our case since the stress accumulation rates depend linearly
on the stress deficit (Fig. 5).

We note that the existence of the 0-1-2 pattern in a sub-
sequent new model hardly impresses physicists. Our main
contribution is that the dynamics of the system stress is char-
acterized just by the 1/ϕ component if the system size is large
enough. Developing the earlier paper [31] that portrayed a
transition between the constant and 1/ϕ2 components with a
specific small N × N lattice, we give the full description of
this transition and highlight its value as the basic spectrum
component.

In more details, the constant spectrum of the stress dy-
namics at the lowest frequencies (Fig. 1) is provided by the
largest avalanches which are located at the right end of the
size-frequency relationship and associated with an enormous
dissipation. They occur when the system becomes overloaded
and attains the supercritical state. The stress release makes
the system drop to the subcritical state. The occurrence of

such drops divides the dynamics onto “cycles” of a different
duration with the general growth of stress. Because of the
different duration, the notion of quasicycles could be used in-
stead. Just these largest avalanches are predictable in advance
based on preceding patterns, which definitely occur within a
single cycle [32,33]. The information about the scaling of the
cycle length Th ∼ N2 derived here would potentially improve
the prediction.

To the right of the constant component, the spectrum fol-
lows the 1/ϕ-like pattern (Fig. 4). This is the main spectrum
component as portraying the model dynamics at the time
scales that are shorter than a single cycle. We relate the under-
lying avalanches to the tail of the size-frequency relationship.
These avalanches regulate the critical state, triggering a large
stress release that balances the steady graduate stress accumu-
lation. The 1/ϕ part extends to the right to such frequencies
that the corresponding border is scaled as Nγ with γ < 2.
As the typical scaling of the time axis is N2, the other spec-
trum parts, which are located at the right, could be called
insignificant.

It may happen that this insignificant spectrum part is re-
lated to the avalanches that form the power-law fragment of
the size-frequency relationship just because the latter consists
of only this fragment and the fast decay. If so, sequential
nondissipative avalanches, which belong to the power-law
segment, exhibit specific patterns in time, caught by the spec-
trum. The role of the 1/ϕγ component revealed in this study
with 0 < γ < 1 in the formation of these patterns is yet to
be understood. The links between temporal patterns formed
by avalanches and the size-frequency relationship are worth
exploring with slow time (as in this study), fast time (as-
sociated with the parallel updates as in the first model [3]),
and their mix [4,34–37] in order to better understand the
phenomenon of SOC and improve the prediction of large
avalanches.

From the very introduction of the sandpile models, re-
searchers relate them to seismic processes [12,38]. The slow
and fast time scales in the models recall, respectively, the
graduate accumulation of stress by the faults and the fast
stress release during earthquakes. Associating the earthquakes

FIG. 6. Taken from Fig. 2 ensemble-spectrum average Sn (in
blue) computed with N = 1024 and the thinned out catalog is com-
plemented by two linear fits on the displayed intervals, the graph
of another Sn computation (in red) from the same catalog ρ ′ but
preceded by the multiplication by the Hamming window, and two
fits of the latter Sn.
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FIG. 7. The normalized difference (S∗
ν=24 − S∗

ν=25)/S∗
ν=25 be-

tween two summed spectra S∗ computed with ν = 24 and ν = 25
for N = 512 and N = 1024, where S∗

ν=25 is taken from Fig. 4.
Inset contains the right part of the main figure zoomed along the
vertical axis.

with model avalanches, authors typically end up with un-
predictability of earthquakes because of the self-similarity
of the magnitude-frequency relationship [39]. Nevertheless,
both seismicity and sandpiles admit a certain predictability
[33,40–42]. An efficient prediction in sandpiles is performed
for those large rare avalanches that are located to the right of
the power-law segment of the size-frequency relationship. The
knowledge about the 1/ϕ spectrum, which is likely related
to somewhat smaller avalanches, would potentially allow to
predict them. To what extent the progress in the prediction of
sandpiles is movable to the theory of seismic activity is worth
independent studies.

Summarizing, the dynamics of stress in the BTW sandpile
is described with “cycles” of gradual stress accumulation that
end up with an abrupt stress release and the drop of the system
to the subcritical state. The intracycle dynamics exhibits the
1/ϕ spectrum that corresponds to the stress release within
the critical state. The interval with this component widens
toward infinity as the lattice enlarges. Thus, the critical state
can be explicitly self-organized with a process characterized
by the 1/ϕ spectrum as Bak, Tang, and Wiesenfeld may have
expected introducing the phenomenon.
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APPENDIX A: LINEAR ALGEBRA
WITH THE TRIANGLE LMH

Dealing with the triangle LMH with the coordinate axis
denoted by x and y as in the school handbooks, we are
going to prove that (σL − σM)	LM + (σM − σH)	MH +
(σH − σL)	HL = O(1/ log N ), where xZ ∼ σZ log(N ), Z ∈
{L,M,H}, and 	LM, 	MH, and 	HL are the slopes of the
corresponding sides. Initially, we write the definition of the
slope of each side of the triangle:

	LM = yM − yL
xM − xL

, 	MH = yH − yM
xH − xM

, 	HL = yL − yH
xL − xH

.

Multiplying each equation by the denominator and summing
the equations, we find that

	LM(xM − xL) + 	MH(xH − xM) + 	HL(xL − xH) = 0.

The substitution xZ ∼ σZ log(N ), Z ∈ {L,M,H}, finalizes
the proof.

APPENDIX B: STABILITY ISSUES

We have performed an extensive stability check of the re-
sults against the perturbation of the parameters providing here
a few examples. The similarity of the spectra computed with
the full catalog and the thinned out one are observed (Fig. 2)
at moderate frequencies, where both spectra are accurately
defined.

The computation of the spectrum as it is defined above
suffers from the nonperiodicity of the signal. This affects
only high-frequency content. We illustrate the reliability of
the spectrum Sn at moderate frequencies repeating the com-
putation of the spectrum but applying the Hamming window
introduced in Ref. [43]. Namely, the signal is multiplied by an
appropriate sine wave to equalize the ends of the signal and
only then the spectrum is computed. Figure 6 exhibits a good
agreement between the spectra computed in both ways. The
corresponding best fits found on the displayed intervals are
also in a good agreement.

Figure 7 confirms that the choice of a specific distance
between the values of the initial catalog when ρ ′ is constructed
via thinning does not affect our conclusions. We changed
ν = 25 to ν = 24, thus taking each 24th point into consider-
ation. The change creates generally the multiplication factor,
as the normalized difference (S∗

ν=24 − S∗
ν=25)/S∗

ν=25 between
two summed spectra S∗ computed with ν = 24 and ν = 25
slightly oscillates around a horizontal line at the frequencies
of interest.
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