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Fractional Brownian motion with fluctuating diffusivities
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Despite the success of fractional Brownian motion (fBm) in modeling systems that exhibit anomalous
diffusion due to temporal correlations, recent experimental and theoretical studies highlight the necessity for
a more comprehensive approach of a generalization that incorporates heterogeneities in either the tracers or
the environment. This work presents a modification of Lévy’s representation of fBm for the case in which the
generalized diffusion coefficient is a stochastic process. We derive analytical expressions for the autocovariance
function and both ensemble- and time-averaged mean squared displacements. Further, we validate the efficacy
of the developed framework in two-state systems, comparing analytical asymptotic expressions with numerical
simulations.
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I. INTRODUCTION

Anomalous diffusion processes are widespread in diverse
disciplines, including nanoscale physics [1], cell and molec-
ular biology [2–6], ecology [7,8], and finance [9–11]. These
processes are characterized by a nonlinear time dependence
of the mean square displacement (MSD), typically taking a
power-law form 〈X 2(t )〉 ∝ tα with an anomalous exponent
0 < α < 2. Here, the angular brackets denote averaging over
an ensemble of trajectories. The diffusion is classified as subd-
iffusive when 0 < α < 1 and superdiffusive when 1 < α < 2.
Normal diffusion is recovered in the limiting case α = 1. Sev-
eral mathematical models have been proposed to reproduce
such MSD [12–17]. Among these models, fractional Brow-
nian motion (fBm), a Gaussian process possessing temporal
correlations [18,19], has been widely used to model systems
exhibiting anomalous diffusion with temporal correlations
[20–25].

Despite the success of fBm in modeling correlated ran-
dom walks, experimental measurements often reveal marked
heterogeneities in biological environments, highlighting the
need for a generalization of fBm where its parameters change
over time [26,27]. These complexities are usually due to
fluctuations in the tracer particles or the medium where the
diffusion takes place. Examples of such heterogeneous sys-
tems include the diffusion of proteins and lipids in the plasma
membrane [28–31], intracellular transport of endosomes and
lysosomes [32,33], and DNA-binding proteins [34], among
others [6,35,36].

From a theoretical approach, heterogeneities have been
modeled extensively as Brownian particles with fluctuating
diffusivity. Examples of this type of motion include diffus-
ing diffusivities [37,38] and the annealed transit time model
[39]. To address temporal correlations in heterogeneous sys-
tems, several stochastic processes have been proposed as
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modifications of fBm to model heterogeneous transport
[40–47]. Among them, the diffusion of particles stochastically
switching between two states has been studied using numer-
ical simulations [45]. In this previous work, each state i was
characterized by a generalized diffusion coefficient Di, a Hurst
exponent Hi, and independent and identical distributed (i.i.d.)
dwell times. To maintain time correlations in the switching
fBm (sfBm), a modification of the integral representation of
the fBm process was used [46,48]. The sfBm is of particular
interest when modeling biological systems, such as the dy-
namics of nanoscale particles in the cytoplasm of mammalian
cells [6,49]. Numerical simulations revealed asymptotic scal-
ings of the temporal average MSD and the power spectral
density. However, an analytical framework to study processes
having rich dynamics, such as switching between states while
keeping their temporal correlations, is still missing.

In this work, we present a framework for addressing sys-
tems exhibiting temporal correlations akin to fBm, while
encompassing rich dynamics characterized by a fluctuating
generalized diffusion coefficient. The presented model is valid
for the diffusion coefficient being any (non-negative) stochas-
tic process. Importantly, temporal correlations are maintained
throughout the whole trajectory. The powerful yet simple ap-
plicability of the proposed framework is applied to two-state
systems for which asymptotic expressions can be compared
to numerical simulations. This model is closely related to the
switching fBm [45] and can be seen as a generalization of
the uncorrelated dichotomous model studied in Ref. [50]. We
focus on dichotomous processes with dwell times that have
either an exponential or a heavy-tailed distribution, which
are both relevant to diffusion in complex systems. Expo-
nential distributions of switching times have been observed
for the motion of inert particles in the cytoplasm of live
cells [6,49,51]. Heavy-tailed power-law distributions in the
dwell times yield aging and nonergodicity, and they have
been observed for protein dynamics in the plasma membrane
[4,31,52], intracellular transport of insulin granules [53], and
the internal dynamics in globular proteins [5,54,55].
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This article is structured as follows: In Sec. II, we derive
the general framework that will be used in the context of
two-state systems. In Sec. III, we introduce two-state systems
and, using our framework, derive the corresponding asymp-
totic expressions for the MSD, which we then compare with
numerical simulations for each particular case. Section IV
presents a summary and concluding remarks.

II. FRAMEWORK FOR D(t ) BEING
A STOCHASTIC PROCESS

Mandelbrot’s fBm BH (t ) is a zero-mean, continuous Gaus-
sian process, characterized by a Hurst exponent H ∈ (0, 1)
related to the anomalous exponent by H = α/2 [19]. It is
defined by an autocovariance,

〈BH (t1)BH (t2)〉 = D
(
t2H
1 + t2H

2 − |t1 − t2|2H
)
, (1)

where D is the generalized diffusion coefficient with units of
length2/time2H . From Eq. (1) follows that the MSD exhibits
anomalous diffusion of the form〈

B2
H (t )

〉 = 2Dt2H . (2)

The motion is then classified according to the value of H as
subdiffusion when 0 < H < 1/2 and as superdiffusion when
1/2 < H < 1. Standard Brownian motion is recovered for
H = 1/2. An alternative form of fBm consists of Lévy’s
nonequilibrated formulation [48], which is written in terms
of the Riemann-Liouville fractional integral as

BH (t ) =
√

4HD
∫ t

0
(t − τ )H−1/2 ξ (τ )dτ, (3)

where ξ (t ) is zero-mean Gaussian white noise with δ correla-
tions, that is, 〈ξ (t )〉 = 0, and 〈ξ (t1)ξ (t2)〉 = δ(t2 − t1).

Following recent works [45,46], we consider fractional
Brownian motion with fluctuating diffusivity as the process
in Eq. (3) with a generalized diffusion coefficient being a
stochastic process D(t ),

X (t ) =
√

4H
∫ t

0

√
D(τ ) (t − τ )H−1/2 ξ (τ )dτ. (4)

This process has two sources of randomness: one due to vari-
ations of the Brownian motion or Gaussian white noise ξ (t ),
and another due to the generalized diffusion coefficient D(t )
being a stochastic process. Thus, when computing the mean of
an observable Q, denoted as 〈Q〉, two averages must be taken:
one over the Gaussian noise, denoted as 〈· · · 〉ξ , and one over
the different realizations of the generalized diffusion coeffi-
cient D(t ), denoted as 〈· · · 〉D, and therefore 〈Q〉 = 〈〈Q〉ξ 〉D.
We will refer to the first average as the average over the noise,
whereas the second average will be denoted as an average over
the disorder.

A. Mean square displacement

To find the MSD 〈X 2(t )〉, we first average over the noise,

〈X 2(t )〉ξ = 4H
∫ t

0
dt1

∫ t

0
dt2

√
D(t1)D(t2)

× (t − t1)H−1/2(t − t2)H−1/2〈ξ (t1)ξ (t2)〉ξ . (5)

Because the white noise ξ (t ) is δ correlated, this expression
simplifies to

〈X 2(t )〉ξ = 4H
∫ t

0
D(t1)(t − t1)2H−1dt1. (6)

Next, we average over the disorder, obtaining

〈〈X 2(t )〉ξ 〉D = 4H
∫ t

0
〈D(t1)〉D (t − t1)2H−1dt1, (7)

which has the form of a convolution, with a Laplace transform
that can be written as

〈X 2(s)〉 = 2 �(2H + 1)

s2H
〈D(s)〉D, (8)

where �(x) is the Gamma function. Thus, by finding the
Laplace transform of the mean of the generalized diffu-
sion coefficient process 〈D(s)〉, the MSD can be readily
obtained. In what follows, we will drop, for convenience, the
subscript D.

When the generalized diffusion coefficient D(t ) is a sta-
tionary process, its mean is time independent (〈Dst(t )〉 =
〈Dst〉) and can be taken out of the integral in Eq. (7). So, the
MSD reduces to 〈

X 2
st (t )

〉 = 2〈Dst〉t2H , (9)

which has the well-known form of Eq. (2) with effective
diffusivity 〈Dst〉.

B. Autocovariance

The covariance function can be expressed as

〈X (t1)X (t2)〉 = 1
2 [〈X 2(t1)〉 + 〈X 2(t2)〉
− 〈[X (t2) − X (t1)]2〉]. (10)

The first two terms on the right-hand side of this expres-
sion are the MSD [Eq. (7)] at times t1 and t2. The last term
corresponds to the mean of the squared increments, which
can be found using a similar procedure as that of Ref. [56].
Assuming, without loss of generality, that t2 > t1, we write
the increments as

X (t2) − X (t1) =
∫ t2

t1

√
4HD(u)

× (t2 − u)H−1/2ξ (u)du +
∫ t1

0

√
4HD(v)

× [(t2 − v)H−1/2 − (t1 − v)H−1/2]ξ (v)dv.

(11)

Then, taking the square of this quantity and averaging it first
over the noise and then over the disorder as in Eqs. (5)–(7),
we can write the mean of the squared increments as

〈[X (t2) − X (t1)]2〉

= 4H
∫ t2

t1

〈D(u)〉(t2 − u)2H−1du

+ 4H
∫ t1

0
〈D(v)〉[(t2 − v)H−1/2 − (t1 − v)H−1/2]2dv.

(12)
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Let us now introduce the variable τ = t2 − t1 and make the
change of variables w = (t1 − v)/τ , which allow us to rewrite
the last equation as

〈[X (t2) − X (t1)]2〉

= 4H
∫ t2

t1

〈D(u)〉(t2 − u)2H−1du + 4Hτ 2H

×
∫ t1/τ

0
〈D(t1 − τw)〉[(1 + w)H−1/2 − wH−1/2]2dw.

(13)

Next, working in the limit t1/τ → 0, the second integral van-
ishes and this last expression takes the form

〈[X (t1) − X (t2)]2〉

= 4H
∫ t2

t1

〈D(u)〉(t2 − u)2H−1du, (14)

which depends on the form of 〈D(t )〉. This limit ensures that
fBm, as defined in Eq. (4), with constant generalized diffusion
coefficient has the same properties as the Mandelbrot’s fBm
[19]. For the case where the process D(t ) is stationary, this
last integral can be solved exactly and, for any t1 and t2, it
reads

〈[Xst(t1) − Xst(t2)]2〉 = 2〈Dst〉|t1 − t2|2H . (15)

Thus, the covariance function [Eq. (10)] is

〈Xst(t1)Xst(t2)〉 = 〈Dst〉
[
t2H
1 + t2H

2 − |t1 − t2|2H
]
, (16)

which has the form of Eq. (1). From this last equation and
Eq. (9), it is clear that when the process X (t ) has a wide-sense
stationary generalized diffusion coefficient D(t ), it behaves
as a standard fBm with an effective generalized diffusion
coefficient 〈Dst〉.

C. Temporal average MSD

A quantity that is widely used in single-particle tracking
analysis is the temporal average MSD (TAMSD), defined for
an individual trajectory as

δ2(�) = 1

T − �

∫ T −�

0
[X (t + �) − X (t )]2dt . (17)

Using Eq. (10), for T � �, the ensemble average of the
TAMSD can be written as

〈δ2(�)〉 ≈ 1

T

∫ T

0
[〈X 2(t + �)〉 + 〈X 2(t )〉

− 2〈X (t + �)X (t )〉]dt . (18)

Henceforth, we will refer to 〈δ2(�)〉 as the TAMSD. Taking
the Laplace transform in the variable T on both sides,

LT [T 〈δ2(�)〉] = 1

s
Lt [〈X 2(t + �)〉 + 〈X 2(t )〉

− 2〈X (t + �)X (t )〉], (19)

where we have introduced a subscript on the Laplace trans-
forms to remove any possible ambiguity as to which variable
is being used, T or t . The first term on the right-hand side of
Eq. (19) corresponds to the Laplace transform of a “shifted”

MSD, whereas the second one corresponds to the Laplace
transform of the MSD. This expression, then, takes the form

LT [T 〈δ2(�)〉] = 1

s
{(e�s + 1)〈X 2(s)〉

− 2Lt [〈X (t + �)X (t )〉]}. (20)

The exact Laplace transform for the covariance function in-
volves a modified Bessel function of the second kind and is
presented in Appendix A. Here, we are mostly interested in
the large time asymptotics, which correspond to the small-s
behavior. In this regime, the Laplace transform has the form

Lt [〈X (t + �)X (t )〉]

= 2〈D(s)〉�(2H + 1)

s2H

×
[

1 + �s

2
− �(1 − H )

�(H + 1)

(
�s

4

)2H

+ O(s2H+1)

]
,

(21)

where O(sn) is Landau’s big-O notation. By substituting this
result into Eq. (20) and taking into account that e�s = 1 +
�s + O(s2), the final expression reads

LT [T 〈δ2(�)〉] = 〈D(s)〉
s

�(2H + 1)�(1 − H )

42H−1�(H + 1)
�2H . (22)

Finally, taking the inverse Laplace transform, we obtain the
TAMSD in time domain,

〈δ2(�)〉 = 1

T
L−1

T

[ 〈D(s)〉
s

]
�(2H + 1)�(1 − H )

42H−1�(H + 1)
�2H , (23)

for T � �. For H = 1/2, the result for Brownian motion with
fluctuating diffusivity is recovered [50]. Moreover, when the
process D(t ) is wide-sense stationary, one has

〈Dst(s)〉 = 〈Dst〉
s

, (24)

which is the Laplace transform of a constant. Then, under the
wide-sense stationarity condition, Eq. (23) reduces to

〈δ2(�)〉 = �(2H + 1)�(1 − H )

42H−1�(H + 1)
〈Dst〉�2H , (25)

from which, by comparison with Eq. (9), one concludes that
the system exhibits ultraweak ergodicity breaking, that is, the
time- and ensemble-averaged MSDs have the same scaling
but the prefactor is different. The prefactor in the TAMSD
approaches 4 as H approaches zero (i.e., double the pref-
actor of the ensemble-averaged MSD) and it diverges as H
approaches unity, i.e., the ballistic case. In the whole range
0 � H � 1, this prefactor is bounded below by 2, reaching
this minimum when H = 1/2 (standard Brownian motion).
Thus, when H = 1/2, the ergodic behavior is recovered.

III. TWO-STATE SYSTEM WITH HEAVY-TAILED
SOJOURN TIMES

To illustrate the advantages of our approach, we consider a
two-state system. In this model, the particle can be in the states
“+” or “−.” These states are characterized by generalized dif-
fusion coefficients, D+ and D−, and dwell time distributions,
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ψ+(t ) and ψ−(t ). Both states are considered to have the same
Hurst exponent H . This class of switching fBm models has
been analyzed in Ref. [45] using numerical simulations and is
related to the Brownian with fluctuating diffusivity studied in
Ref. [50].

We consider dwell times that either have a heavy-tailed
distribution with infinite mean or are exponentially dis-
tributed. Typical heavy-tailed distributions are asymptotically
described by a power law of the form

ψPL(t ) ∼ a

|�(−α)|t1+α
, (26)

where 0 < α < 1 and a is a constant. The condition α < 1
leads to t not having a first moment. The Laplace transform
of ψPL(t ), i.e., the moment generating function (MGF) of the
dwell times, is

ψPL(s) = 1 − asα + O(s). (27)

When ψ± are exponential distributions, all the moments
exist and we have

ψexp(t ) = 1

τ
exp (−t/τ ), (28)

with τ being the first moment. The Laplace transform of this
distribution (MGF of the dwell times) is

ψexp(s) = 1

1 + τ s
= 1 − τ s + O(s2), (29)

where the right-hand side is useful for small-s (large-t) ap-
proximations.

When at least one of the two distributions ψ±(t ) has a
heavy-tailed form with infinite mean, the two-state system
does not reach a steady state [50]. Nevertheless, regardless of
the distributions being of power-law or exponential form, the
first moment of the process D(t ) in Laplace domain has the
general small-s asymptotic [50],

〈D(s)〉 ≈ A

s
+ B

�(β )

sβ
, (30)

where A, B, and β are constants that depend on ψ±(s). Taking
the inverse Laplace transform of this last expression, one finds

〈D(t )〉 ≈ A + Btβ−1, (31)

for large t . Thus, by computing either 〈D(s)〉 at small s or
〈D(t )〉 at large t , the constants A, B, and β are found and, in
turn, the statistics of the process can be readily derived, as
shown below.

The asymptotic behavior of the MSD can be found by sub-
stituting Eq. (30) into Eq. (8) and taking the inverse Laplace
transform,

〈X 2(t )〉 ≈ 2At2H + 2B�(β )�(2H + 1)

�(β + 2H )
tβ+2H−1, (32)

for large t . This expression is valid for any value 0 < H < 1.
Moreover, for normal diffusion (H = 1/2), Eq. (32) reduces
to

〈X 2(t )〉 ≈ 2At + 2B

β
tβ, (33)

which agrees with the result obtained in Ref. [50].

To find the TAMSD, we substitute Eq. (30) into Eq. (23)
and invert the Laplace transform,

〈δ2(�)〉 =
(

A + B

β
T β−1

)
�(2H + 1)�(1 − H )

42H−1�(H + 1)
�2H , (34)

which is also valid for any H . Comparing the time- and
ensemble-averaged MSD [Eqs. (32) and (34)] also shows that
the process displays ergodicity breaking.

Examples

We now consider three cases to test the fractional Brown-
ian motion with fluctuating diffusivity in two-state systems,
namely, (1) both dwell time distributions are heavy tailed
with infinite mean, (2) one of the dwell time distributions
has infinite mean and the second is exponential, and (3) both
distributions are exponential. We assume that D+ > D− > 0.
In order to compare the analytical results with numerical sim-
ulations, for asymptotic power-law distributions, we employ a
Pareto distribution,

ψPL(t ) = αtα
0

tα+1
for t � t0, (35)

which has an exact Laplace transform (MGF of the dwell
times),

ψPL(s) = αtα
0 sα�(−α, t0s), (36)

with �(x, y) being the upper incomplete Gamma function. In
the limit s → 0, this expression takes the form of Eq. (27)
with a = �(1 − α)tα

0 .

A. Case 1: Diverging mean dwell times, 0 < α± < 1

For α± ∈ (0, 1), with α+ > α−, the asymptotic behavior of
the mean generalized diffusion coefficient takes the form [50]

〈D(t )〉 ≈ D− + a+
a−

(D+ − D−)tα−−α+

�(α− − α+ + 1)
, (37)

which converges to D− at large times. By comparison with
Eq. (31), one finds

A = D−, B = a+
a−

(D+ − D−)

�(β )
, and β = α− − α+ + 1.

(38)

Therefore, the asymptotic behavior of the MSD is

〈X 2(t )〉 ≈ 2D−t2H

+ 2
a+
a−

�(2H + 1)(D+ − D−)

�(α− − α+ + 2H + 1)
tα−−α++2H , (39)

which converges to 2D−t2H at large t .
In order to evaluate this type of two-state systems, we sim-

ulated 1000 trajectories of fractional Brownian motion with
fluctuating diffusivity (see Appendix B) with H = 0.3, D+ =
10, D− = 1, α+ = 0.75, α− = 0.25, t0,+ = 3, and t0,− = 25.
All the realizations start in the “+” state. Figure 1(a) shows
one trajectory X (t ) alongside the process D(t ) used to com-
pute it. Figure 1(b) shows the analytical MSD together with
the numerical simulation results. The asymptotic behavior
given by Eq. (39) presents a crossover between two regimes
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FIG. 1. Case 1: Two-state system where both states have heavy-
tailed dwell time distributions. The parameters in this example are
D+ = 10, D− = 1, α+ = 0.75, α− = 0.25, t0,+ = 3, and t0,− = 25.
(a) Representative trajectory X (t ) together with D(t ). (b) The MSD
is shown for numerical simulations as blue squares. The solid line
shows the analytical asymptotic behavior given by Eq. (39) and the
dotted lines show the MSD of each of the two states. (c) TAMSD
for different realization times; the dashed line represents the analyt-
ical asymptotic behavior given by Eq. (41) for T = 8192. Inset: A
close-up to highlight the dependence of TAMSD on the realization
time T .

with 〈X 2(t )〉 ∼ t2H and 〈X 2(t )〉 ∼ tα+−α−+2H . This crossover
takes place at the critical time

tc =
[

a+
a−

�(2H + 1)

�(α− − α+ + 2H + 1)

D+ − D−

D−

] 1
α+−α−

, (40)

which, here, is tc = 650. The MSD of the numerical simu-
lations shown in Fig. 1(b) exhibits three different regimes: an
initial regime where the MSD depends on the initial condition,
i.e., the starting state, an intermediate regime up to a time of
the order of tc where the MSD has an anomalous exponent
smaller than 2H , and a long time asymptotic with the anoma-
lous exponent being 2H .

The TAMSD [Fig. 1(c)] for this case is

〈δ2(�)〉 =
[

D− + a+
a−

(D+ − D−)

�(α− − α+ + 2)
T α−−α+

]

× �(2H + 1)�(1 − H )

42H−1�(H + 1)
�2H . (41)

The TAMSD exhibits a dependence on the experimental time
via a scaling T α−−α+ . In the long time limit, it converges to
�(2H + 1)�(1 − H )/[42H−1�(H + 1)]D−�2H . The large-t
asymptotic of the TAMSD, thus, differs from the ensemble-
averaged MSD (2D−�2H ) by a constant factor, showing
ultraweak ergodicity breaking.

B. Case 2: Exponential distribution ψ+(t )
and heavy-tailed ψ−, 0 < α− < 1

For ψ+(t ) being exponential and ψ−(t ) being heavy tailed
with α− ∈ (0, 1), the asymptotic behavior of the mean gener-
alized diffusion coefficient reads

〈D(t )〉 ≈ D− + τ+
a−

(D+ − D−)

�(α−)
tα−−1. (42)

A comparison with Eq. (31) shows

A = D−, B = τ+
a−

(D+ − D−)

a+�(α−)
, and β = α−. (43)

Thus, the asymptotic behavior of the MSD is

〈X 2(t )〉 ≈ 2D−t2H

+ 2
τ+
a−

�(2H + 1)(D+ − D−)

�(α− + 2H )
tα−+2H−1, (44)

which converges to 2D−t2H at long times.
We generated 1000 realizations of the process starting in

the “+” state, with H = 0.3, D+ = 10, D− = 1, α− = 0.5,
τ+ = 15, and t0,− = 25. Figure 2(a) shows a trajectory X (t )
alongside the process D(t ). Figure 2(b) shows a comparison
between the asymptotic MSD and the one obtained from nu-
merical simulations. In a similar way as for case 1, there is a
crossover between diffusion regimes, with a crossover time

tc =
[

τ+
a−

�(2H + 1)

�(α− + 2H )

D+ − D−

D−

]1/(1−α+ )

, (45)

which, here, is tc = 205.
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FIG. 2. Case 2: Two-state system where one state has an expo-
nential distribution and the other state has a heavy-tailed dwell time
distribution. The parameters in this example are D+ = 10, D− = 1,
τ+ = 15, α− = 0.5, and t0,− = 25. (a) Representative trajectory X (t )
together with D(t ). (b) The MSD is shown for numerical simula-
tions as blue squares. The solid line shows the analytical asymptotic
behavior given by Eq. (39) and the dotted lines show the MSD of
each of the two states. (c) TAMSD for different realization times; the
dashed line represents the analytical asymptotic behavior given by
Eq. (41) for T = 8192. Inset: A close-up to highlight the dependence
of TAMSD on the realization time.

The TAMSD [shown in Fig. 2(c)] is

〈δ2(�)〉 =
[

D− + τ+
a−

(D+ − D−)

�(α− + 1)
T α−−1

]

× �(2H + 1)�(1 − H )

42H−1�(H + 1)
�2H , (46)

which, again, in the long time limit, differs from the ensemble-
averaged MSD (2D−�2H ) by a constant factor (ultraweak
nonergodicity).

C. Case 3: Two exponential distributions

For the case where both ψ±(t ) are exponential, the process
D(t ) is Markovian and its first moment converges at long
times to

〈D(t )〉 = 〈Dst〉 = D+ p+
eq + D− p−

eq, (47)

where p±
eq is the probability that a particle is found in state ±,

p±
eq = τ±

τ+ + τ−
. (48)

Thus, following Eq. (9), the MSD is

〈X 2(t )〉 = 2〈Dst〉t2H . (49)

On the other hand, the TAMSD [Eq. (25), Fig. 3(c)] is

〈δ2(�)〉 = �(2H + 1)�(1 − H )

42H−1�(H + 1)
〈Dst〉�2H . (50)

While we have not used Eq. (30) in this last example, it
is possible to proceed in the same fashion as done for the
previous two examples with A = 〈Dst〉 and B = 0.

A total of 1000 trajectories were simulated, all starting in
the “+” state, with H = 0.3, D+ = 10, D− = 1, τ+ = 15, and
τ− = 25. Figure 3(a) shows a trajectory X (t ) alongside the
process D(t ). Figure 3(b) shows a comparison between the an-
alytical MSD and the one obtained by numerical simulations.
In Fig. 3(c), the TAMSD is shown for different realization
times, showing that when D(t ) is stationary, there is no de-
pendence on the realization time.

IV. DISCUSSION

In this work, we have studied fractional Brownian mo-
tion with fluctuating diffusivity X (t ), a process defined in
Eq. (4) as a modification of Lévy’s integral representation of
the fBm for the case where the generalized diffusion coef-
ficient is a stochastic process, D(t ). This process, therefore,
keeps the temporal correlation, while adding an extra layer
of complexity encapsulated in the stochastic dynamic of the
diffusion coefficient. We derived exact expressions for the
MSD [Eq. (8)] and TAMSD [Eq. (22)] in the Laplace domain.
For the case when H = 1/2, the process in Eq. (4) reduces
to a modified Brownian motion with a stochastic diffusion
coefficient, for which our expressions reduce to those previ-
ously derived for such process. Additionally, when D(t ) is a
stationary process, its first moment is constant in time, i.e.,
〈D(t )〉st = 〈D〉, and the MSD reduces to that of standard fBm
with an effective diffusivity. However, because we employ
Lévy’s nonequilibrated representation of the fBm, this sys-
tem is ultraweakly nonergodic, where the ensemble-averaged
MSD has a different prefactor than that of the TAMSD.
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FIG. 3. Case 3: Two-state system where both states have ex-
ponential dwell time distributions. The parameters in this example
are D+ = 10, D− = 1, τ+ = 15, and τ− = 25. (a) Representative
trajectory X (t ) together with D(t ). (b) The MSD is shown for numer-
ical simulations as blue squares. The solid line shows the analytical
asymptotic behavior given by Eq. (39) and the dotted lines show the
MSD of each of the two states. (c) TAMSD for different realization
times; the dashed line represents the analytical asymptotic behavior
given by Eq. (41) for T = 8192.

To test the capability of our framework, we have con-
sidered two-state processes where the diffusion coefficient
follows a dichotomous stochastic process. This case is partic-
ularly relevant in modeling diffusion in the cytoplasm of live
cells [6,49]. In particular, the sojourn times following an expo-
nential distribution for one state and a power-law distribution
for the other state have been observed in diverse complex
systems [30,57–59]. We considered the nonequilibrium di-
chotomous stochastic process for which the sojourn times for
one or both states can have a heavy-tailed distribution. We
derived analytical expressions for these processes and found
excellent agreement with the numerical simulations. With our
framework, we also find analytical expressions that agree with
published numerical simulations [45].

All presented numerical simulations start in a defined state.
Namely, at t = 0, the process is in the “+” state and, thus,
the MSD at small times has the behavior of that specific state
[Figs. 1(b), 2(b), and 3(b)], 〈X 2(t )〉 = 2D+t2H . Nevertheless,
this dependence is not seen in the TAMSD because this quan-
tity is obtained by averaging over long times, at which the
dependence on the initial condition is already lost [Figs. 1(c),
2(c), and 3(c)]. For systems that can reach equilibrium, such
as the Markovian switching described in case 3, it is possible
to randomize the initial state so that the system is already
equilibrated at t = 0. Under these conditions, the dependence
on the initial condition in the MSD would be eliminated.
This type of randomization is highly relevant to experiments
where the diffusion process initiated a long time before the
measurements [6]. Given that the first two cases, when at least
one of the states has a heavy-tailed dwell time distribution,
do not equilibrate, randomizing the starting state does not
eliminate the dependence on the initial conditions.

We have considered two-state systems with heavy-tailed
dwell time distributions that asymptotically converge toward
the state with smaller diffusivity. Namely, the “−” state has
a smaller α exponent than the “+” state, or the latter has an
exponential distribution. These conditions lead to the emer-
gence of a crossover between two different temporal diffusion
regimes in the MSD [Eqs. (39) and (44), and Figs. 1(b) and
2(b)]. In a similar fashion as that observed for Brownian
motion with fluctuating diffusivities [50], if the state with
the smaller α exponent has higher D, such crossover is not
observed and the overall behavior involves a reduction in the
MSD at small times, followed by a convergence to 2D+t2H .

This work opens the way for other possible generalizations,
for instance, a situation in which not only the diffusion coeffi-
cient is stochastic, but also the Hurst exponent. Additionally,
the two-state system, presented here as an example, could be
generalized to a multistate system or even to a more complex
situation where one of the states involves confinement or
transient immobilization.
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APPENDIX A: LAPLACE TRANSFORM
OF THE COVARIANCE FUNCTION

The covariance function can be written as

〈X (t + �)X (t )〉 = 4H
∫ t

0
〈D(t ′)〉

× (t + � − t ′)H−1/2(t − t ′)H−1/2dt ′,

(A1)

which, by making the change of variable u = t − t ′, takes the
form of a convolution,

〈X (t + �)X (t )〉 = 4H�2H−1
∫ t

0
〈D(t − u)〉

×
(

1 + u

�

)H−1/2( u

�

)H−1/2

du. (A2)

The Laplace transform of a convolution is known and reads

L(〈X (t + �)X (t )〉)

= 4H�2H−1〈D(s)〉

×
∫ ∞

0
e−us

(
1 + u

�

)H−1/2( u

�

)H−1/2

du. (A3)

Let us denote the integral in this expression as

f (s,�) =
∫ ∞

0
e−us

(
1 − u

�

)H−1/2( u

�

)H−1/2

du. (A4)

Then, by making the change of variable t = us, it can be
rewritten as

f (s,�) = �(H + 1/2)e�s/2

π1/2�H−1sH
KH

(
�s

2

)
, (A5)

where Kν (z) is the modified Bessel function of the second kind
of order ν having the following integral representation [60]:

Kν (z) =
√

π

2z

e−z

�(ν + 1/2)

×
∫ ∞

0
e−t

(
1 − t

2z

)ν−1/2

tν−1/2dt, (A6)

which can be expressed in terms of the modified Bessel func-
tion of the first kind Iν (z) in the following way [60]:

Kν (z) = π

2

I−ν (z) − Iν (z)

sin(νπ )
. (A7)

This last expression will allow us to find the asymptotic ex-
pansion for s → 0. Now, the modified Bessel function of the
first kind has the following series expansion [60]:

Iν (z) =
∞∑

s=0

1

s!�(s + ν + 1)

(
z

2

)2s+ν

, (A8)

and, thus, the modified Bessel function of the second kind can
be approximated for small s via

KH

(
�s

2

)
= 4Hπ

2 sin(Hπ )(�s)H�(1 − H )

×
[

1 − �(1 − H )

�(H + 1)

(
�s

4

)2H

+ O(s2)

]
. (A9)

On the other hand, the exponential function in Eq. (A5) can
be expanded for s → 0 as

exp

(
�s

2

)
= 1 + �s

2
+ O(s2). (A10)

Then, Eq. (A5) can be rewritten as

f (s,�) = �(2H )

�2H−1s2H

[
1 + �s

2

− �(1 − H )

�(H + 1)

(
�s

4

)2H

+ O(s2H+1)

]
, (A11)

where we have used the following two properties of the �

function [60]:

�(x)�(1 − x) = π

sin(πx)
(A12)

and

�(x + 1/2)�(x) = 21−2xπ1/2�(2x). (A13)

Finally, let us replace Eq. (A11) in Eq. (A3) to find the Laplace
transform of the covariance function for s → 0,

L[〈X (t + �)X (t )〉]

= 4H〈D(s)〉�(2H )

s2H

×
[

1 + �s

2
− �(1 − H )

�(H + 1)

(
�s

4

)2H

+ O(s2H+1)

]
.

(A14)

APPENDIX B: NUMERICAL METHODS

The numerical methods used to simulate fractional
Brownian motion with fluctuating diffusivity closely follow
the method presented in Ref. [45]. Let us start by rewriting
the process under consideration, namely,

X (t ) =
∫ t

0

√
4HD(τ ) (t − τ )H−1/2 dB(τ ). (B1)

Further, we consider the process to start at t = 0 and X (0) = 0
and to have a realization time T . Briefly, the interval [0, T ]
is divided in M times, ti = i�t , with i = 1, 2, . . . , M, and
�t = T/M. From Eq. (B1), we known that the process X (t )
at each one of the t = ti is given by

X (ti ) =
∫ ti

0

√
4HD(τ ) (ti − τ )H−1/2 dB(τ ). (B2)

Next, we divide the interval [0, ti] into N evenly spaced
subintervals [τ j, τ j+1) with j = 0, . . . , N − 1, τ0 = 0,
τN = ti. The above integral can be rewritten as

X (ti ) ≈
N−1∑
j=0

∫ τ j+1

τ j

√
4HD(τ ) (ti − τ )H−1/2 dB(τ ). (B3)

Each integral can then be Riemann approximated to obtain

X (ti ) ≈
N−1∑
j=0

√
4HD(τi ) (ti − τ j )

H−1/2 ξ j, (B4)
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where ξ j = B(τ j+i ) − B(τ j ) are i.i.d. Gaussian random
numbers with zero mean and variance �τ = τ j+1 − τ j .
The simulations presented in this work have the following

parameters: �t = 1 is fixed, M = T = 104, and �τ = 1/50.
Other parameters that were used in the simulations are found
in the main text.
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