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Fluctuations of thermal variables investigated by cross-correlation function
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Fluctuations in conjugate thermodynamic variables are studied using the cross-correlation function. A new
procedure is given enabling the derivation of fluctuation formulas for a system in equilibrium. Specifically,
the cross-correlation function between heat and temperature is employed for thermal variables. Additionally,
fluctuation-dissipation relations involving the frequency-dependent specific heat are established. Moreover, a
general relation concerning the average entropy production is also given, which is the microscopic analog of the
dissipation formula of the linear response theory. In the case of thermal variables, this formula finds application
in various scenarios describing fluctuating thermal systems in equilibrium.
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I. INTRODUCTION

The macroscopic state variables of a thermodynamic sys-
tem fluctuate. Highly sensitive instruments can have access to
these fluctuations. They impose a natural limit to the smallest
signals accessible by the instruments. They are due to the
corpuscular nature of particles at the microscopic scale which
are submitted to thermal agitation. From seminal works in
the field of statistical physics, particularly those addressing
Brownian motion [1], or those on the thermal agitation of
electric charges within a conductor [2,3], it is well-established
that these fluctuations are intrinsically linked to damping pa-
rameters. For example, the thermal conductance K for thermal
systems, or the resistance R in electrical circuits are such
damping parameters. For a system in equilibrium, fluctua-
tions manifest, on average, as secondary order terms in the
deviation from the mean value. If we call ξ an extensive
thermodynamic variable and F the associated conjugate inten-
sive variable, then fluctuations are represented as δξ = ξ − ξ

and δF = F − F , where the over-line denotes a temporal
averaging over extended durations (similar to 〈〉 ensemble
averaging over all the possible fluctuations following ergodic
hypothesis).

In 1952, Callen and Greene formulated relations connect-
ing fluctuations with dissipative parameters for all sets of
conjugate thermodynamic variables [4]:

(δξ )2 = −2kB

π

∫
dωσs(ω)ω−2, (1a)

(δF )2 = −2kB

π

∫
dωRs(ω). (1b)

kB is the Boltzmann constant and ω = 2π f is the angular
frequency. The conductance σs is the real part of the gener-
alized admittance, and Rs is the real part of the generalized
impedance when canonical constraint on ξ is considered [4].
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These relations (1a) and (1b) are a thermodynamic formula-
tion of the fluctuation-dissipation theorem obtained by Callen
and Welton from quantum statistical physics [5]. The thermo-
dynamic approach was then generalized to several extensive
variables fluctuations [6].

In the present paper, we shall use the same formalism based
on thermodynamics to propose an new procedure starting
from fluctuations of random variables, giving the frequency
dependence of their spectral densities, and leading then to
their mean-square values. Contrary to the usual approach,
we will not start from the autocorrelation functions of each
random variable, but from their cross-correlation function.
Furthermore, the equipartition theorem will not be directly
applied as is usually done in the literature. Instead, we will use
an equivalent expression based on the statistical expectation
value of the entropy decrease due to the contribution of all the
possible fluctuations. Although the paper focuses on thermal
variable fluctuations, the generality of the approach proposed
here will be shown across the investigation of fluctuation for-
mulas for a simple RC electrical circuit in Appendix A. In the
specific case of thermal variables, the procedure may apply on
a wide class of thermal processes. This point is illustrated in
Appendix C across the investigation of the Cattaneo-Vernotte
process of propagation of heat in a medium.

II. OBJECTIVES AND MAIN RESULTS OF THE PAPER

The origin of our work has resulted from the observation
that in Eqs. (1a) and (1b), the inherent generalized impedances
(or admittances) differ from each other. Notwithstanding the
conjugate nature of ξ and F , the generalized impedances
do not characterize the same process. This particular aspect
remains unaddressed in the reference [4]. Therefore, in a
first step we shall propose a new procedure which takes into
account this observation to obtain new general fluctuation
formulas. The second objective of the paper will be to apply
specifically these formulas on thermal variable fluctuations.
Our procedure will be used to obtain well-known formulas
for the fluctuations of energy δE = E − E and temperature
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δT = T − T of a thermodynamic system connected to a ther-
mostat. The third objective of this study will be to establish a
precise microscopic foundation for the frequency-dependent
specific heat, denoted as C(ω). Three new fluctuation-
dissipation relations will be obtained using this generalized
thermal susceptibility. Eventually, the last objective of the
paper will be to give from our procedure three new formu-
las involving entropy production. The first one is general,
while the two others belong to thermal variables. All these
results are summarized below and their derivations are given
in Sec. III.

A. Fluctuation formulas

The analog of formulas (1a) and (1b) derived from our
procedure are

(δξ )2 = 1

2π

∫ +∞

0
dωSFF (ω)|Ys(ω)|2ω−2, (2a)

(δF )2 = 1

2π

∫ +∞

0
dω

Sξ̇ ξ̇ (ω)

|Yp(ω)|2 . (2b)

Ys(ω) is the admittance of a “series system,” while Yp(ω) is
that of a “parallel system.” The definition of such types of
systems will be provided in the upcoming sections. SFF and
Sξ̇ ξ̇ are the spectral densities of the force and flux, respectively.
The flux, ξ̇ = dξ/dt , is the time derivative of the extensive
variable. The ω-dependency of the force or flux spectral den-
sities is just a matter of physical situation as we will see later.
The microscopic nature of matter does not appear in those
previous formulas, while it appears through the constant kB in
the formulas (1a) and (1b) of Callen and Greene. This is why
a third formula must be added in order that our procedure be
complete:

1

2π

∫ +∞

0
dω

Sξ̇ ξ̇ (ω)

ω

�{Yp(ω)}
|Yp(ω)|2 = −kB. (3)

�{Yp(ω)} is the imaginary part of the complex function Yp(ω).
This formula is obtained from the cross-correlation function
of ξ and F . The ω-dependency of the flux of the extensive
variable is again a matter of choice, depending on the consid-
ered physical case.

The preceding three formulas rely on fundamental defi-
nitions including thermodynamic admittances, spectral den-
sities, and correlation functions. While these definitions are
briefly outlined here for clarity, they will be rigorously defined
in subsequent sections:

(1) the thermodynamic admittance is defined as [4]

Y (ω) = δξ̇ (ω)

δF (ω)
, (4)

where δξ̇ (ω) is the Fourier transform of the flux of the ex-
tensive variable and δF (ω) is the Fourier transform of the
conjugated force, respectively.

(2) the spectral density of a random thermodynamic vari-
able δx is [7]

Sxx(ω) = δx(ω)δx∗(ω) = |δx(ω)|2. (5)

(3) the cross-spectral density of two random variables δx
and δy is

Sxy(ω) = δx(ω)δy∗(ω). (6)

FIG. 1. Picture of the dissipative system composed of a heat
capacity C coupled to a thermal bath of temperature Tb by means of a
heat exchange coefficient K . (a) Parallel system. A fictitious thermal
fluctuating power δP separates in two contributions, one stored in
C and one as a heat loss to the bath across K . (b) Series system. A
fictitious temperature fluctuations of the bath induces energy (heat)
fluctuations of the system.

(4) the autocorrelation function of a random thermody-
namic variable δx is

ψxx(τ ) = lim
t ′→+∞

1

t ′

∫ t ′

0
dtδx(t )δx(t − τ ). (7)

(5) the cross-correlation function of two random variables
δx and δy is

ψxy(τ ) = lim
t ′→+∞

1

t ′

∫ t ′

0
dtδx(t )δy(t − τ ). (8)

Like autocorrelation functions, cross-correlation functions
and cross-spectral densities are related by means of the
Wiener-Khinchin relations [7].

B. Thermal variable fluctuations

For a system of heat capacity C, thermally coupled to a
thermal bath, energy and temperature undergo fluctuations (cf.
Fig. 1). Their mean-square values are

(δE )2 = kBT 2C, (9a)

(δT )2 = kBT 2

C
. (9b)

Temperature fluctuations arise from the incessant random
exchanges of heat carriers between the system and its thermal
reservoir. To understand temperature fluctuations, it is some-
times useful to introduce a fictitious random power δP(t ) (cf.
Fig. 1), defined in such way that fluctuations can be viewed as
the outcomes of this stochastic “force” perturbing the system,
similarly to Langevin’s random force in the interpretation of
Brownian motion [8]. The fluctuation formula concerning the
mean-square value of this random power is written

(δP)2 = 4kBT 2K	 f , (10)

where 	 f is a frequency bandwidth on the power spectrum
and K the thermal coupling coefficient (damping parameter)
between the system and its bath (cf. Fig. 1). K generally
represents a thermal conductance when the connection be-
tween the system and its bath is mediated by a material (e.g.,
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phonons, electrons). It could also characterize a thermal con-
tact interface. Formulas (9a) and (9b) can be directly obtained
from the classical thermodynamic fluctuation theory based
on canonical distributions, but not the formula (10) [9–12].
Formulas (9a) and (9b) are mean-square values of the total
fluctuations of energy and temperature, and they tell us noth-
ing about their frequency distribution on the spectrum. This is
precisely the route from microscopic agitation to these final
formulas we would like to trace in this paper. In particu-
lar, from our procedure we shall obtain formulas (9a), (9b),
and (10) for thermal variables without using the equipartition
theorem as it is usually done for obtaining directly temper-
ature fluctuation formula (see, for example, Refs. [13,14]).
Indeed, Eq. (9b) corresponds to the equipartition theorem
governing temperature fluctuations. Our procedure based on
cross-correlation functions provides the spectral densities of
each of the three fluctuating variables, E , T , and P at the same
level.

Equation (9a) relies on a series system which obeys to the
following differential equation:

C
d (δT )

dt
+ KδT = KδTb, (11)

whereas Eqs. (9b) and (10) rely on a parallel system which
obeys to the following differential equation:

C
d (δT )

dt
+ KδT = δP. (12)

In Eq. (11) temperature fluctuations of the system δT are
driven by temperature fluctuations of the thermal bath δTb,
whereas in Eq. (12) they are driven by the fictitious fluctu-
ating power δP. While Eq. (12) can be intuitively derived
from Fig. 1(a), obtaining Eq. (11) from Fig. 1(b) is less
straightforward. The detailed derivation of this equation will
be presented in the dedicated section on energy fluctuations
within a series system.

C. Frequency-dependent specific heat

The frequency-dependent complex specific heat is a quan-
tity measured from modulated temperature calorimetry, or
ac-calorimetry [15–19]. In these types of calorimetry exper-
iments, the fictitious power δP is a real power oscillating at
a frequency ω, and the oscillating temperature of a sample is
recorded with a thermometer [17]. Here we show that C(ω)
is a type of susceptibility, as such, it can be expressed from
the admittance and, in particular, from Eqs. (2a) and (2b), we
have

(δE )2 = 1

2π

∫ +∞

0
dωST T (ω)|Cs(ω)|2, (13a)

(δT )2 = 1

2π

∫ +∞

0
dωSEE (ω)|Cp(ω)|−2. (13b)

From Eq. (3), we have

1

2π

∫ +∞

0
dωST T (ω)C′

p(ω) = kBT 2. (14)

These three relations constitute fluctuation-dissipation the-
orems for thermal variables [20] (cf. Sec. IV). ST T (ω) is the
temperature spectral density, SEE (ω) is the energy spectral

density, and C′
p(ω) is the real part of the complex specific

heat of a parallel system, while |Cp(ω)|2 and |Cs(ω)|2 are the
square modulus of the complex specific heat of a parallel and
series system, respectively.

D. Entropy production

As we have used cross-correlation function between δξ and
δF to derive Eqs. (2a), (2b), and (3), then we can use cross-
correlation function between δξ̇ and δF to derive a formula for
the entropy averaged over long time, produced by a fluctuating
equilibrium system coupled to a reservoir:

σi = − 1

4π

∫ +∞

0
dωSξ̇ ξ̇ (ω)	{Zp(ω)}, (15)

where 	{Zp(ω)} is the real part of the impedance belonging
to a parallel system.

The direct application of this formula to thermal variables
yields

σi = 1

4πT 2

∫ +∞

0
dωST T (ω)ωC′′

p (ω), (16)

where C′′
p (ω) is the imaginary part of the specific heat belong-

ing to a parallel system.
The last formula of the paper results from a time-average

around one particular frequency ω0 on the spectrum. It is
obtained in limiting the integration in Eq. (16) to one period
Te = 2π

ω0
:

	iSω=ω0 = π
ST T (ω0)

T 2
C′′

p (ω0). (17)

It provides the net positive amount of entropy per unit
of frequency generated by temperature fluctuations at ω0 on
the spectrum. It is analogous to an expression obtained in
temperature modulated experiments [15]. Therefore, it is of a
certain degree of generality because in the case of temperature
modulated experiments it applies to a wide class of thermal
processes [16,21,22].

III. FLUCTUATION FORMULAS OBTAINED BY
CROSS-CORRELATION FUNCTION

To derive formulas (2a), (2b), and (3), we need to apply
several assumptions:

(1) the process of random variable fluctuations is station-
ary. The time average of the fluctuations is much longer
than the macroscopic relaxation time of the system. Un-
der these circumstances, time-averaging is equivalent to
statistical-averaging over all the possible fluctuations (ergodic
hypothesis). The expectation value does not depend on an ini-
tial value. In other words, thermodynamic equilibrium holds
and remains in such a state indefinitely.

(2) the random variable fluctuations obey a statistical
Gaussian distribution. This is a consequence of the huge num-
bers of chocs at the microscopic scale.

(3) the random thermodynamic variables are real analyti-
cal time-dependent signals.

(4) the process of fluctuations is linear. The admit-
tance, impedance or susceptibility are issued from the linear
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macroscopic response of the system to the perturbing force.
This is the case for C(ω).

(5) the spectral densities are all constant at low frequen-
cies (white noise assumption). This holds if we consider that
correlation functions rapidly decrease along time. This hap-
pens if the numerous chocs of the particles at a molecular
level, are so rapid, that under the time average of the fluc-
tuations there is no correlation anymore (for one or several
variables).

(6) for the investigation of thermal variables, no work
fluctuations are considered. Under these circumstances, heat
fluctuations between the system and its bath are equivalent
to energy fluctuations. Conversely, when other variables are
considered (for example, charge fluctuations in Appendix A),
work fluctuations is equivalent to energy fluctuations. How-
ever, in the two cases the average entropy production leads to
the same energy dissipated of kBT/2 per degree of freedom.

A. Probability of fluctuations

When the state variables of a dissipative system undergo
fluctuations around equilibrium, each fluctuation results in
a reduction of entropy. Over time, through the process of
averaging, the system dissipates heat (via the dissipative
parameters), leading to the production of entropy. This phe-
nomenon ensures the system’s perpetual maintenance in an
equilibrium state, characterized by constant expectation val-
ues of its state variables. Paradoxically, the existence of
equilibrium relies on the ongoing occurrence of nonequi-
librium processes. Thermodynamic equilibrium owes its
sustainability to the continuous dissipation of heat from the
system to the thermal bath. Landau and Lifshitz quantitatively
assess this entropy production by considering the maximum
work that a body can transfer to an external medium or,
equivalently, the minimum work that an external source must
provide to the body [12]. Kondepudi and Prigogine, however,
opt for directly addressing entropy production [23]. Landau
and Lifshitz employ a hypothetical reversible process to ad-
dress thermodynamic fluctuations, whereas Kondepudi and
Prigogine directly consider the nonequilibrium path. This lat-
ter approach is employed in this paper. The entropy decrease
due to the fluctuation of an extensive variable δx associated
with its conjugate intensive variable δy is written 	iS. The
density probability of such a fluctuation is written [23]:

p = Ae
	i S
kB , (18)

where A is a normalization constant taking into account that
the sum of the probabilities over all the possible fluctuations
is equal to unity [cf. Appendix B, Eq. (B4)].

Since the system is in equilibrium, the entropy decrease
	iS must be developed in series expansion up to a second
order in the fluctuations of δx and δy:

	iS ∼ 1
2δ2S = 1

2δxδy < 0. (19)

δx and δy are random variables obeying Gaussian distri-
butions by assumption. The statistical average over all the
possible values of the fluctuations δx and δy of this entropy

fall with the probability distribution (18) yields to

〈	iS〉 = −kB

2
, (20)

assuming that δx = −αδy with α > 0, which is also the con-
sequence of the linear regime assumption. The calculation is
given with details in Appendix B.

B. Cross-correlation function and cross-spectral density

Here we developed specifically our procedure for thermal
variable fluctuations for simplicity reasons, but the general
formulas (2a), (2b), and (3) can be obtained exactly from
the same way replacing E by ξ and 1/T by F . Indeed, for
thermal variables, the extensive variable is the energy E with
the conjugate intensive variable 1/T . The cross-correlation
function of the random variables δE (t ) and δ 1

T (t ) results in
a time average of their product but they are time-shifted. The
stationary condition mandates that the function relies solely
on the temporal drift, while remaining independent of the
initial instant of the average [7]:

ψE 1
T

(τ ) = lim
t ′→+∞

1

t ′

∫ t ′

0
dtδE (t )δ

1

T
(t − τ ). (21)

This function is generally a rapidly decreasing function of
τ . It gives an idea of how energy fluctuations are correlated
to temperature fluctuations taken at different instants. Since in
physics temperature is the relevant measured variable, let us
work from now with the energy/temperature cross-correlation
function remarking that

ψE 1
T

(τ ) = − 1

T 2
lim

t ′→+∞
1

t ′

∫ t ′

0
dtδE (t )δT (t − τ )

= −ψET (τ )

T 2
. (22)

Here, and in the following, T , the absolute temperature, is
the temperature of the bath, but we omit the index b for the
sake of simplification. For the specific value τ = 0, the limit
of the integral in Eq. (21) is a time average over infinite time,
which by assumption is equivalent to a statistical average of
two conjugate variables. Owing to the result (20), we have

ψET (0) = kBT 2. (23)

We arrive then to the result that for a time drift τ equal to
zero, the cross-correlation function of energy and temperature
is equal to kBT 2.

From Parseval’s relation and using the Wiener-Khinchin
theorem, the cross-correlation function for the specific value
τ = 0 can be written as follows [7]:

ψET (0) =
∫ +∞

−∞
dωδE (ω)δT ∗(ω), (24)

where by definition the cross-spectral density between energy
and temperature is [7]

SET (ω) = δE (ω)δT ∗(ω). (25)
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δE (ω) and δT (ω) are the Fourier transforms of the fluctu-
ating variables δE (t ) and δT (t ):

δE (ω) =
∫ +∞

−∞
dtδE (t )e−iωt , (26a)

δT (ω) =
∫ +∞

−∞
dtδT (t )e−iωt . (26b)

The star indicates complex conjugation. Contrary to spectral
densities derived from the autocorrelation function of single-
variable which are real, cross-spectral densities are complex
functions. SET (ω) has real and imaginary parts. However,
since δE (t ) and δT (t ) are real signals, the cross-spectral den-
sity benefits of the hermitic symmetry [7,24]. The real part
of SET (ω) is an even function of the frequency, while the
imaginary part of SET (ω) is an odd function of the frequency.
Equation (24) immediately simplifies to

ψET (0) =
∫ +∞

−∞
dω	{SET (ω)}. (27)

Since negative frequencies have no meaning in physics,
the cross-spectral density SET (ω) is replaced by a quantity
which has two times the previous value for each positive
frequency, and the integration is now taken only over positive
frequencies:

ψET (0) =
∫ +∞

0
dω	{S+

ET (ω)}. (28)

This mathematical artifice yields precisely the same out-
come. From now the sign + is omitted as usual [25,26].

C. Admittance, impedance, and susceptibility

Generally, the admittance is defined as the ratio of the
Fourier transform of the flux of the extensive variable with
the Fourier transform of the intensive force when the system
responds to a macroscopic force:

Y (ω) = δξ̇ (ω)

δF (ω)
. (29)

It is however possible to define an admittance directly from
the Fourier transforms of the random fluctuating signals. This
is true and limited to a first order in a series expansion, which
gives justification on the assumption of linear regime. This im-
portant point is discussed with details in Ref. [4]; it is a crucial
point, as it enables the establishment of a connection between
the fluctuations of variables at the microscopic scale and the
system’s response to an external force at the macroscopic
scale. Hence, the admittance of fluctuating thermal variables
is

Y (ω) = −T 2 δĖ (ω)

δT (ω)
= −iωT 2 δE (ω)

δT (ω)
, (30)

where δE (ω) and δT (ω) are defined with Eqs. (26a)
and (26b). From these two previous Fourier transforms, a
frequency-dependent specific heat can be defined exactly like
in a dynamic calorimetry experiment [15], or linear response
theory [27]:

C(ω) = δE (ω)

δT (ω)
= C′(ω) − iC′′(ω). (31)

From this definition, and knowing that the susceptibility,
called χ (ω), is defined as the ratio of the extensive and inten-
sive variables, respectively, we have

Y (ω) = iωχ (ω) = −iωT 2C(ω). (32)

Thus, C(ω) is, up to the factor −T 2, a generalized suscep-
tibility [15]. The impedance is the inverse of the admittance
even though sometimes it is defined as the ratio of the output
on the input in noise measurements [13].

D. Fluctuation formulas for thermal variables

Figure 1 depicts two different situations leading to thermal
variables fluctuations. Figure 1(a) belongs to what we have
called a parallel system, while Fig. 1(b) belongs to a series
system. The difference between them is that the input “noisy
power” is not supplied at the same location on the system/bath
assembly. In the two situations the system is represented by a
volume of specific heat C and temperature T coupled to a ther-
mal bath of temperature Tb by means of a thermal exchange
coefficient K . For a parallel system a fortuitous Langevin’s
force δP is considered at the level of the system while for
the series system it is considered at the level of the bath.
For a series system the temperature fluctuations of the bath
induce temperature fluctuations of the system and energy fluc-
tuations. For a parallel system this is the heat flux δP which
induces temperature fluctuations of the system. For thermal
variables the difference between the two types of systems is
difficult to apprehend, but for the electrical case investigated
in Appendix A, it is easier to manage with parallel and series
electrical connections of the resistor and capacitor.

1. Power and temperature fluctuations of a parallel system

Figure 1(a) shows that temperature fluctuations δT obey a
first-order linear differential equation:

C
d (δT )

dt
+ KδT = δP. (33)

This is definitively a parallel system, as when a macro-
scopic heat flux is applied to the system, it splits into two
components in parallel. A part of the heat flux is stored in the
heat capacity [represented by the first term on the left-hand
side of Eq. (33)], while the other part transfers to the thermal
bath through the heat exchange coefficient K [indicated as
the second term on the left-hand side of Eq. (33)]. However,
Eq. (33) applies for fluctuations around the mean value. By
performing the Fourier transformation of this linear differen-
tial equation, it is straightforward to obtain

Cp(ω) = C − i
K

ω
, (34a)

Yp(ω) = −T 2(iωC + K ). (34b)

The specific heat Cp(ω) is the complex frequency-
dependent specific heat of the parallel system, whereas the
specific heat C in the previous equations (see also Fig. 1) is the
equilibrium specific heat of the dissipative system itself. The
spectral density of the power δP(t ) is written SPP(ω). Owing
to the definition (25), and using the previous equation (30),
the cross-spectral density can be written as a function of the
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admittance:

SET (ω) = T 2SPP(ω)
iYp(ω)

ω|Yp(ω)|2 . (35)

Taking the real part of the previous expression, and owing
to Eqs. (28) and (23), we immediately arrive to

1

2π

∫ +∞

0
dω

SPP(ω)

ω

�{Yp(ω)}
|Yp(ω)|2 = −kB, (36)

which is the wanted Eq. (3) with Sξ̇ ξ̇ (ω) = SPP(ω) in the case
of thermal variables.

In Eq. (33) it can be assumed that the spectral density
of the fortuitous force SPP is constant, like in the classical
treatment of the Langevin equation. This hypothesis is valid
at least up to the high frequency defined by the time scale of
the shocks between particles. However, the constancy of SPP is
not valid for all thermal processes. It depends on the physical
conditions and the form of the differential equation governing
the fluctuations. In Appendix C, we investigate the Cattaneo-
Vernotte heat propagation process, for which we show that
SPP is frequency-dependent, leading to different fluctuation
formulas. Now, upon exclusion of SPP from the previous in-
tegral, the subsequent step involves integrating the residual
expression �{Yp(ω)}

ω|Yp(ω)|2 = − C
(KT )2(1+(ωτth )2 ) utilizing Eq. (34b) and

the definition of τth = C/K , the thermal relaxation time of the
system. This leads to the derivation of the following expres-
sion for the power spectral density:

SPP = 4kBT 2K, (37)

which by another integration on a bandwidth 	 f is the ex-
pected formula (10):

(δP)2 = 4kBT 2K	 f .

Under these circumstances, it is trivial to obtain the spectral
density of temperature fluctuations, which is linked to the
power spectrum by

SPP = |Yp(ω)|2S 1
T

1
T

= |Yp(ω)|2
T 4

ST T . (38)

Since the power spectral density is constant by assumption,
the frequency dependence of the temperature spectral density
comes from the square modulus of the thermal admittance
[using Eq. (34b)]:

ST T (ω) = T 4 SPP

|Yp(ω)|2 = 4kBT 2K

K2 + (ωC)2
. (39)

The integration of this expression between 0 and +∞
yields to

(δT )2 = kBT 2

C
,

which is the expected formula (9b).
Now, owing to the general relation (32), formula (36) trans-

forms to

1

2π

∫ +∞

0
dω

SPP(ω)

ω2|Cp(ω)|2 C′
p(ω) = kBT 2. (40)

Let us notice with Eq. (38) that

SPP(ω)

ω2|Cp(ω)|2 = ST T (ω). (41)

This leads directly to the desired Eq. (14):

1

2π

∫ +∞

0
dωST T (ω)C′

p(ω) = kBT 2.

For the process described in Fig. 1 by the differen-
tial Eq. (33), C′

p = C independent of the frequency [see
Eq. (34a)]. Excluding this part from the integral above and
placing it in the denominator of the right-hand-side term
directly yields the fluctuation formula (9b). Once the com-
plex specific heat is determined, it sometimes becomes more
straightforward to employ the latter equation instead of in-
tegrating a complex expression, such as Eq. (39) to derive
temperature fluctuations. However, for other thermal pro-
cesses, the real part of C(ω) can be frequency-dependent. In
Appendix C, it is the case for the Cattaneo-Vernotte process
of heat propagation.

At this step, let us make a small aside for calorimetry
experimenters, remarking that Eq. (41) above is analogous
to the expression used in the measurement of specific heat in
ac-calorimetry [15,17], which we rewrite here for the sake of
clarity:

δTac = P0

ω|C(ω)| = P0

ωC
√

1 + 1
(ωτth )2

, (42)

with δTac and P0 the amplitudes of temperature and ac-power
oscillations, respectively. Generally experiments occur under
the requirement (ωτth )2 � 1 for adiabatic conditions [17].
Equation (42) addresses macroscopic temperature oscillations
in response to an oscillating heat-flow (linear response the-
ory), whereas Eq. (41) pertains to random temperature and
heat-flux noises, and it is applicable across the entire spectrum
of fluctuations.

2. Energy fluctuations of a series system

To obtain the spectral density of energy fluctuations,
SEE (ω), a transition from a parallel system to a series sys-
tem is necessary [cf. Fig. 1(b)]. While in a parallel system
the flux is introduced at the body level where it splits
into two parallel components, in contrast a series system
receives the flux directly from the bath, which dictates the
system’s temperature. In a series system, the admittance is
defined as the ratio of power into the bath to the inverse tem-
perature of the bath [cf. Fig. 1(b)]. In this case, the temperature
spectral density must be treated as independent of frequency,
as it is the temperature of the bath that fluctuates. Actually,
the differential Eq. (46), which we will derive later, indicates
that. Consequently, the energy spectral density is expressed in
terms of the new admittance. By definition of the admittance
with ξ and F as fluctuating variables:

Sξξ (ω) = SFF (ω)
|Ys(ω)|2

ω2
. (43)
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The integration over all the positive frequencies yields to
the expected formula (2a):

(δξ )2 = 1

2π

∫ +∞

0
dωSFF (ω)|Ys(ω)|2ω−2.

There is no interest to take the real part of Sξξ which
is a real number, because it comes from the autocorrela-
tion function of δξ (t ) for the specific time drift τ = 0 for
which the function is maximum. This is the classical ap-
proach [13,25,26].

Let us apply it for thermal variables where Eq. (43) above
transforms to

SEE (ω) = ST T (0)

T 4

|Ys(ω)|2
ω2

. (44)

Here, ST T (0) = 4kBT 2/K is chosen by assumption of the
series system, such as the ω-dependency of the energy spectral
density comes only from the term |Ys(ω)|2/ω2. This latter has
to be evaluated for thermal bath temperature fluctuations. For
that, let us consider the thermal bath which by definition has
a specific heat much larger than that of the dissipative system
(Cb � C). Such as depicted in Fig. 1(b), the fluctuating power
of the bath can be decomposed in two components:

δPb(t ) = Cb
d (δTb)

dt
+ C

d (δT )

dt
, (45)

where the subscript b is associated to the bath. Hence, the
small part of the power that induces fluctuations in the system
is just the second term of the right-hand side of this equality,
	Pb(t ) = Cd (δT )/dt . Since in a series system there is no
fortuitous force at the level of the system itself, other than that
coming from the bath, the differential equation (33) becomes

C
d (δT )

dt
+ KδT = KδTb, (46)

where now the temperature bath fluctuations are considered.
Performing the Fourier transformation of the previous

equation and of 	Pb(t ) yields to both equations:

	Pb(ω) = iωCδT (ω), (47a)

δT (ω) = δTb(ω)

1 + iωτth
. (47b)

The admittance is the bath’s admittance in a series system:

Ys(ω) = −T 2 	Pb(ω)

δTb(ω)
= −iωT 2

(
C

1 + iωτth

)
. (48)

Including the modulus of this admittance in Eq. (44) gives
directly the energy spectral density:

SEE (ω) = ST T (0)
C2

1 + (ωτth )2
. (49)

Integrating this result over the positive frequencies, with
ST T (0) = 4kBT 2

K , gives the desired formula (9a):

(δE )2 = kBT 2C.

From those results, two remarks can be made:

(1) First, from Eq. (48), the frequency-dependent specific
heat for the series system is (see also Refs. [21,22])

Cs(ω) = C

1 + iωτth
. (50)

This is the part of the specific heat of the dissipative system
that responds to the temperature fluctuations of the thermal
bath. At high frequency on the spectrum, the system is com-
pletely insulated from bath temperature fluctuations and there
is no temperature fluctuations of the system. At low frequency
on the spectrum, fluctuations of the bath temperature drive the
fluctuations of the temperature of the system, and Cs(ω) tends
to the equilibrium specific heat C.

(2) Second, it could be noticed that Eq. (49) can also be
written as follows:

SEE (ω) = ST T (ω)C2, (51)

where the temperature spectral density is that of a parallel sys-
tem while the energy spectral density is that of a series system.
It provides a simple relation between fluctuating energy of a
series system and fluctuating temperature of a parallel system
implying only C, the equilibrium specific heat of the system
considered.

To conclude this section, utilizing the following relation
based on Eq. (32):

|Ys(ω)|2 = ω2T 4|Cs(ω)|2, (52)

it is rather straightforward to transform Eq. (44) leading after
integration to the expected formula (13a):

(δE )2 = 1

2π

∫ +∞

0
dωST T (ω)|Cs(ω)|2.

E. Entropy production for thermal variables fluctuations

Equation (20) means that, on average over long times, or
over all the possibilities of fluctuations of two conjugate ther-
modynamic variables, the entropy of the system decreases by
a factor −kB/2 per degree of freedom [23,24]. In response to
this reduction, the system actively generates entropy through
the process of dissipation. This relationship between fluctu-
ations and dissipation ensures the system’s proximity to its
equilibrium state. As discussed in Ref. [23], the process of en-
tropy production induced by fluctuations ensures the stability
of the equilibrium state. It is essential to note that fluctuations
exhibit correlations on a very brief time scale, where ψξF (τ )
represents a rapidly decreasing function of the time drift τ .
Conversely, entropy production takes place as an average over
time, extending beyond the relaxation time of the system, and
thus well beyond the time scale of correlations. Throughout
the relaxation process, the system’s entropy production rate,
denoted as entropy production because it is always positive, is
observed as

σi = diS

dt
= d (	iS)

dt
= −1

2
δF

d (δξ )

dt
> 0. (53)

This is simply the instantaneous rate of generation of
entropy due to the dissipation process as a consequence of
fluctuations of two conjugate variables evolving along time.
The minus sign ensures the system returning toward equilib-
rium with a negative flux for positive force fluctuation and
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vice versa. This is the process of regression in time of the
fluctuations [23,24,28]. In the case of thermal variables, the
process of entropy generation is equivalent to heat relaxation
(on average) across the coefficient K . For conjugate variables
involved in work-exchanges, entropy production is also equiv-
alent to dissipation process with a transfer of work to heat
inside the system with finally relaxation of heat to the bath (cf.
Appendix A for electrical variables). Since entropy production
involves the intensive variable and the flux of the extensive
variable, the cross-correlation function between “force” and
“flux” is now employed:

ψξ̇F (τ ) = lim
t ′→+∞

1

t ′

∫ t ′

0
dtδξ̇ (t )δF (t − τ ). (54)

The same method as before provides for τ = 0,

σi = −ψξ̇F (0)

2
= − 1

4π

∫ +∞

0
dω	{S+

ξ̇F
(ω)}, (55)

where, by means of the hermitic symmetry, 	{S+
ξ̇F

(ω)} is the
real part of the flux and force cross-spectral density, restricted
on positive frequencies. Owing to definition (29) of the ad-
mittance, the real part of Sξ̇F = δξ̇ (ω)δF ∗(ω) is transformed
leading to the desired formula (15):

σi = − 1

4π

∫ +∞

0
dωSξ̇ ξ̇ (ω)	{Zp(ω)},

with Zp(ω) = 1/Yp(ω). The average entropy production is in
connection with the real part of the generalized impedance,
i.e., the dissipative part. Owing to the relation (32) between
the admittance and the complex specific heat and Eq. (41), it
is straightforward to derive the expected formula (16):

σi = 1

4πT 2

∫ +∞

0
dωST T (ω)ωC′′

p (ω).

This confirms that the frequency-dependent specific heat
is a susceptibility since its imaginary part is involved in the
production of entropy, or equivalently the dissipation process.
An application of this last formula for the thermal process
governed by Eq. (33) with C′′

p (ω) = K/ω and with Eq. (39)
of the frequency-dependent temperature spectral density, re-
duces, after integration over the frequency, to the very simple
result:

σi = kB

2τth
. (56)

The mean dissipated power involved is Pi = T σi. However,
as we have considered on averaging times much longer than
the relaxation time of the process τth, there is no production of
entropy anymore for t > τth. This means that the mean energy
involved is

Ei ∼ Piτth = kBT

2
. (57)

We recover the equipartition theorem with average energy
of kBT/2 per degree of freedom. We can conclude that the
formulas (15) and (16) [or Eq. (56)] above are particular
expressions of the equipartition theorem with equal weight in
energy repartition at thermodynamic equilibrium.

Finally, in focusing on a specific Fourier’s component on
the spectrum at a given frequency ω0 = 2π/Te, the net pos-
itive amount of entropy generated over the period Te can be
calculated:

	iS|ω=ω0 = σi|ω0
× Te. (58)

Excluding the integrand from the integral in formula (16)
just above for the particular value ω = ω0 (per unit of fre-
quency 	 f ) gives

σi|ω0 = 1

2T 2
ST T (ω0)ω0C

′′
p (ω0), (59)

which yields to the following result:

	iS|ω=ω0 = π
ST T (ω0)

T 2
C′′

p (ω0). (60)

Here again, this is the analog of a known relation obtained
in modulated calorimetry [15,16,21,22], replacing the temper-
ature spectral density by the square modulus of the oscillating
sample’s temperature:

	iS|ω=ω0 = π

(
δT ac

T

)2

C′′
p (ω0). (61)

It was proven in Ref. [21] that this later formula applies
to very different thermal processes, such as, for example, the
heat propagation process investigated in Appendix C.

IV. DISCUSSION

What is the link between the fluctuations of the state
variables of a thermodynamic system at equilibrium and
the macroscopic response of these same variables when the
system is perturbed away from equilibrium by an external
force? This connection is characterized by the process of
dissipation. For a system to be in a state of thermodynamic
equilibrium, and that it remains indefinitely in this state, the
presence of dissipative processes is fundamental. The internal
redistribution of heat within the system (energy equipartition)
counteracts the effect of fluctuations maintaining a constant
temperature. Despite the fact that the underlying process is
the same, the order of magnitude of the power associated with
dissipation during fluctuations is negligible compared to the
power involved in the macroscopic response of the system to
an external disturbance. It is on the order of kBT per hertz
of bandwidth and per degree of freedom at low frequency
(approximately 4 × 10−21W at room temperature; see also
Appendix A).

At the macroscopic level, the dissipation process is clearly
expressed through the linear response theory [28]. This theory
shows that the dissipation of heat when the system is perturbed
by an external field is linked to the imaginary part of the
generalized susceptibility. If we denote a(t ) as the external
field applied to the system’s Hamiltonian, such that the har-
monic perturbation is represented by 	{a exp −iωt}, then the
average power dissipated in the system at angular frequency
ω0 takes a simple form [28]:

Pi = 1
2 a2ω0�{χ (ω0)}, (62)

where �{χ (ω)} is the imaginary part of the generalized sus-
ceptibility. However, as the Hamiltonian at equilibrium is
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perturbed by a term containing an externally coupled field to
the fluctuating variable, we consider solely the exchange of
work with the system in equilibrium. The macroscopic ther-
mal variables “heat” and “temperature,” however, are involved
in heat exchange between a macroscopic system coupled to
the thermal bath. As these two variables are not Hamiltonian
by definition, linear response theory cannot apply [28,29].
Nevertheless, Kubo’s approach, based on the expression of en-
tropy production associated with an equivalent Hamiltonian of
perturbation, allows obtaining, for example, the expression of
thermal conductivity from equilibrium correlation functions
of Fourier transforms of heat fluxes (Green-Kubo formulas,
which also applies to all transport processes) [28–30]. How-
ever, when comparing formula (62) to T times the term σi|ω0

in Eq. (59), a striking similarity is observed by setting the field
a(t ) = 1/T (t ) and using relation χ (ω) = −T 2C(ω) linking
the generalized susceptibility and frequency-dependent spe-
cific heat. This suggests that a linear response theory may
apply for thermal variables. Nielsen and Dyre applied the
linear response theory to thermal variables perturbing a sta-
tistical system obeying a set of master equations [20]. These
master equations govern the temporal variations of the prob-
abilities of each state and their transitions from one state to
another. A fluctuation-dissipation relation was thus derived for
the frequency-dependent specific heat (Eq. (26) in Ref. [20]):

C(iω) = 〈(	H )2〉eq

kBT 2

− iω

kBT 2

∫ +∞

0
dt〈	H (0)	H (t )〉eqe−iωt .

This represents the frequency response to the perturbation
of the system’s energy. The first term on the right-hand side of
the equation corresponds to the equilibrium specific heat of a
canonical ensemble [31]. The second term on the right-hand
side of the equation is linked to the autocorrelation function
of energy (at constant volume) or enthalpy if pressure is
constant. Therefore, this approach is analogous in terms of
linear response with the approach employed in the second
part of the paper for a series system, where the tempera-
ture of bath fluctuates. Thus, the expression above should be
similar to Eq. (13a), even though it is not obvious at first
glance.

When considering fluctuations in the temperature of the
bath, the question of fluctuations in the temperature of the
system itself seems no longer relevant. There have been nu-
merous discussions on the physical reality of temperature
fluctuations in a system. However, with sensitive and stable
instruments, these fluctuations are measured and the for-
mula (9b) is approved [32]. On a theoretical point of view,
the following references are instructive concerning this type
of debate, particularly the dispute between Kittel and Mandel-
brot [33–35] and the disagreement between Kittel and McFee
on the same point [36,37] based on Refs. [38,39].

It is not our objective here to enter into such discussion.
We will simply remark that energy fluctuations in a system
are obtained through a series system in which the bath tem-
perature fluctuates and where energy fluctuations are obtained
from canonical Gibbs’s distribution [31]. However, tempera-
ture fluctuations are obtained through a parallel system where

a fictitious noisy power is injected directly at the system level
with a bath of constant temperature. This is a very general
aspect that indeed pertains to all thermodynamic variables.
When seeking fluctuations in an extensive thermodynamic
variable, one must consider a “series” situation with canonical
distributions, whereas when seeking fluctuations in the conju-
gate intensive variable, one must consider a parallel system
where the composing elements are in parallel so that the flow
of the extensive variable can pass through to the bath. In
the latter case, entropy production is considered by means of
cross-correlation functions.

In the dispute from previous references, another crucial
question has been addressed: What is the minimum size for
defining the temperature of such a system [40–42]? This
question is of paramount importance, and numerous recent
experimental studies approach it using sophisticated microde-
vices [43–47]. Noteworthy are the experimental observations
at very low temperatures of the spectral density of a single
phononic mode coupled to a bath, posing a multitude of
fundamental questions [43]. In particular, how can we define
temperature fluctuations for one single phononic mode [43]?
Fine analysis of electronic temperature fluctuations in meso-
scopic tunnel junction at low temperatures has allowed to
discriminate between electron-phonon coupling and electron-
photon radiative regime as a function of bath temperature,
and to study electron-temperature fluctuations under nonequi-
librium effective temperature conditions [45]. Similarly, one
must consider the significance of temperature in the context
of a one-dimensional phonon waveguide that connects two
thermal reservoirs with well-defined temperatures [46]. On a
local level, defining temperature becomes a challenge in small
structures at low temperatures, particularly when the mean
free path of phonons exceed the scale of the nano-structure,
indicating the ballistic regime of phononic transport [47].
Furthermore, even at these small scales, the determination of
a material’s thermal conductivity is intricately linked to the
system’s dimensions, as the mean free path is temperature and
geometry-dependent under such conditions [47].

All these questions are only just beginning to be addressed
experimentally. They closely involve the concepts of tem-
perature, energy transport, and entropy in small systems.
Our approach may provide answers through spectral analy-
sis of the various noise sources experimentally measured in
these systems. Indeed, given the existence of various ther-
mal processes, the general formulas presented here, expressed
in terms of frequency-dependent specific heat, can prove to
be useful. Extended measurements of temperature or energy
spectral densities may reveal unexpected behaviors. For exam-
ple, in the case of Cattaneo-Vernotte equation of propagation
of heat, the spectral densities are given by Eqs. (C5) and (C7)
in Appendix C. We can also cite, in a nonexhaustive manner,
the following works on general physical phenomena such
as, the violation of the fluctuation-dissipation theorem in
heat transport of mesoscopic constriction between two equi-
librium reservoirs from the spectral density of fluctuations
of the energy flux [48], the spectral analysis of tempera-
ture fluctuations in two thermally coupled high resolution
magnetic-salt-thermometers [49], the observation of increase
temperature fluctuations during DNA thermal denaturation by
means of the power spectral density of voltage fluctuations of
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a platinum differential calorimeter [50], the frequency spec-
trum of the amplitude response function with a differential
calorimeter on biological macromolecular system such as
phospholipid phase transitions [51]. This latter work describes
merely a multifrequency specific heat calorimeter. Although
more difficult to carry out (since fluctuations are generally
small), direct spectral analysis of temperature noise applies
to all frequencies. Therefore, it gives access to every transient
thermal events, and not to relaxation processes occurring at
one or few particular frequencies. The spectral analysis of
temperature fluctuations must reveal all “accidental events,”
whatever they are, in the numerous possible paths followed
by heat-carriers in a device (thermal contacts, mean free
paths, barriers,...), or during a phase transition induced by
external parameters (magnetic field, electric field, pressure
disturbances,...).

To conclude, starting from the form of Eq. (33), we applied
the Langevin-Einstein approach, which invokes a fictitious
fluctuating force to deduce its spectral density under certain
assumptions. This equation applies to a so-called parallel sys-
tem, and thus temperature fluctuations holds. When observing
the presence of actual temperature noise on experimental
devices such as bolometers, different groups mentioned an
incidental fluctuating force precisely represented by the term
δP(t ) in Eq. (33) [13,14,52]. This allowed them to recover
Eq. (39) for the temperature spectral density. To achieve this,
they used de facto Eq. (9b) based on the energy equipar-
tition theorem. On the contrary, our approach is based on
the cross-correlation function of energy and temperature to
obtain the fluctuation formulas (9a), (9b), and (10) from
the spectral densities of energy, temperature and power. For
power and temperature spectral densities, we specified that
the system must be of a parallel-type. This means that, even
at very low frequencies, the fluctuating extensive variable
can “flow” from the system to the bath. For thermal vari-
ables specifically, this flux is directly a heat flux and thus a
power. For electrical variables, this flux is the electric cur-
rent (whose spectral density is proportional to power). This
allowed us to recover all classical fluctuation formulas. For
energy spectral density, a series-type system must be con-
sidered, with fluctuations of the intensive variable of the
bath driving the system’s intensive variable, and thus induc-
ing extensive variable fluctuation like it is always allowed
for canonical ensembles. From cross-correlation functions,
which give an idea of how are correlated two different ran-
dom variables, we found fluctuation-dissipation relations for
these types of parallel systems that obey a certain type of
first-order differential equation like Eqs. (33) or (A1). Ap-
plying these relations to thermal variables, we found several
new fluctuation-dissipation relations involving frequency-
dependent specific heat. In particular, formula (14) seems very
general as it relates the Boltzmann constant to the temperature
spectral density and the real part of the complex specific
heat. Finally, through this approach, we obtained fluctuation-
dissipation relations for entropy production in a general case,
or by introducing complex specific heat for thermal variables.
In particular, formula (16) for the average entropy production
rate involves the temperature spectral density and the imag-
inary part of the complex specific heat. It is to be compared
with relation (14), which involves the real part of the complex

specific heat. From this relation (16), by integrating over a
specific period (i.e., a specific frequency ω0), we were able
to retrieve a known formula in the field of oscillating tem-
perature calorimetry, representing the net entropy produced
per period [15,16,21,22]. This once again proves that, starting
from the fluctuations of a system in equilibrium, or from
the perturbation of this system by a macroscopic external
action, the same result is achieved. Formula (15) [or for-
mula (16) for thermal variables] is thus the analog of the
central formula (62) of linear response theory. However, for-
mula (15) arises from fluctuations and not from macroscopic
perturbation. It is very general, providing the average entropy
production rate emitted by a fluctuating system to maintain
it in equilibrium. It applies to all phenomena involving a
set of fluctuating conjugate variables in the thermodynamic
sense described by differential equations of the type like in
Eqs. (33) or (A1). We have also applied it to the case of
an electrical simple RC electrical circuit with a RC parallel
configuration, where known results were recovered (including
the two Johnson/Nyquist formulas; cf. Appendix A). Regard-
ing thermal variables, all these different relations can apply
not only to the classical case described in Fig. 1 but also
to a wide class of thermal processes involving energy and
temperature. An example is provided in Appendix C, where
we have obtained expressions for the power and temperature
spectral densities of a system subjected to a fluctuating power
obeying the Cattaneo-Vernotte propagation equation.
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APPENDIX A: APPLICATION TO A RC
ELECTRICAL SYSTEM

Figures 2(a) and 2(b) depict an electrical RC circuit in
parallel and series mode, respectively. The thermodynamic
dissipative system is composed of a pure resistor connected
with a condenser, both being at temperature T connected to a
thermal bath, and also in connection with a charge reservoir
(voltage bath). As the thermal bath is composed of a large
amount of particles with respect to the dissipative system, the
voltage bath is composed of a large amount of electrons with
respect to the number of electrons in the system. The extensive
variable is the charge q of the electrons. The conjugate inten-
sive variable is the voltage V divided by temperature with a
minus sign accounting for work exchange and positive dissi-
pated work, δF = − δV

T [6]. In Fig. 2(a), the random voltage
due to incessant exchanges of electrons with the electronic
bath obeys to the following differential equation:

C
d (δV )

dt
+ δV

R
= δI. (A1)

The correspondence is immediate with Eq. (33) where the
fictitious force being the charge flux and not the heat-carriers
flux. The thermodynamic admittance is

Yp(ω) = −T
δI (ω)

δV (ω)
= −T

R
− iωCT . (A2)
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FIG. 2. Picture of the dissipative system composed of pure resis-
tor R and a condenser C connected to an electrical mass (electronic
bath). The system is thermally coupled to a heat bath of constant
temperature Tb. (a) Parallel system. A fictitious current δI separates
in two contributions δI1 and δI2 in parallel in the resistor and the
condenser, with one voltage fluctuations δV . (b) Series system. A
fictitious voltage δV separates in two contributions δV1 and δV2 in
series across the resistor and the condenser, with one current fluctua-
tions δI and one charge fluctuations δq.

With SII the spectral density of the fictitious force being
constant by assumption, the formula (3) yields, after integra-
tion over frequency of the remaining contribution �{Yp(ω)}

ω|Yp(ω)|2 , to

SII = 4kBT

R
, (A3)

which by a new integration over frequency leads to the analog
of formula (10) for the electrical circuit:

(δI )2 = 4kBT 	 f

R
. (A4)

With this expression of the current spectral density, the
integrand in formula (2b) is calculated leading to the voltage
spectral density:

SVV (ω) = 4kBT R

1 + (ωRC)2
. (A5)

The spectral density of voltage fluctuations is frequency-
dependent. Remarking that the real part of the electrical
impedance is 	{Ze(ω)} = −T 	{Zp(ω)} = R/(1 + (ωRC)2),
then the mean-square voltage fluctuations can be written

(δV )2 = 2kBT

π

∫ +∞

0
dω	{Ze(ω)}. (A6)

This is the generalization of the Johnson/Nyquist formula
for a circuit with a real part of the impedance which depends
on frequency, which is the case for the circuit in Fig. 2(a). At
low frequency, on a bandwidth where the condenser does not
play any role this leads directly to

(δV )2 = 4kBT R	 f , (A7)

which is certainly the most famous of the two formulas in
the articles of Johnson and Nyquist [2,3]. However, inte-
grating the real part of Ze(ω) over frequencies gives for the

mean-square value of the voltage fluctuations:

(δV )2 = kBT

C
. (A8)

Continuing our procedure, let us flip to the series-circuit in
Fig. 2(b), where the electronic bath imposes voltage fluctua-
tions. The resulting random current in the circuit obeys then
to the following equation:

RδI +
∫

dt
δI

C
= δV, (A9)

from which the thermodynamic impedance is

Zs(ω) = − 1

T

δV

δI
= − R

T
− 1

iωCT
. (A10)

The formula (2a) with the use of Eq. (A5) at ω = 0 gives
after integration of the remaining integrand |Ys(ω)|2ω−2, the
expression of the mean-square value of the charge fluctua-
tions:

(δq)2 = kBTC. (A11)

We used Eq. (A5) at ω = 0 by assumption of a fictitious
constant random voltage in the series system obeying Eq. (A9)
[see also Fig. 2(b)], where the Johnson/Nyquist formula (A7)
holds.

The application of formula (15) to the parallel-circuit in
Fig. 2(a), with Eq. (A3) gives the same results as for thermal
variables for the average entropy production over long time
[cf. Eq. (56)]:

σi = kB

2τe
. (A12)

τe = RC is here the electronic relaxation time, generally
well smaller than thermal relaxation time. This is why the
formula (A7) is valid over a broad range of experimental
frequencies. Over this frequency range, for a pure resistor, the
integrand SII	{Zp(ω)} is constant, such that the calculation
of formula (15) yields to the interesting result for the mean
entropy rate:

σi = 4kB	 f , (A13)

independent of temperature, resistance, and capacitance.
However, the dissipated power depends on temperature via

Pi = T σi = 4kBT 	 f . On this frequency range, the power is
dissipated as a transfer of a small electrical work to a small
amount of heat relaxing to the thermal bath. As already said
this entropy production process allows the system to remain in
equilibrium to the temperature Tb of the bath. For a system in
a nonequilibrium state, consisting of two resistors electrically
connected, but thermally coupled to two baths at different
temperatures, a respective exchange of small electrical works
occurs between the resistors as well as a permanent heat flux
between them [53]. Conducting such highly sensitive noise
experiments under these seemingly simple conditions unveils
a richness of new results, providing new insights from a fun-
damental thermodynamic point of view at the microscopic
scale [53]. Under these circumstances, it is possible to ob-
tain the measurement of a nonequilibrium heat capacity as
the linear energy response of the two-resistors system under
nonequilibrium stationary conditions when the temperature of
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one of them is changed [54]. In other types of nonequilibrium
situations, it is rather usual that due to big dissipated power
in the electronic circuit (by means of a considerable current
crossing the circuit, for example), the electronic system has an
electron’s temperature superior than that of the thermal bath
(generally phonon’s bath). This is rather usual at low tem-
perature because the thermal coupling between electrons and
their surrounding is weak. The process of dissipation heats the
electron’s temperature [45,55]. In this case, the production of
entropy inside the system allows the definition of an effective
temperature [56].

Eventually, to be complete in the investigation of this elec-
trical case, it could be of interest to compare the general
formula (3) with the original formula of the mean-square
current fluctuation derived by Johnson and Nyquist in their
famous genuine papers [2,3], that we write here for a sake of
comparison:

(δI )2 = 2kBT

π

∫ +∞

0
dωR(ω)|Y (ω)|2, (A14)

where R(ω) in the papers is 	{Z (ω)}. A careful reading of the
papers shows that the admittance is that of a parallel circuit,
so that the formula (3) is usable. We write here formula (3) in
terms of impedance for a sake of comparison, and with SII as
the spectral density of the flux of the extensive variable:

1

2π

∫ +∞

0
dωSII (ω)

�{Z (ω)}
ω

= −kB. (A15)

The Nyquist/Johnson formula involves the real part of
the impedance while the formula (A15) involves the imag-
inary part of the impedance. However, a second integration
has to be performed from (A15) to obtain the mean-square
value of the current like in Eq. (A14). Upon the assumption
SII (ω) = SII = constante (which is also the same result found
by Nyquist and Johnson since the integrand in formula (A14)
does not depend on frequency), and remarking that Zthermo =
−Zelec/T , then the integration over frequencies of the two
types of integrals gives exactly the same result (A3) or (A4).
The formula (3) for the electrical case is consequently another
formulation of the first of the two Johnson/Nyquist formu-
las (A14) [2,3]. As a final remark, the reasoning of Nyquist
to obtain the formula (A14) is based on the equipartition
theorem. In our approach we mostly used the formula (20)
which is demonstrated in the next Appendix.

APPENDIX B: CALCULATION OF MEAN ENTROPY
FALL DUE TO FLUCTUATIONS

The entropy of a system at thermodynamic equilibrium
(Seq) is maximum. This is only true up to a first order since
the intensive variables of the system and the bath are similar.
However, fluctuations are the expression of a small spon-
taneous disturbances provoking small disequilibrium in the
thermodynamic state of the system, and consequently a small
decrease of the entropy around Seq. Let an extensive state
variable x undergoing a fluctuation δx = x − x. Due to this
fluctuation, a series expansion of the system’s entropy around
equilibrium is written

S ∼ Seq + δS + 1
2δ2S, (B1)

FIG. 3. A rectangular slab of surface S and length L is in perfect
thermal contact with two heat baths of temperature Tb1 and Tb2,
respectively. At a length x on the slab, the surface S is crossed by a
heat flux φ(x, t ) which is proportional to the thermal gradient ∂T (x,t )

∂x
following the Fourier’s law.

with δS = 0 since Seq is maximum. For two conjugate vari-
ables, δ2S = δxδy with δy the fluctuation of the conjugate
intensive variable associated to x. We have the requirement
δxδy < 0 since Seq is maximum. Since at equilibrium δS =
0, this means that δx = 0 (and δy = 0). Therefore, suffi-
ciently close to equilibrium we can always write δx = −αδy
with α > 0, the two fluctuations vanishing at the same time
at equilibrium. The entropy fall due to fluctuations is then
written

	iS = S − Seq ∼ − 1
2α(δy)2 < 0. (B2)

The probability density of a fluctuation δy is

p = Ae
	i S
kB = Ae− 1

2
α(δy)2

kB . (B3)

By assumption, this probability density is of Gaussian type.
Its integration over all the possible values of the fluctuation δy
is equal to one. This provides the constant A:

A = 1∫ +∞
−∞ e− α(δy)2

2kB d (δy)
=

√
α

2πkB
. (B4)

The expectation value of 	iS taken over all the possible
fluctuations is

〈	iS〉 = − A

2

∫ +∞

−∞
α(δy)2e− α(δy)2

2kB d (δy)

= − A

2

αkB
√

2πkB

α
√

α

= − kB

2
. (B5)

APPENDIX C: APPLICATION TO CATTANEO-VERNOTTE
EQUATION OF HEAT PROPAGATION

Let us consider a slab of surface S and length L with its two
boundaries in perfect thermal contact with two heat baths of
temperature Tb1 and Tb2, such as depicted in Fig. 3.

From an initial equilibrium state where Tb1 = Tb2, if the
temperatures of the baths are suddenly changed such that
Tb1 > Tb2, then after a certain time, a constant amount of
heat flows perpendicularly to the surface of the slab (one
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dimensional heat flow per unit of surface). At any length x
this constant heat flux is proportional to the thermal gradient
following the Fourier’s law:

φ(x) = −λ
∂T (x)

∂x
. (C1)

The establishment of this stationary condition takes place
after the relaxation time τi = L2/D, where D is the thermal
diffusivity of the material composing the slab. The coeffi-
cient of proportionality λ is the thermal conductivity which
is again an intrinsic property of the material constituting the
slab. The Fourier’s law is valid in plenty of different sit-
uations. However, it suffers from the paradoxical effect of
an infinite velocity of heat propagation within the slab. In
response to an instantaneous change of the thermal gradient
at the coordinate x corresponds an instantaneous change of
the heat flux everywhere in the slab. However, under particu-
lar physical circumstances, the heat-carriers cannot respond
instantaneously to such thermal changes if it happens. For
example, this happens in the case of rapid energy shots on
a surface (laser pulses), or in heat propagation across the
surfaces of multilayers media after rapid temperature changes,
or at low temperature when the mean free path of heat carriers
becomes higher than thermal gradients imposes in the system.
In such cases, the conventional Fourier’s law is no longer
tenable. Cattaneo and Vernotte showed independently that to
remove this paradox of infinite velocity of propagation of heat
in a body, then a supplementary term has to be added to the
Fourier’s law [57,58]:

φ(x, t ) + τ
∂φ(x, t )

∂t
= −λ

∂T (x, t )

∂x
, (C2)

with τ the relaxation time of the heat carriers (not to be
confused with the diffusive relaxation time τi). The heat flux
becomes a relaxing variable. A good picture could be to imag-
ine that now the slab is a volume V = SL filed with a rarefied
gas, or liquid helium at low temperatures, with mean free path
l becoming substantial with ∂T/∂x � T/l .

However, even at equilibrium with Tb1 = Tb2, thermal ag-
itation of heat-carriers provokes microscopic fluctuations of
heat flux and temperature, and thus fluctuations of temper-
ature gradient. At a position x in the slab, thermal variable
fluctuations obey to the following equation:

δφ(x, t ) + τ
∂δφ(x, t )

∂t
= −λ

(
∂δT (x, t )

∂x

)

= −λδ

(
∂T (x, t )

∂x

)
, (C3)

where it has been supposed that temperature fluctuations do
not induce position fluctuations δx across thermal dilatation
coefficient.

This equation is of the same form as Eqs. (33) or (A1),
but, this time, with δ( ∂T

∂x ) as the fictitious force. By taking the
Fourier transform of the previous equation, a complex specific
heat (per unit of length x) can be defined at each position x:

Cx(ω) = δφ(x, ω)

iωδ
(

∂T (x,ω)
∂x

) = λ

ω2τ − iω

= λτ

1 + (ωτ )2
− i

λ/ω

1 + (ωτ )2
. (C4)

It does not depend on x.
Contrary to the process following Eq. (33), the form of

Eq. (C3) suggests that the temperature gradient spectral den-
sity is constant while the heat-flux spectral density is not.
This is normal because in Cattaneo-Vernotte process the heat
flux is the relaxing variable. Let us apply the formula (14) in
excluding S ∂T

∂x
∂T
∂x

from the integral to find

S ∂T
∂x

∂T
∂x

= 2πkBT 2∫ +∞
0

λτ
1+(ωτ )2 dω

= 4kBT 2

λ
. (C5)

The mean-square value of the thermal gradient fluctuation
is

δ(∂T/∂x)2 = 4kBT 2	 f

λ
. (C6)

By means of Eq. (C4) [and Eq. (41)], we obtain the fre-
quency dependence of the heat-flux spectral density:

Sφφ (ω) = λ2

1 + (ωτ )2
S ∂T

∂x
∂T
∂x

= 4kBT 2λ

1 + (ωτ )2
, (C7)

which gives after integration over positive frequency, the
mean-square value of the heat-flux fluctuations:

(δφ)2 = kBT 2λ

τ
. (C8)

If we compare this result with the classical formula (10),
then we conclude that in the conditions of Cattaneo-Vernotte
propagation of heat, the heat-flux fluctuation formula has the
same form as Eq. (10) but with a frequency bandwidth of
	 f = 1/4τ , where τ is the relaxation time of heat-carriers.
With this particular example of Cattaneo-Vernotte equation,
we have shown that it is possible, by means of our procedure
and using frequency-dependent complex specific heat, to ob-
tain new fluctuations formulas for thermal variables. All the
formulas concerning the entropy production are also valid (see
Ref. [21]).
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