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Tale of two emergent games: Opinion dynamics in dynamical directed networks
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Unidirectional social interactions are ubiquitous in real social networks whereas undirected interactions are
intensively studied. We establish a voter model in a dynamical directed network. We analytically obtain the
degree distribution of the evolving network at any given time. Furthermore, we find that the average degree is
captured by an emergent game. However, we find that the fate of opinions is captured by another emergent game.
Beyond expectation, the two emergent games are typically different due to the unidirectionality of the evolving
networks. The Nash equilibrium analysis of the two games facilitates us to give the criterion under which the
minority opinion with few disciples initially takes over the population eventually for in-group bias. Our work
fosters the understanding of opinion dynamics ranging from methodology to research content.
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Introduction. Evolutionary dynamics on dynamical net-
works are essential to understand the complex systems in
the real world including opinions, behaviours, and epidemics
spreading [1–12]. Typically, there are two sides of the coin for
dynamics on dynamical networks: one is the fate of the evo-
lutionary dynamics; the other is the ever-changing network.
For opinion dynamics, the fate of opinions (consensus or
polarization) has been investigated extensively [13–16]. In the
empirical phenomena, the minority can win sometime, such
as in the presidential elections [17] and corporate operations
[18]. What is the impact of social rewiring on the minority
winning? The ever-changing network structure is much less
investigated than the fate of opinions [19–21]. It is still unclear
whether one side of the coin can be inferred from the other.
In particular, if the transient topology is captured, could it be
used to predict the opinion formation? For opinion dynamics,
say whether the opinion with more disciples initially can
invade successfully in the end?

The voter model mirrors the simple average rule typically
addressed in opinion dynamics in a stochastic manner [22,23].
There is an amount of prior works studying the coevolution of
opinions on undirected networks [24–26]. However, unidirec-
tional interactions are more ubiquitous in social relationships
[27–29] and ecosystems [30]. Compared with undirected net-
works, works on unidirected networks are small in number
[31,32]. Simulations show that counterintuitive results can
arise due to the unidirectionality [33]. In-group bias refers
to the tendency for individuals to favor their own group over
others’ [34–38]. The interaction between in-group bias and
network structure can also lead to nontrivial dynamics, even
for undirected networks [39]. Theoretical explanations are
lacking if both the directionality of networks and in-group bias
are taken into account.

In this paper, we establish a voter model in a dynamical
directed network. We address both sides of the coin, i.e.,
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transient topology and the fate of opinions. We find that each
side of the coin is captured by an emergent game. In par-
ticular, the two games are typically different for dynamical
unidirectional networks, whereas the two games are the same
for dynamical undirected networks. This game perspective
facilitates us to predict under what condition the minority with
few disciples initially can win.

Model. Let us consider a system of N individuals. The
social relationships between individuals are captured by the
dynamical directed networks. Each individual has on aver-
age L incoming links and L outgoing links. We assume that
N � L. It implies that each individual has a limited number of
neighbors compared with the population size. Each individual
holds either opinion + or opinion −. There are four types of

links in the population, i.e., S
�= {−→++,

−→+−,
−→−+,

−→−−}. For the
directed link

−→
XY ∈ S, X is the student and Y is the teacher.

Each individual has a student-node-set whose nodes flow into
her and a teacher-node-set whose nodes flow out of her. We
denote x± as the fraction of opinion ± in the population.

Opinion dynamics happens with probability φ and linking
dynamics occurs with probability 1 − φ at each time step
[20,21,40] (see Fig. 1). It is a coin tossing issue, in which
opinion dynamics is the head whereas the linking dynamics
is the tail. They are codependent.

For opinion dynamics, we focus on the voter model [4].
An individual is randomly selected from the population. The
probability that she adopts opinion + is proportional to the
number of teachers with opinion + in her teacher-node-set.
It is notable that if her teacher-node-set is empty, then she
holds her current opinion. Opinion keeping is not a prior
assumption on the characteristics of individuals in contrast
with the zealots [41,42].

For linking dynamics, there are three steps as follows:
(i) Selecting. A directed link

−→
XY is randomly selected,

where
−→
XY ∈ S. Either X or Y is randomly chosen.

(ii) Breaking. The selected individual breaks the directed
link

−→
XY with a pre-defined breaking probability k−→

XY , where
0 < k−→

XY < 1.
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FIG. 1. Coevolutionary dynamics of opinions and directed social
relationships. (a) The social relationships are described by the di-
rected network. (b) With probability φ, opinion updating happens.
An individual is randomly selected to update her opinion. We assume
A is chosen. She learns from her teachers B,C, D and F . Based on
the voter model, A adopts opinion − with probability 1/2. (c) With
probability 1 − φ, linking dynamics happens. A directed link is se-
lected randomly. We assume

−→
AC is selected and A is chosen. A breaks

the directed link with probability k−→+− and rewires to G.

(iii) Rewiring. If the selected individual breaks the di-
rected link

−→
XY , then she rewires to a new individual, who is

selected uniformly at random from all the individuals, except
her teachers and students.

An emergent game for the transient topology. For φ = 1, the
social relationships are invariant and individuals only update
their opinions [33,43]. For φ = 0, the social network evolves
all the time whereas the fractions of opinions are constant.
We focus on φ → 0+. Individuals prefer to adjust their social
relationships rather than to change their opinions, which is
widespread in real social systems [44]. It leads to a time scale
separation, that is, all the directed links are almost in the sta-
tionary regime when the opinion update occurs. The stationary
distribution of the directed links is πS = (π−→++, π−→+−, π−→−+, π−→−−)
(see the Appendix for details).

What are the key topology features that pave the way for
successful invasions? We concentrate on the size of student-
node-set, i.e., in-degree. Denote din + as the in-degree for one
node with opinion +. Suppose there is an individual, named
after Sally. Without loss of generality, we assume that she
adopts opinion + and she has din + ∈ [0, N − 1] students. If an
individual who is not Sally’s current student rewires to Sally,
then din + increases by one with probability (see Fig. 2)

P+
din + = NL − din +

NL︸ ︷︷ ︸
select a link which
is not point to Sally

πS ·

⎛
⎜⎜⎝

k−→++/2
k−→+−/2
k−→−+/2
k−→−−/2

⎞
⎟⎟⎠

︸ ︷︷ ︸
break the link

1

N − 1︸ ︷︷ ︸
rewire to Sally

. (1)

FIG. 2. Markov transitions of Sally’s student size. (Top panel)
Select one link which is not point to Sally. We assume that

−→
CD is

selected and C is chosen to break the
−→
CD. Then C chooses the new

teacher Sally. Hence, the number of Sally’s students increases by one.
(Bottom panel) Select one link which is point to Sally. We assume
that the directed link

−→
BS is selected and B is chosen to break the

−→
BS.

Then B finds a new teacher A. Hence, the number of Sally’s students
decreases by one.

However, if Sally’s student rewires to other individuals,
then din + decreases by one with probability (see Fig. 2)

P−
din + = din +

NL︸︷︷︸
select a link which

is point to Sally

(
π−→++k−→++/2

π−→++ + π−→−+
+ π−→−+k−→−+/2

π−→++ + π−→−+

)
︸ ︷︷ ︸

break the link

1︸︷︷︸
rewire to

other nodes

. (2)

The one-step transition matrix P of the Markov process is
thus obtained. The Markov chain is aperiodic and irreducible,
thus ergodic. Hence, it has a unique stationary distribution
�D = (ξ0, ξ1, ξ2, · · · ξN−1) which is determined by �DP =
�D [45]. Based on Ref. [46], the stationary distribution

is given by ξ j = ( P+
0

P−
j

∏ j−1
i=1

P+
i

P−
i

)(1 + ∑N−1
k=1

P+
0

P−
k

∏k−1
i=1

P+
i

P−
i

)−1,

where 1 � j � N − 1 and
∏0

i=1
P+

i

P−
i

= 1. For j = 0, we have

ξ0 = (1 + ∑N−1
k=1

P+
0

P−
k

∏k−1
i=1

P+
i

P−
i

)−1. If the population size is in-

finitely large, i.e., N → +∞, then the in-degree follows the
Poisson distribution (see more details in Supplemental Mate-
rial [47]). The obtained Poisson distribution facilitates us to
obtain the average in-degree analytically. The expectation of
din + is LU+, where L is the average in-degree of the network
and

U+ = πS ·

⎛
⎜⎜⎝

k−→++
k−→+−
k−→−+
k−→−−

⎞
⎟⎟⎠

/(
π−→++k−→++ + π−→−+k−→−+

π−→++ + π−→−+

)
, (3)

which is the ratio of breaking the link in Eqs. (1) and (2). Inter-
estingly, U+ = (π−→++ + π−→−+)/x+ = f+/(x+ f+ + x− f−), where
f+ = x+/k−→++ + x−/k−→−+ and f− = x+/k−→+− + x−/k−→−−. f± can be
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FIG. 3. Opinion + has as many students as opinion − does in the
Nash equilibrium of Min-degree. For in-group bias, if the proportion
of opinion + is larger than x∗

in-degree +, then the average degree of
opinion + is larger than opinion −’s. It implies that more students
learn opinion +. Otherwise, the average degree of opinion − is
larger. Parameters: k−→++ = 0.3, k−→+− = 0.6, k−→−+ = 0.9 and k−→−− = 0.2.
x∗

in-degree + = 0.7 in this case. We run 100 rounds of the simulation.
We set N = 100, L = 4, and φ = 0.01.

regarded as the payoff of the following game:

Min-degree =
⎛
⎝

+ −
+ 1

k−→++
1

k−→−+

− 1
k−→+−

1
k−→−−

⎞
⎠. (4)

The Nash equilibrium of Eq. (4) x∗
in-degree + is

x∗
in-degree + = 1/k−→−− − 1/k−→−+

1/k−→++ − 1/k−→+− − 1/k−→−+ + 1/k−→−−
. (5)

It refers to a topology in which opinion + has as many stu-
dents as opinion − does. If x+ > x∗

in-degree +, then the average
in-degree of opinion + is larger than that of opinion − (see
Fig. 3).

Another emergent game for the fate of opinions. For
the evolutionary dynamics of opinions, the voter model in
the evolving network is a Markov chain with state x+ and
the state space is {0, 1/N, 2/N, · · · , 1} [20,21]. x+ increases
by 1/N if an individual with opinion − learns opinion
+ with probability qπ−→−+/(qπ−→−+ + qπ−→−−) = π−→−+/(π−→−+ + π−→−−).
Here q is the average size of the teacher set. Hence, the
transition probability that x+ increases by 1/N is T +

x+ =
x−π−→−+/(π−→−+ + π−→−−). Similarly, the transition probability that
x+ decreases by 1/N is T −

x+ = x+π−→+−/(π−→++ + π−→+−). The
probability that x+ remains constant is T 0

x+ = 1 − T +
x+ −

T −
x+ . For large population size limit, i.e., N → +∞, the

mean-field equation is given by ẋ+ = T +
x+ − T −

x+ , captur-
ing the evolution of the opinions. Thus, we have ẋ+ =
Ax+x−[(x+k−→+−/k−→++ + x−) − (x+ + x−k−→−+/k−→−−)], where A =
[k−→++k−→−−(k−→+−x+ + k−→++x−)(k−→−−x+ + k−→−+x−)]−1 is positive, pro-
vided that k−→++k−→+−k−→−+k−→−−x+x− �= 0. Multiplying A−1 on the
right-hand side does not alter the asymptotic dynamics, i.e.,
the fixed points and their stability. We end up with the
equation

ẋ+ = x+x−[(x+k−→+−/k−→++ + x−) − (x+ + x−k−→−+/k−→−−)], (6)

which is a replicator equation with payoff matrix

Mopinion =
⎛
⎝

+ −
+ k−→+−

k−→++
1

− 1
k−→−+
k−→−−

⎞
⎠. (7)

Intuitively, the payoff of an individual + against an individual
+ is proportional to k−→+−/k−→++. If k−→+− increases, then the number
of students with opinion + who learn opinion − decreases. A
part of these students reconnect to new teachers with opinion
+ and adopt opinion +. Hence, the proportion of opinion +
increases. In our model, in-group bias corresponds to k−→+− >

k−→++ and k−→−+ > k−→−−. That is to say, students who adopt different
opinions from their teachers’ are more likely to change teach-
ers than those who adopt the same opinions. The emergent
payoff matrix in this case is a coordination game. There is
only one unstable internal equilibrium for game Eq. (7),

x∗
opinion + = k−→−+/k−→−− − 1

k−→+−/k−→++ + k−→−+/k−→−− − 2
. (8)

Thus, all the individuals adopt opinion + if the initial fraction
of opinion +, denoted as xinitial +, exceeds x∗

opinion +. Otherwise,
all the individuals reach consensus on opinion −. If xinitial + is
between 1/2 and x∗

opinion +, then opinion − can win, even if
opinion − is minority initially, which is counterintuitive. The
emergent game helps to figure out when the minority can take
over [17,18].

Besides in-group bias, we also discuss other cases as fol-
lows [Fig. 4]:

(1) Out-group bias: k−→+− < k−→++ and k−→−+ < k−→−−. Equation (7)
refers to a coexistence game. x∗

opinion + is one internal stable
equilibrium. Opinion + and opinion − coexist if they coexist
in the beginning.

(2) Dominance of opinion +: k−→+− > k−→++ and k−→−+ < k−→−−.
Opinion + is in-group bias, and the other opinion − is out-
group bias. x∗ = 0 is unstable and x∗ = 1 is stable. Then,
opinion + dominates the population.

(3) Dominance of opinion −: k−→+− < k−→++ and k−→−+ > k−→−−.
Opinion + is out-group bias, and the other opinion − is
in-group bias. x∗ = 0 is stable and x∗ = 1 is unstable. Then,
opinion − dominates the population.

A tale of two games to approach the counterintuitive phe-
nomenon. If k−→+− = k−→−+ = k, where 0 < k < 1, then we have
Mopinion = k · Min-degree and x∗

in-degree + = x∗
opinion +, which im-

plies that ONE emergent game is sufficient to capture both
the fate of opinions and the transient topology. It mirrors
an undirectedlike network. The network has symmetriclike
properties in a statistical sense although it is still directed.
In this case, if one opinion has more students than the other
initially, then the former opinion can take over the population
eventually.

If k−→+− �= k−→−+, then the emergent game Min-degree differs from
Mopinion, which can give rise to some even more counterintu-
itive results [Fig. 4(b)]. For in-group bias and k−→+− > k−→−+, if
xinitial + ∈ [x∗

opinion +, x∗
in-degree +], then opinion + invades suc-

cessfully in the end, even if opinion + has few disciples
[Fig. 4(c)]. Hence, the number of disciples of an opinion
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FIG. 4. A tale of two games. (a) Game interactions for the fate
of opinions. (b) Based on the two games, counterintuitive phenom-
ena emerge. (c) Opinion + with few disciples in the beginning
wins. Parameters: k−→++ = 0.3, k−→+− = 0.9, k−→−+ = 0.6 and k−→−− = 0.2.
x∗

in-degree + = 0.6 and x∗
opinion + = 0.5. The initial fraction of opinion

+ is 0.52. (d) The minority opinion − with few disciples in the
beginning wins, which is even more counterintuitive. Parameters:
k−→++ = 0.3, k−→+− = 0.6, k−→−+ = 0.9 and k−→−− = 0.2. x∗

in-degree + = 0.7 and
x∗

opinion + ≈ 0.78. The initial fraction of opinion + is 0.75. We set
N = 100, L = 4 and φ = 0.01.

is not the key factor for the successful invasion for the
dynamical directed networks. Similarly, for in-group bias
and k−→+− < k−→−+, if xinitial + ∈ [x∗

in-degree +, x∗
opinion +], then opinion

− invades successfully in the end, even if opinion − has
few disciples. Furthermore, if xinitial + > 1/2 and xinitial + ∈
[x∗

in-degree +, x∗
opinion +], then opinion − can take over in the end,

even if the minority opinion − with few disciples initially,
which is even more counterintuitive [Fig. 4(d)].

Conclusion and discussion. We focus on the voter model
in the evolving directed network. The transient topology in
the sense of average degree and the fate of opinions are found
to be captured by two emergent 2 × 2 games, respectively.
Therefore, we show that opinion dynamics is equivalent to
games, both network wise and opinion wise. With a game
perspective, our work not only provides the threshold under
which the minority can win, but also gives the critical social
adjustment rule to ensure that the minority with few disciples
initially can win, which is even more counterintuitive. This
also implies that transient topology alone is not sufficient to
predict the fate of opinions, unless the network is undirected.

Opinion dynamics and evolutionary game theory are two
fields in complex systems. Recent years have seen an in-
creasing interest in studying opinion dynamics via the game
approach [48–51]. All of the previous works assume a utility

function (game interaction) first, and then individuals adjust
their opinions via maximizing their payoffs. Individuals in our
model have no payoff in mind when updating opinions. The
game itself is a result, rather than an assumption. Our work
sheds a deeper connection between opinion dynamics and
evolutionary games. Furthermore, we are the first to use an
emergent game (not games assumed prior) to capture the time-
dependent average degree in contract with previous works
[52–54]. Our work thus bridges the gap between game theory
and transient topology in dynamical networks.

It is shown that if the network is undirected, then Eq. (4)
is equivalent to Eq. (7). Consequently, ONE emergent game
is sufficient to capture both the transient topology and fate
of opinions. It implies that the transient topology (student
size) suffices to predict the opinion formation, that is, the
opinion with more disciples wins eventually in the dynamical
undirected networks. Hence, the unidirectionality of networks
is a necessary condition to make opinions with few disciples
take over.

If k−→++ and k−→−− are zero and k−→+− and k−→−+ are nonzero, then
only active links, i.e.,

−→+− and
−→−+ are broken. It degen-

erates to the model in Ref. [13]. Fragmentation is one of
the stationary regime in this case [14,31]. In fact, all the
social links are fragile. Inert links, i.e.,

−→++ and
−→−− are also

likely to be broken since social relationships are intrinsically
dynamical (friendship does not last forever). And individu-
als can rewire to those with different opinions, since one is
not likely to know the opinion of others before connection.
Furthermore, we study the complexity of the revised model,
in which the previous step (i) is replaced by the following:
the two extremes of the selected link are chosen by different
probabilities depending on the link type rather than randomly
irrespective of the link type. We find that the transient topol-
ogy in the revised model is fully captured by an emergent
three-player two-strategy game which has at most two internal
equilibria. The fate of opinions is captured by a replicator
equation of an emergent four-player two-strategy game which
has at most three internal equilibria. These multiequilibria of
the two emergent games imply that counterintuitive results are
more likely to take place than the previous model (see Supple-
mental Material [47]). This highlights the complexity of the
rewiring process on unidirectional networks is key for such
the counterintuitive opinion formation process. In our model,
the directed network evolves much faster than the opinions.
The coevolution of opinions and undirected networks is stud-
ied in any time scale in Ref. [55], which can be extended to
the directed network in the future.

To sum up, based on the Nash equilibrium analysis of
the two emergent games, our work fills the gap between
the literature on opinion dynamics and the counterintuitive
phenomenon.

Acknowledgments. We gratefully acknowledge Xunlong
Wang, who inspires us to find that the in-degree follows the
Poisson distribution for large population size. This work is
supported by National Natural Science Foundation of China
(NSFC) under Grant No. 61751301.

Appendix: Linking dynamics. Here the number of directed
links NL is constant. Each directed link i(i = 1, 2, · · · , NL) is
selected with probability 1/NL. In time t , we randomly select
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a directed link it = i. If the selected it does not break, then we
have it+1 = it . Otherwise, a new directed link is introduced,
denoted as it+1. We denote the type of directed edge of it by
T (it ), where T (it ) ∈ S.

The linking dynamics is captured by Markov chain with
transition matrix Q(−→AB)(−→CD), which is the probability that link−→
AB transforms to link

−→
CD in one time step. For instance,

Q(−→++)(−→++) is the probability that it of type
−→++ transforms to

it+1 of type
−→++. In this case, one of the following two cases

occurs:
(1) it is not selected (with probability (NL − 1)/NL).
(2) it is selected (with probability 1/NL). Either the origi-

nal
−→++ link is not broken (with probability 1 − k−→++), or the

original
−→++ link is broken and student + (or teacher +)

rewires to a new teacher (student) + (with probability k−→++x+,
where x+ is the fraction of opinion +). Hence,

Q(−→++)(−→++) = NL − 1

NL
+ 1

NL
(1 − k−→++ + k−→++x+). (A1)

The transition probability matrix is given by

Q = NL − 1

NL
I4 + 1

NL
V, (A2)

where I4 is the identity matrix and the matrix V is given by

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

−→++ −→+− −→−+ −→−−
−→++ 1− k−→++x− k−→++x−/2 k−→++x−/2 0
−→+− k−→+−x+/2 1 − k−→+−/2 0 k−→+−x−/2
−→−+ k−→−+x+/2 0 1 − k−→−+/2 k−→−+x−/2
−→−− 0 k−→−−x+/2 k−→−−x+/2 1 − k−→−−x+

⎞
⎟⎟⎟⎟⎟⎟⎠.

(A3)

The matrix V is an approximation because it is possible that
an individual reconnects to her students or teachers. Since
the population size is much larger than the average degree
of the nodes, i.e., N � L, the approximation is completely
acceptable. The state space of the Markov chain is S. If φ 	 1
and k−→++k−→+−k−→−+k−→−−x+x− �= 0, then there is a unique stationary
distribution πS = (π−→++, π−→+−, π−→−+, π−→−−), where

πS = N ∗
(

x2
+

k−→++
,

x+x−
k−→+−

,
x+x−
k−→−+

,
x2
−

k−→−−

)
(A4)

determined by equation πSQ = πS . N ∗ > 0 is a normalization
factor. Here π−→

XY
is the probability of the directed link

−→
XY in

the stationary regime. If x+ increases, then π−→++ increases and

π−→−− decreases. That is, the number of
−→++ increases and the

number of directed links
−→−− decreases.
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