
PHYSICAL REVIEW E 109, L062201 (2024)
Letter

Quantum diffusion induced by small quantum chaos
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It is demonstrated that quantum systems classically exhibiting strong and homogeneous chaos in a bounded
region of the phase space can induce a global quantum diffusion. As an ideal model system, a small quantum
chaos with finite Hilbert space dimension N weakly coupled with M additional degrees of freedom which is
approximated by linear systems is proposed. By twinning the system the diffusion process in the additional
modes can be numerically investigated without taking the unbounded diffusion space into account explicitly.
Even though N is not very large, diffusion occurs in the additional modes as the coupling strength increases if
M � 3. If N is large enough, a definite quantum transition to diffusion takes place through a critical subdiffusion
characterized by an anomalous diffusion exponent.
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Introduction. By introducing any perturbation to com-
pletely integrable systems, a chaotic region is formed close
to the nonlinear resonance which exists almost everywhere in
the phase space. However, chaotic components are prevented
to globalize by the KAM tori and are localized [1,2]. However,
if such a small localized chaos interacts with some additional
degrees of freedom, it can drive them and can change their
energies on a large scale.

A typical example is the mechanism proposed by
Arnold [3]. He showed that the entanglement between the
stable and unstable manifolds of the unstable fixed point of a
resonance, which causes the so called stochastic layer chaos,
simultaneously leads to the intersection of stable and unstable
manifolds with different energies of the additional degrees of
freedom, thereby forming a global path to change their energy.
Such kind of global instability is called the Arnold diffusion
and were treated analytically and numerically [2,4–7]. The
global motion induced by a localized small chaos such as
the stochastic layer is an initiation leading to the intrinsically
global ergodic motions [2,8–10].

Investigations of quantum Arnold diffusion for various
systems elucidated that quantum motion mimics the classical
delocalization [11–14]. However, the diffusion rate is much
smaller than the classical one and very long-time behavior
of the quantum diffusion is not known. It is expected to be
suppressed by the quantum localization effect [13–15].

So far the quantum chaotic diffusion has been investigated
extensively for “large” quantum chaos systems defined in
unbounded phase space with infinite Hilbert-space dimen-
sion [16–19]. In such systems chaotic degrees of freedom
itself may actively exhibit diffusion in the classical limit,
but the diffusion is inhibited in its quantum counterparts
due to the quantum localization effect. Such quantum lo-
calization is, however, destroyed, and classical diffusion is
recovered [20,21] through Anderson-like transition if the

number of degrees of freedom increases [18,19,22–25]. On
the other hand, the nature of quantum diffusion passively
induced by small quantum chaos system have not been known,
although it is a fundamental problem closely related to the
quantum global instability such as the Arnold diffusion.

In the present paper, we propose a simple model and
method, with which we can examine whether or not a small
quantum chaos can induce global diffusive motion along the
modes contacting with it, and show that a global transporta-
tion is realized under appropriate conditions. “Small chaos”
means chaotic systems confined to a finite region of the phase
space by geometrical or dynamical conditions in the classical
limit. As a first step, we examine small but sufficiently unsta-
ble chaos. Small and weakly unstable chaos such as stochastic
layer will be investigated in forthcoming papers.

Model. As the first class of example, we consider strong
and uniform chaotic systems called a C system or K system,
bounded finitely by periodic boundaries [1], which are cou-
pled with several numbers of unbounded additional degrees
of freedom. The former is referred to as the main system and
latter as the additional modes, respectively. The additional
modes are supposed to be integrable if isolated, as is the
example considered by Arnold. They are coupled weakly with
the former at a small coupling strength characterized by the
parameter η.

We suppose the integrable additional modes of number M
is initially located at the action eigenstate |I0k〉 (1 � k � M )
where I0k = h̄ × integer. We approximate the Hamiltonian
of the additional modes by linearizing around Ik ∼ I0k , and
reset Îk − I0k by Ĵk . The Hamiltonian of the entire system is
represented by

Ĥ ( p̂, q̂, Ĵ, φ̂, t ) = Ĥ( p̂, q̂, φ̂, t ) + ĥ(Ĵ)

Ĥ( p̂, q̂, φ̂, t ) = p̂2/2 + V (q̂)�(t ) + ηv(q̂)w(φ̂)�(t ), (1)
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where �(t ) := ∑
n∈Z δ(t − n) is the periodic delta-

functional kicks. ĥ(Ĵ) = ωĴ, where Ĵ = (Ĵ1, .., ĴM )
and ω = (ω1, ..., ωM ) are the the linear frequencies at
Ik = I0k (k = 1, ..., M ). They are supposed to be mutually
incommensurate. φ̂ = (φ̂1, ..., φ̂M ) are the angle operators
conjugate to action operators Ĵk as Ĵk = −ih̄∂/∂φk in the
c-number representation of φ̂k (0 � φk � 2π ). We take
w(φ̂) := ∑M

k=1 w(φ̂k ), where w(φk ) is a 2π periodic function
of angle variable φk with mean value zero.

Here, we take the main system represented by a kicked
rotor driven by the periodic kick �(t ) of period one ap-
plied to the potential V (q̂), where q̂ = ∑

q q|q〉〈q| and p̂ =∑
p p|p〉〈p| are the position and momentum operators with

eigenvalues q and p, respectively.
The main system is confined in the bounded phase space

−π � p � π, −π � q � π , and the periodic boundary con-
ditions are imposed on p and q. Then they are quantized as
q = 	h̄ and p = 	′h̄, where 	, 	′ are the integers satisfying
−N/2 � 	, 	′ � N/2 with N being the Hilbert-space dimen-
sion of the main system related to the Planck constant as
h̄ = 2π/N .

Next, we take the Arnold cat map V (q̂) = Kq̂2/2 or the
standard map V (q̂) = K cos q̂ defined in the above bounded
phase space as the main system H0( p̂, q̂, t ). Taking K (∈ Z)
as K > 4 or K < 0 (cat map) or |K| � 1(standard map),
the main system can be made a C system and approxi-
mately a K system, respectively, which are (almost) uniformly
chaotic with a flat invariant measure in the classical limit.
The interaction terms v(q) and w(φ) are period 2π func-
tions of q and φ, respectively, with zero mean for the
uniform invariant measure. We choose v(q) = cos(q) and
w(φk ) = cos φk of the interaction term in this paper. The
similar model with linear oscillators have been used by sev-
eral authors while studying the chaotic dynamics of the
rotors [26] and Anderson transition of the atomic matter
waves [27,28].

A great merit of using the linear oscillators as the ad-
ditional mode is that the unitary evolution operator Û (t ) =
T exp{−i

∫ t
0 Ĥ ( p̂, q̂, Ĵ, φ̂, s)ds/h̄} can be factorized into the

action-dependent part and angle-dependent part as

Û (t ) = e−iĥ(Ĵ)t/h̄Û (t, φ̂),

Û (t, φ̂) := T e− i
h̄

∫ t
0 Ĥ( p̂,q̂,φ̂+ωs)ds, (2)

where T means the time-ordering operator. If the operator X̂
does not contain the angle operators, the time evolved operator
X̂ (t ) = Û †X̂Û is dominated by Û (t ) as X̂ (t ) = Û (t )X̂ Û (t ).
The action Ĵ (t ) changes only at the t = n(n ∈ Z)-th kick.
The Heisenberg equation of motion dĴ/dt = i[Ĥ, Ĵ]/h̄ is in-
tegrated at each kick to lead to

Ĵk (t ) − Ĵk (0) = −
[t]∑

n=1

ηv(q̂(n))w′(φ̂k + ωkn), (3)

where [ ] is the Gauss symbol and w′(φk ) := dw(φk )/dφk .
Our interest is whether or not the chaotic motion of the
main system can induce a global transport in the action
space starting from |J = 0〉. The physical quantity directly
measuring the transported distance is the mean square dis-
placement (MSD) of the action: �Jk (t )2 := 〈
0|(Ĵk (t ) −
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FIG. 1. (a) An Illustration of the twinned system with the cou-
pling strength η and ξ . (b) The double-logarithmic plots of �J2(t )
as a function of time for the cat map of K = −1 and N = 8 coupled
with three linear modes (M = 3). The result for various η in the range
η ∈ [0.2, 0.6] is shown.

Ĵk (0))2|
0〉 (k = 1, 2..., M ), where |
0〉 = |ψ0〉|J = 0〉 and
|ψ0〉 is the initial state of the main system. Classically, Eq. (3)
describes a typical situation in which chaos induces diffusion
in the additional modes: if the main system is fully chaotic, the
“force” v(q(n))w′(φk + ωkn) is completely random with zero
mean, and the classical variable �Jk (t ) exhibits a Brownian
motion. To compute the MSD or higher-order moment, we
need not explicitly take the infinite Hilbert dimension of the J
space into account as shown below.

Method. We twin the two identical parts represented by
the Hamiltonian Ĥ( p̂, q̂, φ̂, t ) of Eq. (1) and its paired one
Ĥ( p̂′, q̂′, φ̂, t ). Returning t to the continuous time representa-
tion, the Hamiltonian ĤT of the twinned system is

ĤT
ξ = ĤT

ξ ( p̂, q̂, φ̂, t ) + h(Ĵ)

ĤT
ξ := Ĥ( p̂, q̂, φ̂, t ) + Ĥ( p̂′, q̂′, φ̂, t ) + ξŴ (φ̂k, t ). (4)

The second part is spanned by the coordinate basis |q〉′ or
the momentum basis |p〉′, and q̂′ := ∑

q q|q〉′〈q|′ and p̂′ :=∑
p p|p〉′〈p|′ are its coordinate and momentum operators, re-

spectively. Ŵ is the interaction between the twinned parts
given by

Ŵ (φ̂k, t ) := w′(φ̂k )
∑

q

v(q)(|q〉〈q|′ + |q〉′〈q|)�(t − 0), (5)

The twin system is illustrated in Fig. 1(a). The interaction
between the twins takes place just at t = n + 0(n ∈ Z) after
the periodic kick. We define here the transition operators
R̂+ = ∑

q |q〉′〈q| and R̂− = (R̂+)†. Since our system is formed
by twins and the noninteracting Hamiltonian ĤT

ξ=0 commutes
with R̂±, the time-evolved operators R̂± change only in the
moments of the interaction at t = n + 0. Let Û T

ξ (t ) and ÛT
ξ (t )

be the time evolution operator of the Hamiltonian ĤT
ξ and

ĤT
ξ ( p̂, q̂, φ̂ + ωt ), respectively. Then the relation similar to

Eq. (2) holds and R̂±(t ) is dominated by ĤT
ξ ( p̂, q̂, φ̂ + ωt ).
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As a result, we obtain

(R̂+(t ) − R̂+(0))/ξ

= i

h̄

[t]∑
s=1

[v(q̂(s)) − v(q̂′(s))]w′(φ̂k + ωks). (6)

We suppose initially the second chaotic system is not popu-
lated, and only the first main system and the additional modes
are started from the same initial condition as the original
system given by Eq. (1). Here the coupling strength ξ of
the twinned system is chosen at the smallest level that the
numerical precision allows. The RHS of Eq. (6) is computed
in the lowest order with respect to ξ . Then the second term
of RHS, which contains only the population operator of the
second system, can be neglected, and the LHS of Eq. (6) is
identified with Ĵk (t ) − Ĵk (0). The MSD is thus related to the
excitation number R̂+R̂− as

�Jk (t )2 := 〈
0|(Ĵk (t ) − Ĵk (0))2|
0〉
= 〈
0|(R̂+(t + 0) − R̂+(0))(R̂−(t + 0)

− R̂−(0))|
0〉/ξ 2

� h̄2η2

(2π )Mξ 2

∫
dφ

∑
q

∣∣〈q|′ÛT
ξ (t,φ)|ψ0〉

∣∣2
, (7)

where
∫

dφ = ∫ 2π

0 ...
∫ 2π

0 M
k dφk . As mentioned above,

ÛT
ξ (t,φ) = T exp{−i

∫ t
0 ĤT

ξ ( p̂, q̂,φ + ωs, s)ds/h̄}, which can
be expressed as the product of a step-by-step evolution op-
erator. More detailed derivations and remarks about Eqs. (6)
and (7) can be found in the Supplemental Material [29]. In
the following we omit k from Ĵk and Jk if not necessary.
Intuitively, the twins are designed such that their interaction
mimics the force causing the diffusion of J [the RHS of Eq.
(3)], and the MSD of J is copied to the total excitation number
of the second system of the twins.

The higher-order moment can also be evaluated in the same
way. The integration over the phase variables φ means to take
quantum mechanical average with respect to the initial ac-
tion state |J = 0〉 = ∫ 2π

0 ...
∫ 2π

0 dφ|φ〉/(2π )M/2 which is very
efficiently carried out by replacing the integral by the aver-
age over quasirandom numbers of the integer(ν)-multiplied
irrational number φk = νχk (0 � ν � νmax), where χk are ir-
rational numbers.

We have only to execute the numerical wavepacket evo-
lution with ÛT

ξ (t,φ) using 2N-dimensional basis for a fixed
c-number φk = νχk starting from |ψ0〉, and compute the in-
tegrand of Eq. (7) for a fixed φk = νχk , and next take the
average over the νmax data. Finally the average over the results
for randomly chosen initial state |ψ0〉 is taken.

We compared the result of the twinning method with the
result of the direct wavepacket propagation in the full Hilbert
space spanned by the truncated set of action basis and the N-
dimensional basis of the main system. The results agree well,
which are demonstrated in the Supplemental Material [29].

Result. We first take the chaotic cat map as the main sys-
tem, which induces the ideal diffusion process according to
Eq. (3) in the classical model. However, the quantum version
follows the classical chaotic diffusion at least in a certain
period of time evolution. Indeed, in the case of M = 1, the
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FIG. 2. The dynamical localization length of the linear mode J1

obtained for some different system parameters is plotted as a function
of η2N2(∝ η2Dcl ). (a) M = 1 and (b) M = 2. Note that the vertical
axis is in the linear scale for M = 1 and in the logarithmic scale for
M = 2, respectively.

diffusion is suppressed and the MSD reaches to an upper
bound ξ 2

L := �J2(t = ∞) (for brevity the index k is omit-
ted). We call ξL the quantum localization length. As seen
in Fig. 2(a), numerically ξL ∝ N2Dcl , where Dcl is a classi-
cal diffusion constant proportional to η2 for the hyperbolic
cat map, [immediately derived from Eq. (3) with the delta-
correlated classical force]. For M = 2, the classical diffusion
is still suppressed, but the numerical observation tells that
localization length is enhanced and increases exponentially
as ξL ∝ exp{DclN2} = exp{c1η

2N2}, where c1 is a numerical
constant [see Fig. 2(b)]. Similar phenomena have been ob-
served in large quantum chaos systems with infinite Hilbert
dimension, such as perturbed standard map [30] and perturbed
Anderson map [31].

As M � 3, things change drastically: for small enough η

the MSD still saturates at a finite level and the quantum local-
ization still remains, but as η is taken large enough the MSD
increases linearly without limit at least for t less than 108.
Figure 1(b) shows that such a drastic change is observed even
for very small main systems with N of only eight. The bor-
der between the localization and the normal diffusion is not,
however, very definite at all. On the other hand, as N increases
greater than 102, the transition from localization to the normal
diffusion becomes very definite. Figure 3 presents a typical
example of N = 256. There exists a critical value η = ηc

below which the MSD saturates and above which the MSD
increases to reach to the normal diffusion. And just at η = ηc

the MSD increases according to an anomalous diffusion law
�J2(t ) ∝ tα with a characteristic exponent α (0 � α � 1).
Figure 3(b) shows the temporal behavior of MSD around
η = ηc by using the time-dependent characteristic exponent
α(t ) defined by

α(t ) = d log �J2(t )

d log(t )
, (8)

where the over bar X (t ) means to take a local time average of
X (t ). Equation (8) implies �J2(t ) increases tα(t ) locally at t .

Figure 3(b) shows the (t, α(t )) plot for various η. Below
ηc, α(t ) decreases monotonically to zero, while it increases
to reach the normal diffusion α = 1 above ηc, which pro-
vides a strong evidence that a definite transition from the
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FIG. 3. (a) The double-logarithmic plots of �J2(t ) as a function
of time for the cat map (K = −1, N = 256) with three linear modes
(M = 3). The results for ηc � 0.00182 is shown in a thick blue
line. The broken lines with the slope 1 and 2/3 are shown. (b) The
instantaneous diffusion index α(t ) for some ε. The broken line indi-
cates the critical subdiffusion line α(t ) = αc = 2/3 predicted by the
scaling theory. (c) The scaled MSD �c(t ) as functions of time for the
increasing interaction strength η.

localization to the normal diffusion without limit takes place.
Just at η = ηc, α(t ) takes a constant value αc and MSD ex-
hibits an anomalous diffusion �J2

η=ηc
(t ) ∝ tαc . As η exceeds

ηc, the diffusion constant approaches to the classical diffusion
constant Dcl ∝ η2.

Once ηc is decided by the (t, α(t )) plot, the critical behav-
ior close to ηc can be more directly captured by the scaled
representation of MSD �c(t ) := �J2(t )/�J2

η=ηc
(t ) as shown

in Fig. 3(c). The critical value ηc decreases very rapidly with
N , which will be discussed later.

The localization-diffusion transition is always observed if
M � 3 and the MSD increases according to the subdiffusion
�J2(t ) ∝ tαc at the critical ηc, which decreases as ηc ∼ N−3/2,
as shown in Fig. 4(a), if N � 1. According to the numer-
ical observation αc is independent of N and depends only
on M and decreases to zero with M. The critical value ηc

also decreases with M as shown in Fig. 4(b). The results are
summarized as

αc = 2

M
, ηc ∝ N−3/2(M − 2)−1. (9)

The diffusion phenomena can never be observed for the ellip-
tic cat (−4 < K < 1), if N � 1 and η is small enough. The
results mentioned above do not change if the main system
is replaced by the standard map of |K| � 1 defined on a
periodically bounded phase space.

The transition scheme through the critical subdiffusion
�J2(t ) ∼ t2/M is very similar to the Anderson-like transition
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FIG. 4. (a) The critical perturbation strength ηc as a function of
h̄ = 2π/N for the cat map with M = 3, 4, 5 linear modes and K =
−1, −3. The black broken line with a slope 3/2 is shown. (b) ηc as a
function of M − 2 for K = −1. The black dotted line with a slope −1
is shown. Note that the data are plotted in double-logarithmic scale.

observed for standard map perturbed by multiple-periodic per-
turbations [22–24]. Although not shown here, the ηc ∝ N−3/2

can be derived by a conventional theory of Anderson tran-
sition. It is, however, basically different from ours in that the
diffusive motion is supported by the chaotic degree of freedom
itself. It is a large quantum chaotic system defined in an
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FIG. 5. (a) The classical Poincare map of the modified standard
map, which manifests overlapped chaos around two resonances at
p = 0 and p = 2π is finitely bounded by tori. Here K = 3.0 and M =
3, and p1,2 = π ± 2π . (b) Double logarithmic plots of MSD vs t for
(a) are shown. Diffusion in the additional modes is recovered with
increase in η, where N = 256(h̄ = 2π/N ).
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infinitely extended phase space and is supported by infinite di-
mensional Hilbert space. Moreover, in our case, the transition
to diffusion is quite different from the conventional Anderson
transition for small N , which will be reported elsewhere.

An alternative model. Next, we examine a more natural
case where a nonideal chaos generated by the overlap of two
nonlinear resonances is bounded finitely not by the periodic
boundaries but by regular orbits. We take a modified standard
map defined as follows. The potential is V (q̂) = K cos q̂ as
usual, and the momentum space is unbounded. However, the
kinetic energy takes the ordinary form T ( p̂) = p̂2/2 only in a
bounded region I := [p1, p2], and T ( p̂) is replaced by linear
functions ap̂ + b out of I . The constants a and b are decided
such that T ( p̂) is continuous and smooth at p1 and p2. It is
easy to show the classical motion outside of I is completely
integrable. By choosing p1 and p2 adequately, we can confine
the two resonances at p = 0 and p = 2π , which yields chaotic
motion by the overlap of resonances for K > 1, as is illus-
trated in Fig. 5(a). Thus our system models a typical situation
of a small classical chaos bounded by regular regions.

We examined the above system by our method. The
obtained result is not so simple as the ideal case of the
cat map, but we confirmed that the normal diffusion is
recovered for M � 3 following a similar scenario as the
cat map. We show in Fig. 5(b) the transition process of

MSD together with the classical Poincare plot of the main
system.

Conclusion. In conclusion we investigated whether small
quantum chaos can induce quantum diffusion leading to the
global transportation. As a simplest model we proposed a
small but strong quantum chaos system coupled very weakly
with additional linear modes. The existence of diffusion de-
pends seriously on the number M, and for M � 3 global
diffusion is induced even for small Hilbert space dimension
N . If N � 1, the diffusion is realized through a critical state
exhibiting an anomalous diffusion as the coupling strength
exceeds a weak quantum critical value. In the present work we
examined sufficiently unstable chaotic systems in the classical
limit as the main system. More interesting is the case of
small and weakly unstable chaos typically exemplified by the
stochastic layer. In the latter case the global transportation
process along the linear modes corresponds to a quantum
Arnold diffusion, and its existence is a quite interesting
problem.
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