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Rectification of heat current in Corbino geometry
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We prove analytically the ballistic thermal rectification effect (BTRE) in the Corbino disk characterized by
an annular shape. We derive the thermal rectification efficiency (RE) and show that it can be expressed as the
product of two independent functions, the first dependent on the temperatures of the heat baths and the second
on the system’s geometry. It follows that a perfect BTRE can be reached with the increase of the ratios of the
heat baths’ temperatures and of the radius of the outer edge to the inner edge of the disk. We also show that,
by introducing a potential barrier into the Corbino disk, the RE can be greatly improved. Quite remarkably, by
an appropriate choice of parameters, the thermal diode effect can be reversed. Our results are robust under
variation of the Corbino geometry, which may provide a flexible route to manipulate the heat flow at the
nanoscale.
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Introduction. The control and management of the heat cur-
rent is becoming increasingly important for the future society.
In this context, the possibility of building devices capable
of rectifying the heat current has been demonstrated [1,2].
Various mechanisms have been suggested and investigated in
order to increase the rectification efficiency (RE), by magni-
fying the spatial dependence of the local thermal conductivity
through inhomogeneity or asymmetry of the material struc-
ture (see Refs. [3–7] and references therein). In spite of the
fact that the laws of physics do not put limitations to devise
efficient thermal rectifiers, we are still far from a satisfac-
tory understanding of this phenomenon both analytically and
experimentally.

The rapid development of nanotechnology has led to
the consideration of the ballistic thermal rectification effect
(BTRE) [8–10], which has attracted a lot of interest recently,
in view of its potential implications for designing novel ther-
mal nanodevices. Indeed, when the system size is comparable
to the phonon mean free path, ballistic transport may dominate
in lattices [11–13]. The basic idea goes back to Song et al.
[14], who considered the ballistic transport of electrons in a
GaAs-AlGaAs heterostructure and proposed the ballistic rec-
tifier, which relies on a new kind of rectification mechanism
that is entirely different from the ordinary electrical diode.
A photon-based thermal rectifier in which all thermal energy
transfer takes place through vacuum has been proposed in
Ref. [15] as well. In Ref. [16], instead, a thermal rectification
device based on standard silicon processing technology has
been demonstrated, where the heat flow is carried by ballistic
phonons in a thin Si membrane.

The Corbino geometry [17] has been considered to study
the quantum Hall effect [18] and, more recently, the Nernst ef-
fect caused by magnetization currents flowing along the inner
and outer edges of the Corbino disk, maintained at different
temperatures [19]. The thermoelectric response of Corbino
structures has also been measured, and Corbino devices have
been envisioned as thermoelectric coolers at low temperatures
[20].

In this Letter, we study ballistic thermal transport in the
Corbino geometry. First, we analytically calculate the heat
currents and show the presence of a strong rectification when
the temperatures of the inner and outer edges of the disk
are interchanged. Second, we show that the addition of a
potential barrier inside the Corbino disk can strongly en-
hance the rectification effect. Finally, quite surprisingly, there
are parameter regions where the thermal diode effect can
be reversed by varying either the height or the position of
the barrier.

The model. We consider the billiard model of the Corbino
geometry, i.e., point particles moving freely inside an annu-
lar disk (see Fig. 1). The inner and the outer circular edges
are in contact with two thermal baths at temperature Ti and
To, respectively. When a particle collides with an edge, it is
reflected back with a random velocity according to the distri-
bution [21,22] �α (v) = �α (v, θ ) = Pα (v)P̃(θ ), with P̃(θ ) =
1
2 cos θ and

Pα (v) =
√

2m

πkBTα

mv2

kBTα

e− mv2

2kBTα . (1)
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FIG. 1. Schematic plots of the Corbino billiard model for asym-
metric thermal transport. (a) The setup when the hot (cold) bath is
coupled to the outer (inner) edge and a “forward flux,” Jf , forms
in the stationary state. (b) The setup when the two baths in (a) are
swapped and a “reverse flux,” Jr , forms instead. The color changes
from blue to red as the average kinetic energy of the particles
increases.

Here, the subscript α = i or o, indicates the edge, inner or
outer, from which the particle is reflected back, v = |v| de-
notes the magnitude of the reflection velocity, −π

2 < θ < π
2

represents the angle between the reflected velocity v and the
normal direction at the colliding point, m is the particle mass,
and kB is the Boltzmann constant.

At the stationary state, the heat flux flowing across the
system from the hot to the cold bath can be written as

J = N

∣∣∣∣ 〈Eo→i〉 − 〈Ei→o〉
〈to→i〉 + 〈ti→o〉

∣∣∣∣, (2)

where N is the number of particles in the system, and 〈Eo→i〉
and 〈to→i〉 represent, respectively, the average energy a parti-
cle transfers and the average time it takes during a journey
from the outer to the inner edge. Note that during such a
journey, the particle may collide with the outer edge one or
more times. The quantities 〈Ei→o〉 and 〈ti→o〉 have similar
meanings but for the journey from the inner to the outer edge,
instead. As the inner edge is convex, a particle that leaves from
it will reach the outer edge straightforwardly.

The flux expression of Eq. (2) is consistent with its con-
ventional definition. Indeed, if in a long time period t → ∞
a particle experiences N0 → ∞ round trips between the two
edges, then the averaged energy it transfers between the two
baths in a unit time is the ratio between N0|〈Eo→i〉 − 〈Ei→o〉|,
the total energy transferred, and N0[〈to→i〉 + 〈ti→o〉], the total
time cost. Hence N0’s cancel each other. As particles in our
model do not interact, the total flux carried by all N particles
is then N times this ratio, which leads to Eq. (2).

Let us denote the temperature of the hot and the cold baths
by TH and TC (TH > TC), respectively. When we set To = TH

and Ti = TC , the heat flux from the hot outer bath to the cold
inner bath will be denoted by “forward flux,” Jf . Instead, when
Ti = TH and To = TC , the heat flux from the hot inner bath to
the cold outer bath will be denoted by “reverse flux,” Jr . In
what follows, we will derive an explicit expression for the RE
defined as |ξ |, with

ξ = Jf − Jr

Jf + Jr
. (3)

It is clear that 0 � |ξ | � 1, and the larger |ξ |, the stronger
is the thermal rectification effect, with perfect rectification
corresponding to |ξ | = 1. Due to the geometric asymmetry
along the flux direction, we can intuitively anticipate that
Jr < Jf , so that ξ > 0. Indeed, in the reverse configuration,
the inner edge is hot and more particles aggregate near the
outer edge as their velocities are lower after colliding with the
cold and longer outer edge. Therefore, the particles that per
unit time actively transport the energy are in effect fewer than
in the forward configuration.

Theoretical analysis. By definition, the average energy
transferred by a particle during a journey from the outer to
the inner bath is

〈Eo→i〉 =
∫ ∞

0

1

2
mv2Po(v)dv = 3

2
kBTo. (4)

Similarly, 〈Ei→o〉 = 3
2 kBTi. To compute 〈to→i〉, let us denote by

ς a journey path from the outer to the inner edge, by to→i(ς )
the average time a particle spends to go through the path ς ,
and by po→i(ς ) the probability for a particle to take the path ς .
Then 〈to→i〉 = ∑

to→i(ς )po→i(ς ), where the summation runs
over all the allowed paths. Note that the dependence of 〈to→i〉
on v appears only in to→i(ς ), while po→i(ς ) is completely de-
termined by the angle(s) at which the particle leaves from the
outer edge every time after it collides with the latter during the
journey. Therefore, if the length of the path ς is do→i(ς ), then
to→i(ς ) can be expressed as to→i(ς ) = ∫

[do→i(ς )/v]Po(v)dv

such that

〈to→i〉 = 〈do→i〉
√

2m

πkBTo
, (5)

with 〈do→i〉 = ∑
ς do→i(ς )po→i(ς ) being the average length

of all the paths from the outer to the inner edge. For the aver-
age time a particle takes to travel from the inner to the outer
edge, 〈ti→o〉, we have the similar result. Finally, considering
Eq. (2), we have

J = N

∣∣∣∣∣∣∣
3
2 kB(To − Ti )

〈do→i〉
√

2m
πkBTo

+ 〈di→o〉
√

2m
πkBTi

∣∣∣∣∣∣∣, (6)

and, by substituting into Eq. (3) the corresponding Jf

and Jr [given by Eq. (6) with To,i = TH,C and To,i = TC,H ,
respectively],

ξ =
√

TH − √
TC√

TH + √
TC

〈do→i〉 − 〈di→o〉
〈do→i〉 + 〈di→o〉 . (7)

Note that ξ is the product of two independent functions: One
is exclusively related to the temperatures of the two baths and
the other is exclusively determined by the geometry of the
model. Obviously, in the limit 〈do→i〉/〈di→o〉 → ∞, ξ reaches
its maximum value

ξmax =
√

TH − √
TC√

TH + √
TC

. (8)

Furthermore, as TH/TC → ∞, ξmax → 1, implying that per-
fect rectification is achievable in our model.

Due to the circular symmetry of the annular Corbino ge-
ometry, the average length of the paths between the two edges
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FIG. 2. The rectification efficiency as a function of r0 = Ro/Ri

for the (generalized) Corbino model. The solid lines are for the ana-
lytical results and the accompanying symbols are for the simulation
results. The blue line is for h = 0, while the green and red lines
are for h = 2 and h = 4, respectively. The dashed line indicates the
value of ξmax given by Eq. (8) and the dashed-dotted line corresponds
to the limiting case of h → ∞ given by Eq. (11). Here, TC = 1,
TH = 5, Ri = 1, and Rb = (Ri + Ro)/2. Note that for all simulations
throughout, the particle mass, the particle number density, and the
Boltzmann constant are fixed to be unity.

can be derived explicitly (see Supplemental Material [23]),
leading to

ξ = ξmax
(π − 2�o)r2

o − 2
√

r2
o − 1

π
(
r2

o − 1
) , (9)

where ro = Ro/Ri > 1, with Ro and Ri being the radius of the
outer and the inner edge, respectively, and �o = arcsin(1/ro).
It is straightforward to show that both 〈do→i〉 and 〈di→o〉 are
monotonically increasing functions of ro, 〈do→i〉 > 〈di→o〉,
and 〈do→i〉/〈di→o〉 → ∞ as ro → ∞. As a consequence, ξ is
also a monotonically increasing function of ro and as ro → ∞,
it approaches its maximal value ξmax given by Eq. (8). The an-
alytical results for ξ are compared with the simulation results
in Fig. 2 (see the blue line and symbols). We can see that they
agree with each other perfectly.

Note that, remarkably, the obtained expression for ξ in
Eq. (7) has a general validity beyond the specific annular
Corbino disk. For given TC and TH , it allows us to search
for the geometry with a larger ratio of 〈do→i〉/〈di→o〉 for a
better RE. For instance, keeping the area enclosed by the outer
edge unchanged but changing its shape from a circle to an el-
lipse, the RE can be improved significantly (see Supplemental
Material [23]).

For the simulations throughout, initially all particles are
distributed uniformly between the two edges and assigned a
random velocity sampled from the Boltzmann distribution at
temperature (TC + TH )/2. After the relaxation stage (t = 104,
which has been verified to be long enough), the system is
evolved up to t = 108 for evaluating the thermal fluxes and the
RE. As the error is small (<1%), error bars in all figures are
omitted.

A generalized Corbino model. As mentioned previously,
changing the geometry may improve the RE, but it is upper
bounded by ξmax. Is it possible to overcome this bound? Here,

we show that the answer is positive if an “energy filtering
mechanism” is exploited. This can be illustrated by intro-
ducing a potential barrier of width zero and height h in our
model. For convenience of analysis, the potential barrier is
assumed to be located on a concentric circle of radius Rb

(Ri < Rb < Ro). When a particle hits the barrier, it will pass
through if its kinetic energy in the normal direction at the
hitting point is larger than h. Otherwise, it will be reflected
back specularly. As only the particles that can pass the barrier
are effective energy carriers, the existence of the barrier pro-
vides an additional tool to modulate the asymmetry between
the forward and the reverse heat fluxes.

The original Corbino model is a special case of this gener-
alized one with h = 0. Owing to the circular symmetry of the
system, the heat flux and the RE for the general case h �= 0
can be derived as well (see Supplemental Material [23]). But
in the expression of the RE, dependence on bath temperatures
and geometry parameters are intertwined with each other, in
clear contrast to the case h = 0 where they play their roles
independently. At any rate, we can derive intriguing analytical
results, which are corroborated by numerical simulations. In
the following, we will use ξ h to denote the RE for a given
value of h.

First of all, for a given finite value of rb = Rb/Ri, as
ro → ∞, the saturation value of the RE, denoted as ξ h

max,
satisfies ξ h

max > ξmax for any h > 0 [ξmax is given by Eq. (8)
and corresponds to the case of h = 0]. In particular,

ξ h
max =

√
TH P(TH ) − √

TCP(TC )√
TH P(TH ) + √

TCP(TC )
, (10)

where P(T ) = rbe− h
kBT erf(

√
h

kBT
1

r2
b −1

)−erf(rb

√
h

kBT
1

r2
b −1

) + 1,

which is a monotonically increasing function of T . Therefore,
P(TC )/P(TH ) < 1, and as a result, ξ h

max > ξmax (see Supple-
mental Material [23]). In Fig. 2, the RE as a function of ro

for various potential heights is presented. It can be seen that,
by introducing the potential barrier, the RE can be greatly
improved.

Our main theoretical results are then summarized in
Fig. 3(a), where the rectification factor ξ h as a function of
both the position and the height of the potential barrier is pre-
sented. The rb − h space can be divided into three regions with
distinctive features, separated by the critical values rb = r∗

b

and rb = r†
b , respectively, where r∗

b and r†
b correspond to the

two ends of the black dotted curve defined by ∂ξ h/∂h = 0.
Therefore, in region I (1 < rb < r∗

b ) and region II (r∗
b < rb <

r†
b ) above the dotted line, ξ monotonically increases with h,

while in region II below the dotted line and in region III
(r†

b < rb < ro), ξ monotonically decreases with h. The black
dashed line is for the curve ξ h = 0. It separates region III in
two parts, where in the top half (blue color) reverse rectifica-
tion (ξ < 0) occurs, whose RE increases with h. Figures 3(b)
and 3(c) show the h dependence of the fluxes and the RE ξ h,
respectively. The transition from forward to reverse rectifica-
tion is observed. Finally, note that r†

b can also be determined
as the solution of ξ∞ = 0, so that the reversible thermal diode
is found in the entire region III.
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FIG. 3. (a) Dependence of the thermal rectification efficiency
ξ h on h and rb = Rb/Ri. The black dotted line corresponds to
∂ξ h/∂h = 0 and the black dashed line corresponds to ξ h = 0. (b) De-
pendence of the forward (red) and the reverse (blue) flux on h
for a case in the reversible diode region III with rb = 3.8. (c) The
thermal rectification efficiency corresponds to (b). In (b) and (c), the
solid lines (symbols) are for the analytical (numerical) results. Here,
TC = 1, TH = 5, Ri = 1, and Ro = 4.

In the limit of h → ∞, a simple analytical expression for
the RE can be derived,

ξ∞ =
π

(
r2

o − r2
b

) − (
2r2

b�b − π + 2
√

r2
b − 1

)
π

(
r2

o − r2
b

) + (
2r2

b�b − π + 2
√

r2
b − 1

) , (11)

where �b = arcsin(1/rb). Note that ξ∞ is independent of the
bath temperatures. From Eq. (11) we can infer that when the
position of the potential barrier is close to the inner or the
outer edge of the system, i.e., rb → 1 or rb → ro, the perfect
rectification is approached, in the former case with Jf > Jr

and ξ∞ → 1, in the latter in the reversed mode Jr > Jf and
ξ∞ → −1. With increasing h, there is a trade-off between
increasing the RE and decreasing the heat current, as also
clear from Figs. 3(b) and 3(c). For a large but finite value
of h, the analytical expression ξ∞ serves to obtain a good
approximation for the corresponding RE.

Discussions and conclusions. In summary, by studying the
ballistic thermal rectification effect in the Corbino disk, the
analytical expressions of the heat flux and the thermal recti-
fication efficiency have been derived and corroborated by the
simulation results. In particular, we have provided a positive
answer to the question if the perfect thermal rectification can
be reached, in principle. Quite notably, the heat diode polarity
can be reversed simply by changing the height of a potential
barrier inside the disk.

The models we have considered are two dimensional (2D).
However, the results can be extended to three dimensions (3D)
straightforwardly. For example, for the 3D counterpart of the
Corbino model where the boundaries and the potential barrier
are three concentric spheres, analytical results for the heat
flux and the thermal rectification efficiency can also be ob-
tained (see Supplemental Material [23]). Note that in this 3D
Corbino model, as the asymmetry in terms of 〈do→i〉/〈di→o〉
is much stronger than in the original 2D model for the same
radius ratio ro, the thermal rectification efficiency is much
stronger as well.

The obtained analytical results for the 2D Corbino model
also apply to the 2D model of a fan shape, where the two (left
and right) thermal baths are coupled to the two arc boundaries,
respectively, with the other two sides being adiabatic. Simi-
larly, the obtained analytical results for the 3D counterpart of
the Corbino model apply to the 3D model of partial spheres
(of the same solid angle) for the two edges and the potential
barrier.

Qualitatively, the thermal rectification characteristics re-
vealed by the 2D Corbino model and its 3D counterpart should
be shared by the billiard models of the same topology, i.e.,
with two loop curves (closed surfaces) as an inner and an
outer edge coupled with two heat baths, respectively, and one
loop curve (closed surface) in between where a potential bar-
rier is located. This generality might facilitate experimental
studies.

Further nontrivial extensions of our model could be ob-
tained by considering thermochemical baths, exchanging both
heat and particles with the system, thus exploring in Corbino-
like geometries the possibility of a diode that rectifies both
particle and heat currents. Finally, the model considered
here is a monatomic ideal gas. It would be interesting for
future studies to explore wave (quantum) diodes, in partic-
ular the phonon gases in lattices, with the same or similar
geometries.

Energy has become a major issue in modern society, and
one of its crucial elements is thermal management. How-
ever, thermal engineering has not benefited, so far, from
ingenious devices as electrical diodes. Efficient thermal rec-
tifiers would greatly contribute to a variety of applications
ranging from nanoscale heat regulation, to solar-thermal
power devices, heat engines, refrigerators, up to thermal man-
agement of buildings. With the present study we hope to
attract attentions and stimulate experimental work in this
direction.

Acknowledgments. We acknowledge support by the Na-
tional Natural Science Foundation of China (Grants No.
12075198, No. 12247106, and No. 12247101), the Ju-
lian Schwinger Foundation (Grant No. JSF-21-04-0001),
the PRIN MUR (Grant No. 2022XK5CPX), and the INFN
through the project QUANTUM.

[1] M. Terraneo, M. Peyrard, and G. Casati, Controlling
the energy flow in nonlinear lattices: A model for

a thermal rectifier, Phys. Rev. Lett. 88, 094302
(2002).

L062104-4

https://doi.org/10.1103/PhysRevLett.88.094302


RECTIFICATION OF HEAT CURRENT IN CORBINO … PHYSICAL REVIEW E 109, L062104 (2024)

[2] M. Peyrard, The design of a thermal rectifier, Europhys. Lett.
76, 49 (2006).

[3] N. A. Roberts and D. G. Walker, A review of thermal rectifica-
tion observations and models in solid materials, Int. J. Thermal
Sci. 50, 648 (2011).

[4] N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Ma-
nipulating heat flow with electronic analogs and beyond, Rev.
Mod. Phys. 84, 1045 (2012).

[5] G. Benenti, G. Casati, C. Mejía-Monasterio, and M. Peyrard,
From thermal rectifiers to thermoelectric devices, in Thermal
Transport in Low Dimensions: From Statistical Physics to
Nanoscale Heat Transfer, edited by S. Lepri, Lecture Notes in
Physics Vol. 921 (Springer, Berlin, 2016).

[6] G. Wehmeyer, T. Yabuki, C. Monachon, J. Wu, and C. Dames,
Thermal diodes, regulators, and switches: Physical mechanisms
and potential applications, Appl. Phys. Rev. 4, 041304 (2017).

[7] G. Benenti, D. Donadio, S. Lepri, and R. Livi, Non-Fourier heat
transport in nanosystems, Riv. Nuovo Cim. 46, 105 (2023).

[8] L. Zhang, J. S. Wang, and B. Li, Ballistic thermal rectification in
nanoscale three-terminal junctions, Phys. Rev. B 81, 100301(R)
(2010).

[9] T. Ouyang, Y. Chen, Y. Xie, X. L. Wei, K. Yang, P. Yang, and
J. Zhong, Ballistic thermal rectification in asymmetric three-
terminal graphene nanojunctions, Phys. Rev. B 82, 245403
(2010).

[10] Y. Wu, Y. Yang, L. Lu, T. Wang, L. Xu, Z. Yu, and L. Zhang,
Ballistic thermal rectification in asymmetric homojunctions,
Phys. Rev. E 103, 052135 (2021).

[11] T.-K. Hsiao, H.-K. Chang, S.-C. Liou, M.-W. Chu, S.-C. Lee,
and C.-W. Zhang, Observation of room-temperature ballistic
thermal conduction persisting over 8.3 m in SiGe nanowires,
Nat. Nanotechnol. 8, 534 (2013).

[12] R. Anufriev, S. Gluchko, S. Volz, and M. Nomura, Probing
ballistic thermal conduction in segmented silicon nanowires,
Nanoscale 11, 13407 (2019).

[13] D. Vakulov, S. Gireesan, M. Y. Swinkels, R. Chavez, T.
Vogelaar, P. Torres, A. Campo, M. De Luca, M. A. Verheijen, S.
Koelling, L. Gagliano, J. E. M. Haverkort, F. X. Alvarez, P. A.
Bobbert, I. Zardo, and E. P. A. M. Bakkers, Ballistic phonons in
ultrathin nanowires, Nano Lett. 20, 2703 (2020).

[14] A. M. Song, A. Lorke, A. Kriele, J. P. Kotthaus, W.
Wegscheider, and M. Bichler, Nonlinear electron transport in
an asymmetric microjunction: A ballistic rectifier, Phys. Rev.
Lett. 80, 3831 (1998).

[15] C. R. Otey, W. T. Lau, and S. Fan, Thermal rectification through
vacuum, Phys. Rev. Lett. 104, 154301 (2010).

[16] M. Schmotz, J. Maier, E. Scheer, and P. Leiderer, A thermal
diode using phonon rectification, New J. Phys. 13, 113027
(2011).

[17] O. M. Corbino, Atti R. Accad. Lincei 20, 342 (1911).
[18] V. T. Dolgopolov, A. A. Shashkin, N. B. Zhitenev, S. I.

Dorozhkin, and K. von Klitzing, Quantum Hall effect in the
absence of edge currents, Phys. Rev. B 46, 12560 (1992).

[19] A. V. Kavokin, B. L. Altshuler, S. G. Sharapov, P. S. Grigoryev,
and A. A. Varlamov, The Nernst effect in Corbino geometry,
Proc. Natl. Acad. Sci. USA 117, 2846 (2020).

[20] M. Real, D. Gresta, C. Reichl, J. Weis, A. Tonina, P. Giudici,
L. Arrachea, W. Wegscheider, and W. Dietsche, Thermoelec-
tricity in quantum Hall Corbino structures, Phys. Rev. Appl. 14,
034019 (2020).

[21] J. L. Lebowitz and H. Spohn, Transport properties of the
Lorentz gas: Fourier’s law, J. Stat. Phys. 19, 633 (1978).

[22] R. Tehver, F. Toigo, J. Koplik, and J. R. Banavar, Thermal walls
in computer simulations, Phys. Rev. E 57, R17 (1998).

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.109.L062104 for details of the analytical
derivation of the heat flux for the (generalized) Corbino disk,
as well as the extension of the heat rectification calculation to
the three-dimensional case (motion within a spherical shell) and
to the elliptic Corbino disk.

L062104-5

https://doi.org/10.1209/epl/i2006-10223-5
https://doi.org/10.1016/j.ijthermalsci.2010.12.004
https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1063/1.5001072
https://doi.org/10.1007/s40766-023-00041-w
https://doi.org/10.1103/PhysRevB.81.100301
https://doi.org/10.1103/PhysRevB.82.245403
https://doi.org/10.1103/PhysRevE.103.052135
https://doi.org/10.1038/nnano.2013.121
https://doi.org/10.1039/C9NR03863A
https://doi.org/10.1021/acs.nanolett.0c00320
https://doi.org/10.1103/PhysRevLett.80.3831
https://doi.org/10.1103/PhysRevLett.104.154301
https://doi.org/10.1088/1367-2630/13/11/113027
https://doi.org/10.1103/PhysRevB.46.12560
https://doi.org/10.1073/pnas.1916567117
https://doi.org/10.1103/PhysRevApplied.14.034019
https://doi.org/10.1007/BF01011774
https://doi.org/10.1103/PhysRevE.57.R17
http://link.aps.org/supplemental/10.1103/PhysRevE.109.L062104

