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Effect of disorder on phases across two-dimensional thermal melting
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We study melting in a two-dimensional system of classical particles with Gaussian-core interactions in
disordered environments. The pure system validates the conventional two-step melting with a hexatic phase
intervening between the solid and the liquid. This picture is modified in the presence of pinning impurities. A
random distribution of pinning centers forces a hexaticlike low-temperature phase that transits into a liquid at a
single melting temperature T RP

m . In contrast, pinning centers located at randomly chosen sites of a perfect crystal
anchor a solid at low temperatures which undergoes a direct transition to the liquid at T CP

m . Thus, the two-step
melting is lost in either case of disorder. We discuss the characteristics of melting depending on the nature of the
impurities.

DOI: 10.1103/PhysRevE.109.L062101

Introduction. Enhanced fluctuations make two-dimensi-
onal (2D) melting a topic of immense research interest.
Unlike their three-dimensional counterparts undergoing “Lin-
demann melting” [1,2], 2D melting is mediated by the
unbinding of topological defects. The positional order (PO)
and bond-orientational order (BOO) decouple in 2D, pro-
ducing a “hexatic phase” sandwiched between the solid and
the liquid. Hexaticity, a rich concept, is realized in colloids
[3,4], the vortex lattice in superconductors [5], active Brow-
nian disks [6], and, recently, van der Waals magnet [7].
The celebrated Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) theory [8–12] pictures 2D melting as a two-step
process involving successive unbinding of dislocations and
disclinations, presented schematically in Fig. 1(a). However,
the relevance of the two-step 2D melting has also been de-
bated [13–16].

Quenched disorder, inherent to real materials, can not only
move around the phase boundaries, but is also capable of
modifying the mechanism of melting. For example, impurities
can generate unbounded defects even at T = 0, and thereby
mask the unbinding of thermal defect pairs. This could strike
out solidity even at the lowest T , as suggested by Nelson [17],
portrayed schematically in Fig. 1(b). In contrast, impurities
which pin a given fraction of particles on sites of the under-
lying perfect lattice could stabilize the solid by anchoring it
via these commensurate locations, and thereby consume the
phase space of hexaticity [see Fig. 1(c)]. The role of disor-
der in destabilizing the hexatic phase [18] and in enhancing
long-range correlation has also been pointed out [19]. Thus,
a careful analysis of 2D melting in disordered media can
potentially uncover new paradigms.

Experiments on colloids [20], vortex lattices [21,22], and
multicomponent mixtures [23] indicate a broadened stabil-
ity of the hexatic phase in the presence of disorder that is
consistent with recent calculations [24–29]. The study of
2D melting is also popular in confined geometry [30–32]

mimicking disordered background. Zeng et al. [33] have
argued that a solid (“Bragg glass”) phase with power-law
decay of translational correlations cannot occur in a 2D
system with impurities. Pronounced hexatic correlations are
expected to be present [34,35] if the disorder is not strong,
though there are controversies [36–38] about the existence
of a hexatic glass phase with long- or quasi-long-range
hexatic order in 2D. The study of 2D melting on a spheri-
cal surface, in which defects are inherently embedded even
at T = 0, has recently been carried out on a colloidal
system [39].

In this Letter, we investigate the phases across melting of a
bulk 2D system of soft-core particles, modeled via Gaussian-
core interactions [40], which is known to validate the KTHNY
melting scenario in a pure system [41]. Addressing the role
of quenched disorder in the phase behavior of this model,
our key results are summarized as follows: (i) Random pin-
ning (RP) destabilizes solidity, causing a single transition
from a low-T hexaticlike phase to a high-T liquid. Here, the
low-T phase undergoes a likely crossover from hexatic glass
to hexatic liquid. (ii) On the other hand, the commensurate
pinning (CP) anchors solidity and engulfs hexaticity—even
the high-T liquid phase supports inhomogeneous pockets of
crystallinity. The defect locations correlate oppositely with
pinning centers in the two models of disorder—defects tend
to bind with the pinning centers for RP systems, whereas they
stay away from the impurities in CP systems. Thus, in either
realization of the quenched disorder, the two-step melting
is lost.

Model and method. We introduce disorder in two differ-
ent ways: (a) Random pinning (RP), in which we freeze a
given fraction (nimp) of particles, chosen randomly in space,
within a high-T liquid configuration. Here, these immo-
bile particles act as a disorder. (b) Commensurate pinning
(CP), where the nimp fraction of particles is frozen at ran-
domly chosen positions of an ideal triangular lattice—the
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FIG. 1. A schematic representation of 2D melting in (a) KTHNY
description in a pure system, (b) a system with randomly placed
impurities, and (c) with a fraction of particles frozen at randomly
chosen zero-temperature positions of the pure system, suggesting
that the clean melting may be obscured by impurities (see text).

ground-state configuration of the pure system. Note that CP
represents correlated disorder with a long-range positional
correlation of a perfect lattice. In contrast, RP constitutes
a nearly uncorrelated disorder, though a weak short-range
correlation of a high-T liquid may exist. We investigated a
system of N = 4356 particles, with nimp = 3.4%. The validity
of our key findings is also established for other parameters,
namely, N = 6084 and nimp = 2.2% (see the Supplemental
Material (SM) [42] for details). We focused only on weak
nimp in this study to elucidate the role of pinning on 2D
melting. Stronger nimp would cause localization of constituent
particles, a phenomenon beyond our present interest. These
results were compared with those from a pure system with
N = 4096 particles. For these systems, we sample configura-
tions via molecular dynamics (MD) [43] within the canonical
ensemble, using LAMMPS [44]. We consider a simulation box
having dimensions Lx = 2√

3
Ly, with periodic boundary condi-

tions. Lx is adjusted to keep the density ρ of particles fixed
for all of our studies (ρ = 0.628). We carried out 2 × 107

MD steps with a time step δt = 0.005. We use dimensionless
parameters, t ′ = t

√
ε/mσ 2 and E ′ = E/ε, where m is the

mass of each particle. T is expressed in terms of �−1 [45],
where � = ε exp(−√

3/2ρ)/KBT . The physical observables
are averaged over 8–10 independent pinning configurations
for a given nimp.

Positional and bond-orientational order. A pure 2D solid
is characterized by two kinds of ordering: (i) PO mea-
sured by ψT = 1

N 〈|�T|〉, where �T = ∑N
i=1 exp(iG.ri ). G

is a first shell reciprocal-lattice vector of the underlying
triangular crystal and ri is the position of particle i. (ii)
BOO, quantified by ψ6 = 1

N 〈| ∑N
k=1 �6(rk )|〉, where �6 =

1
Nb(k)

∑Nb(k)
l=1 exp (i6θkl ). The sum is over the Nb(k) nearest

neighbors of particle k identified by a Voronoi construction
[46] and θkl is the angle that a line joining particle k and
particle l makes with a reference axis. KTHNY theory pre-
dicts two critical temperatures, �−1

SH and �−1
HL, for the thermal

depletion of quasi-long-range PO (solid to hexatic) and BOO
(hexatic to liquid), respectively, leaving a hexatic phase with
quasi-long-range BOO between the solid and isotropic liquid
phases.

In Figs. 2(a) and 2(b), we plot the thermal evolution of
ψT and ψ6 for pure, RP, and CP systems. While the pure

FIG. 2. Positional and orientational ordering tendencies as a
function of �−1 for pure (green circles), RP (red triangles), and CP
(blue square) systems. (a) Decay of PO (ψT) with �−1 (the inset
shows ψT for �−1 → 0). (b) The softening of the BOO (ψ6). Here,
ψ6(�−1 → 0) is shown in the inset. (c),(d) show the corresponding
susceptibilities χT and χ6. The location of the peaks in χT and χ6

identify the transitions. We find �−1
RP = 0.0145 from χ6. Interest-

ingly, the peaks in χT and χ6 for CP systems appear at the same
�−1

CP = 0.0187.

system follows KTHNY melting [47] with �−1
SH = 0.0140 and

�−1
HL = 0.0162, ψT in the CP system is found to survive to

larger T . The RP system shows a much weaker ψT than the
other two, even at the lowest T , and depletes very gradually
with T without any threshold behavior. A threshold behavior
near �−1

HL is also seen in the pinned systems in Fig. 2(b), albeit
the transitions are broader. Unlike ψT, the ψ6 is comparable at
low T in pure, CP, and RP systems. We also note that ψT and
ψ6 show a significant drop at the same critical temperature in
a CP system, implying a direct transition from solid to liquid,
which we discuss further below.

In addition, the fluctuations of ψT and ψ6 define general-
ized susceptibilities χα = 1

N [〈|�α|2〉 − 〈|�α|〉2] (with α = T
or 6) and help to identify �−1

SH and �−1
HL, as shown in Figs. 2(c)

and 2(d). Their behavior confirms that the pure system shows
sharp transitions. Consistent with our finding in Fig. 2(a),
χT in the RP system features only a broad and low hump,
hinting that a low-T phase in such a system represents a broad
crossover between a hexatic glass [34] and a hexatic liquid
[48]. Additional exploration of this subtle physics from the
study of dynamics of 2D melting in pinned systems is in
progress, and will be published elsewhere. This is, however,
also consistent with the trajectory of particles in an RP system
at �−1 = 0.0028, as shown in Fig. S1(d) of the SM [42]. Con-
gruous with our findings in Figs. 2(a) and 2(b), the locations
of the peak of χT and χ6 verify that PO and BOO in the CP
system vanish at a single �−1

CP . While our results from Fig. 2
seem to support the schematic phase diagram of Fig. 1, we
emphasize that the “impure” phases at low and high T defy
conventional wisdom. These include the presence of unbound
defects even at T = 0 in RP systems (consistent with Zeng
et al. [33]), and pockets of crystallinity deep into the liquid
phase in CP systems, as seen from Figs. S1(g)–S1(i) in the
SM [42], and discussed below.

Defects analysis. In KTHNY theory, a 2D solid transits
to the hexatic phase by the unbinding of paired dislocations
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FIG. 3. The distribution of distances between dislocation pairs,
P(rdp), in different phases. (a)–(c) Results for pure, RP, and CP sys-
tems, respectively, at low T . a0 is the average interparticle distance.
P(rdp) is sharply peaked at the typical distance between dislocation
pairs, though there are differences in the details. The distribution has
a short tail for the pure system, a very long tail for RP systems,
and essentially no tail for CP systems. (d) �P(rdp) taken in a pure
system between T ’s just above and below �−1

SH. The inset shows the
corresponding P(rdp). The largest zero-crossing distance of �P(rdp)
is taken as rc

dp, and is marked as an arrow in (a). (e),(f) The spatial
density of unbound defects just prior to melting into a liquid for a
given realization of the RP and CP systems. The pinning centers are
marked via magenta dots.

[10,11]. We proceed to examine the consistency of this picture
in Fig. 2. This requires an estimation of the critical distance
between two dislocations (with equal and opposite Burger
vectors) below which they are bound. We first employ the
Hungarian algorithm [49], which chooses “correct” partners
of dislocations by minimizing the sum of the distances be-
tween all partners [50]. The distribution of the resulting pair
distances, P(rdp), at low T is presented in Figs. 3(a)–3(c).
P(rdp) is sharply peaked for pure systems in Fig. 3(a), with
insignificant weight at larger rdp. In contrast, its long tail at
low T [shown for �−1 = 0.0056 in Fig. 3(b)] for the RP
system arises from unbound dislocations even for T → 0,
which destabilize a true solid. P(rdp) in CP systems [Fig. 3(c)]
consists of the initial sharp peak and nearly zero weight for
larger rdp. A discernible tail in P(rdp) for pure systems de-
velops when dislocation pairs start unbinding. An integrated
distribution of P(rdp) features a threshold behavior at this
transition (see the SM [42]).

To obtain the critical rdp for the pure system, we plot,
in Fig. 3(d), the difference of these distributions, �P(rdp),
at temperatures just above and below �−1

SH, while the corre-
sponding P(rdp)’s are shown as the inset. The total positive
and negative weights of �P(rdp) cancel out, and rc

dp ≈ 2.15a0

is identified as the last zero-crossing point. This identifica-
tion is found robust for T ’s near �−1

SH. A study of distances
of disclination pairs yielded a similar critical distance be-
tween disclination pairs. Once extracted for the pure system,
these critical distances were used to analyze pinned sys-
tems. Subsequently, we explored the thermal evolution of
the defects and their unbinding in Figs. 4(a)–4(c). For the

FIG. 4. Evolution of defects. (a)–(c) The variation of defects with
�−1 (green: pure; red: RP; and blue: CP system). (a) The evolution of
unbound dislocations (in squares) as well as disclinations (in circles)
validate KTHNY melting in pure systems (traces of disclinations
are multiplied by 10 for visual clarity). (b) The presence of sig-
nificant unbound dislocations in RP systems at low �−1 prohibits
solidity. (c) In CP systems, the proliferation of unbound defects
(both dislocations and disclinations) commences at a single threshold
(�−1 = 0.0198), implying a direct solid-liquid transition. (d) The
comparative number of defects in RP systems to a pure system,
illustrating how the number of bound (B) and unbound (UB) defects
grows with increasing temperature.

lowest T , defects are essentially absent in the pure system.
Unbound disclinations proliferate at �−1 ≈ 0.0162, whereas
dislocations unbind at �−1 ≈ 0.0145, with a hexatic phase at
intervening temperatures [41], consistent with Fig. 2. The CP
system [Fig. 4(c)] behaves like a “better” solid at low T due to
the absence of any free defects up to �−1 = 0.0182; beyond
that, unbound dislocations and disclinations start proliferating
at the same �−1

CP . There is a significant number of impurity-
induced unbound dislocations in the RP system for T → 0,
as also concluded from Fig. 2. Here, unpaired dislocations
are not only present for all T , they even outnumber bound
dislocations at low T . Figure 4(d) addresses the role of the
impurity-induced free defects (at T → 0) in RP systems, on
the thermal defects, whose unbinding drives the two transi-
tions in a pure system. The number of bound (B) and unbound
(UB) defects, with corresponding numbers subtracted for an
equivalent pure system, are examined separately in Fig. 4(d).
These numbers increase sharply with T until the system tran-
sits to the liquid. Thus, the impurity-induced defects help
promote further thermal defects than in pure systems for
�−1 < �−1

HL. Such a rise disappears in the liquid. In fact, this
difference in bound defects in the liquid goes down to a even
lower value than the corresponding number at T → 0.

Correlations. Finally, we discuss the orientational cor-
relations as measured by the correlation function g6(r) =
〈�6(ri )�∗

6 (r j )〉, where r = |ri − r j |. The T dependence of
the orientational correlations in the pure system follows the
KTHNY scenario [10–12] as claimed earlier [41]. The evo-
lution of g6(r) for various T is shown in Fig. 5 for RP
and CP systems. Our χ2-minimization analysis [51] of the
large-r decay of g6(r) in the RP system [Fig. 5(a)] identi-
fied a power-law behavior for nearly the entire low-T phase.
This power-law behavior continues until an exponential decay
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FIG. 5. Correlations. (a), (b) The orientational correlation
function g6(r) of RP and CP systems, respectively, for the
values of �−1 as labeled in each case. In (a), power-law
decay of the correlations is visible (for �−1 < RP�−1

m ) down
to a very low T in the RP system; e.g., we find g6(r, �−1 =
0.0112) ∼ (r/a0)−0.14, g6(r, �−1 = 0.0.014) ∼ (r/a0)−0.2, g6(r, �−1

= 0.0154) ∼ (r/a0)−0.64, while g6(r, �−1 = 0.0162) ∼ exp
−0.16(r/a0 ), as shown via dashed lines. (b) In contrast, in a CP system,
correlations get modified. Even in the liquid phase, the conventional
exponential decay flattens out at large r, implying a “remnant
crystallinity” (see text).

sets in for �−1 � 0.0162, signaling the onset of liquidity.
Intriguingly, g6(r) in CP systems shows the enhanced solidity

for �−1 � 0.0187, where its traces remain largely flat. Beyond
the direct melting from solid to liquid for �−1 > 0.0190,
g6(r) in CP systems displays a tendency of plateauing at
large r, though it decays at intermediate r. This is a signature
of “remnant solidity” arising from local crystalline pockets
surrounding the impurities whose locations are commensurate
with the perfect crystal and hence anchoring crystallinity in
the vicinity (see the SM [42]). This is a direct consequence of
the correlated nature of the CP impurities.

Conclusion. To summarize, we demonstrate that the con-
ventional picture of 2D melting undergoes significant changes
in the presence of impurities. While RP disorder destabilizes
solidity and CP disorder removes the hexatic phase, the low-T
phase in RP systems is not the conventional hexatic. Similarly,
the high-T phase in the CP systems mixes remnant solidity
with the liquid phase. The inhomogeneous melting (Fig. S1
in the SM [42]) generates defects which correlate differently
with pinning centers: For RP systems, the defects tend to bind
with the pinning centers, whereas the defects stay away from
the impurities in CP systems. While defects are found essen-
tial for driving the melting, our MD configurations indicate
that they often bunch up in various shapes of macroscopic size
(see the videos in the SM [42]). An extension of our study to
larger systems exploring the possible role of grain boundaries
on melting is a promising future direction. It will also be
interesting to inspect the role of quantum fluctuations in these
thermal phases. We hope that our findings will motivate future
experiments to shed new light.
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