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Markov Chain Monte Carlo (MCMC) algorithms are commonly used to sample from graph ensembles. Two
graphs are neighbors in the state space if one can be obtained from the other with only a few modifications, e.g.,
edge rewirings. For many common ensembles, e.g., those preserving the degree sequences of bipartite graphs,
rewiring operations involving two edges are sufficient to create a fully connected state space, and they can be
performed efficiently. We show that, for ensembles of bipartite graphs with fixed degree sequences and number
of butterflies (k2,2 bicliques), there is no universal constant c such that a rewiring of at most c edges at every step
is sufficient for any such ensemble to be fully connected. Our proof relies on an explicit construction of a family
of pairs of graphs with the same degree sequences and number of butterflies, with each pair indexed by a natural
c, and such that any sequence of rewiring operations transforming one graph into the other must include at least
one rewiring operation involving at least c edges. Whether rewiring this many edges is sufficient to guarantee
the full connectivity of the state space of any such ensemble remains an open question. Our result implies the
impossibility of developing efficient, graph-agnostic, MCMC algorithms for these ensembles, as the necessity to
rewire an impractically large number of edges may hinder taking a step on the state space.
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Introduction. Testing the statistical significance of prop-
erties of an observed network is a fundamental problem in
network science [1]. The significance of the observed value is
tested against a null model, an ensemble H = (G, π ) com-
posed of the set G of possible graphs that can be realized
under the null hypothesis and a probability distribution π over
G. One typically selects some descriptive characteristics of
the observed network, and either defines G and π in such
a way that the expectations w.r.t. π of these characteristics
over G are the same as the observed ones (a.k.a. the canonical
model), or defines G as the set of all and only the graphs with
exactly the same values for the characteristics as the observed
network, and π can be any distribution, often the uniform.
Once the null model is defined, one proceeds by sampling
several graphs from this ensemble. These graphs are used to
approximate the distribution of the test statistic of interest
under the null hypothesis. By comparing the observed statistic
to this distribution one can compute an empirical p value.

For example, the widely used “configuration model” [2]
considers the set of graphs with the same degree sequence
as the observed network and the uniform distribution. This
model has been instrumental in determining that clustering,
assortativity, and community structure in real networks are
not solely dependent on node degrees, hence highlighting
their significance [3]. However, the configuration model fails
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to generate graphs with a local structure similar to the ob-
served graph [4]. Researchers have thus explored alternative
null models that sample from graph families defined by more
complex characteristics of the observed graph, such as joint
degree distribution [4–7], core-value sequence [8], and local
triangle-count sequence [9].

In this work, we focus on bipartite graphs, i.e., networks
whose nodes can be partitioned into two classes such that all
edges go from one class to the other. Formally, a bipartite
graph is a tuple G

.= (L, R, E ), where L and R are disjoint
sets of nodes called left and right nodes, respectively, and
E ⊆ L × R is a set of edges connecting nodes in L to nodes
in R. We consider undirected bipartite graphs, but for ease
of presentation, we denote any edge (u, a) so that u ∈ L and
a ∈ R. For any vertex v ∈ L ∪ R, we denote with �G(v) the
set of neighbors of v, i.e., the vertices to which v is connected
by an edge in G, and we define the degree dG(v) of v in G
as dG(v)

.= |�G(v)|. Assuming an arbitrary but fixed labeling
u1, . . . , u|L| (resp. a1, . . . , a|R|) of the nodes in L (resp. R), the
vector 〈dG(u1), . . . , dG(u|L|)〉 (resp. 〈dG(a1), . . . , dG(a|R|)〉)
is known as the left (resp. right) degree sequence of G.

Bipartite networks occur naturally in many applications:
when representing words and documents [10], items and
itemsets [11], higher-order networks such as hypergraphs
and simplicial complexes [12], and many more. Null mod-
els and graph ensembles can also be defined on bipartite
graphs [11,13,14]. For example, Preti et al. [11] introduce a
null model that preserves the bipartite joint adjacency matrix
[i.e., the matrix whose (i, j)th entry is the number of edges
connecting nodes from L with degree i to nodes in R with
degree j], of an observed network (thus, the degree sequences
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and the number of caterpillars, i.e., paths of length three), and
give Markov Chain Monte Carlo (MCMC) algorithms to sam-
ple from this null model. Null models for bipartite graphs are
also of particular interest because they align with null models
for 0–1 binary matrices [15], Ch. 6. For example, preserving
the degree sequences in a bipartite graph corresponds to pre-
serving the row and column marginals of the corresponding
biadjacency matrix, and several MCMC algorithms have been
developed to sample from this null model [16–20].

We consider graph ensembles for which G is the set of all
bipartite graphs G

.= (L, R, E ) that share the same degree se-
quences and the same number of butterflies, i.e., k2,2 bicliques,
defined as follows.

Definition 1 (Butterfly). Let G
.= (L, R, E ) be a bipartite

graph. Two distinct nodes u, v ∈ L and two distinct nodes
a, b ∈ R belong to the butterflyA = {u, v, a, b} in G if and only
if {(u, a), (u, b), (v, a), (v, b)} ⊆ E .

The following result, whose proof is immediate, gives an
expression for the number of butterflies to which two nodes
both belong.

Fact 1. Let G
.= (L, R, E ) be a bipartite graph, and let u

and v be distinct nodes in L. The number bG(u, v) of butter-
flies in G to which both u and v belong is

bG(u, v) =
(|�G(u) ∩ �G(v)|

2

)
,

where we assume
(0

2

) = (1
2

) = 0. A similar result holds for any
two distinct nodes in R.

For u ∈ L, we denote with bG(u) the number of butterflies
in G to which u belongs. It holds

bG(u) =
∑
v∈L
v �=u

bG(u, v). (1)

The total number b(G) of butterflies in G is then

b(G)
.= 1

2

∑
u∈L

bG(u). (2)

The butterfly, being the smallest complete subgraph in a
bipartite graph, is the most basic building block for composing
more complex structures, analogous to the triangle in unipar-
tite graphs. Consequently, preserving the number of butterflies
emerges as a natural choice when defining null models that re-
tain more graph properties beyond just the degree sequences.
This concept finds applications in studying, e.g., clustering
patterns [21].

MCMC methods are a popular approach to sample from an
ensemble H = (G, π ). They define a suitable Markov chain
on the space G of all possible graphs, such that, after a
sufficient burn-in period, the state of the Markov chain is
approximately distributed according to π . The correctness of
this process requires the Markov chain to be finite, irreducible,
and aperiodic [2]. Efficient sampling requires not only that the
Markov chain has a fast mixing time, but also that the space
can be explored quickly, i.e., that obtaining a neighbor from
the current state is efficient. The double edge swap technique,
also known as degree-preserving rewiring [22], checkerboard
swap [23], or tetrad [17], is a simple yet fundamental random-
ization technique used to generate a new graph with the same
degree sequence as a given graph. Its efficiency stems from the

fact that it involves the rewiring of a small number of edges. In
bipartite graphs, the most basic rewiring technique is known
as the bipartite swap operation (BSO).

Definition 2 (BSO). Let G
.= (L, R, E ) be a bipartite graph

and u �= v ∈ L, a �= b ∈ R such that (u, a), (v, b) ∈ E and
(u, b), (v, a) /∈ E . The BSO involving (u, a) and (v, b) re-
moves (u, a) and (v, b) from E , and adds (u, b) and
(v, a) to E . The resulting bipartite graph G′ = (L, R, (E \
{(u, a), (v, b)}) ∪ {(u, b), (v, a)}) has the same left and right
degree sequence of G.

A more sophisticated operation is the q-edge bipartite swap
operation (q-BSO), which may involve the simultaneous
swapping of multiple edges, potentially between a large set of
nodes, similar to the q-switch operation defined by Tabourier
et al. [24].

Definition 3 (q-BSO). Let G
.= (L, R, E ) be a bipartite

graph and q ∈ N+. A q-BSO is a pair swq .= (S, σ ) with
S = 〈e1, . . . , eq〉 being a vector of q distinct edges ei

.=
(ui, ai ) ∈ E , and σ being a derangement of [q], i.e., a per-
mutation of [q] with no element in its original position, s.t.
(u j, aσ ( j) ) /∈ E for each j ∈ [1, q]. Replacing each e j with
(u j, aσ ( j) ) generates a bipartite graph G′ = (L, R, (E \ S) ∪
{(uj, aσ ( j) ) for j ∈ [1, q]}) with the same left and right degree
sequence as G.

According to this definition, a BSO involving (u, a) and
(v, b) can be seen as the 2-BSO (〈(u, a), (v, b)〉, (2 1)). Al-
gorithms such as Verhelst’s [17] and Curveball [20] aim to
speed up the sampling from the ensemble of bipartite graphs
with fixed degree sequences. They execute multiple BSO op-
erations at each step by selecting nodes u and v from L (or
R) and exchanging multiple edges originating from u with
edges originating from v. Conversely, a q-BSO may involve
the simultaneous swapping of multiple edges originating from
multiple source nodes. Thus, the moves considered by Curve-
ball and Verhelst’s can be expressed as q-BSOs, but q-BSOs
are more expressive, in the sense that there are q-BSOs that
do not correspond to possible moves for these algorithms.

Connectivity of the state space. A key requirement to use
an MCMC method for sampling from a graph ensemble is that
the state space, where each state corresponds to a graph in the
ensemble, is strongly connected, i.e., for any two states G′ and
G′′ there is a sequence 〈ρ1, ρ2, . . . , ρ�〉 of graph-transforming
operations for some � (which may depend on the chosen G′
and G′′), such that ρ1 transforms G′ into some G1 that belongs
to the state space, ρi for 1 < i < � transforms Gi into Gi+1 that
also belongs to the state space, and ρ� transforms G�−1 into
G′′. In other words, a class C of graph-transforming operations
defines a neighborhood structure of the state space as follows:
given any G in the state space, a neighbor of G is any state
that can be obtained by applying a single operation from
C, provided that the operation is applicable to G. With this
neighborhood structure, the state space is strongly connected
if there is a path from any state to any other state.

We can immediately see that the state space G we consider
is strongly connected by sequences of q-BSOs when q is
large enough, for any left and right degree sequences, and any
number of butterflies (see also [24], Sec. 3.2.2). In fact, there
is always a |E ′ \ E ′′|-BSO that transforms any bipartite graph
G′ .= (L, R, E ′) into another bipartite graph G′′ .= (L, R, E ′′)
with the same left and right degree sequences, and number
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of butterflies (see the Supplemental Material [25] for details).
While this fact ensures the strong connectivity of the state
space via the union of all q-BSOs for q = 2, . . . , |E ′|, it has
little practical relevance, as we now explain. If we use all
these q-BSOs to define the neighborhood structure of the state
space, the resulting space would be a complete graph, i.e., a
clique. Consequently, drawing, according to any distribution,
a neighbor of a given state would require a procedure to
build an entirely new bipartite graph with the same degree
sequences and the same number of butterflies from scratch.
Developing such a procedure seems even harder than the
problem we are attempting to solve, in the same way as devis-
ing algorithms for building a bipartite graph with prescribed
degree sequences from scratch [26–30] is much harder than
devising algorithms for sampling such a graph using MCMC
approaches starting from an existing one [16–20].

The correct question to ask is therefore the following: is
there a fixed, universal, constant q∗ such that, for any left
and right degree sequences, and any number of butterflies,
any two bipartite graphs with those left and right degree
sequences, and that number of butterflies, are connected by se-
quences 〈swp1

1 = (S1, σ1), . . . , swpz
z = (Sz, σz )〉 of pi-BSOs,

with pi � q∗, i = 1, . . . , z, where z may depend on the two
graphs? By “universal” we mean a quantity that in no way
depends on properties of the ensemble (G, π ), including prop-
erties of the observed network.

Asking this question is reasonable: it is known that q∗ = 2
when one is only interested in preserving the degree sequences
[15], Ch. 6, and it is also known that q∗ = 2 for the case of
preserving the degree sequences and the number of paths of
length three (a.k.a. caterpillars), in which case the rewiring
operations slightly differ from the traditional BSOs [11,31].

Additionally, we would like q∗ to be small, because sam-
pling a q-BSO is not necessarily efficient: the naïve approach
of independently sampling q edges and then verifying whether
they form a valid q-BSO has an increasing probability of fail-
ure as q increases [24]. As a result, the Markov chain would
exhibit a high probability of staying in the same state for many
consecutive steps, greatly increasing the mixing time.

For unipartite graphs, it has been proved that q∗ = 2 is
not always sufficient to ensure strong connectivity of spaces
of graphs that share more complex properties [24,31]. In this
work, we demonstrate the nonexistence of a fixed, universal,
constant q∗ for the ensemble of bipartite graphs with the
same left and right degree sequences and the same number
of butterflies.

Let us give some intuition with an example, which shows
that it cannot be q∗ < 4. Figure 1 shows two bipartite graphs
G1 (upper) and G2 (lower) with the same left and right de-
gree sequences, and the same number of butterflies b(G1) =
b(G2) = 10. There is no sequence of q-BSOs for q < 4
that, when applied to G1, generates a graph isomorphic to
G2: any q-BSO for q < 4 applied to G1 either generates
a graph with a different number of butterflies, or gener-
ates a graph isomorphic to G1. On the other hand, the
4-BSO ([(x1, y5), (x5, y1), (x6, y10), (x10, y6)], σ ) with σ (1) =
3, σ (2) = 4, σ (3) = 1, and σ (4) = 2 ensures that the two
butterflies {x1, x5, y1, y5} and {x6, x10, y6, y10} disappear, while
the two new butterflies {x1, x10, y1, y10} and {x5, x6, y5, y6}
appear, hence preserving the total count b(G1).

FIG. 1. Graphs that are not connected by q-BSOs for q < 4.

Our main result is the following theorem (see proof in the
Supplemental Material [25]).

Theorem 1. For any q̄ ∈ N with q̄ > 1, there exist two
nonisomorphic bipartite graphs Gb and Ge with the same left
and right degree sequences, and b(Gb) = b(Ge ), such that
for any sequence 〈swp1

1 = (S1, σ1), . . . , swpz
z = (Sz, σz )〉 of

pi-BSOs with pi ∈ N+, i = 1, . . . , z, that transforms Gb into
Ge, there exists � ∈ {1, . . . , z} with p� � q̄.

Our proof consists of two parts. First, we construct two
bipartite graphs Gb and Ge with the same left and right degree
sequences (which will depend on q̄ as the second largest left
degree will be greater than q̄), and the same number of but-
terflies. Second, we demonstrate that any sequence of q-BSOs
applied to Gb to obtain a graph isomorphic to Ge must involve
at least one q-BSO for q > q̄. Since q̄ can be arbitrarily large,
a universal constant q∗ as above cannot exist.

This theorem proves that it is impossible to design efficient
MCMC algorithms that sample from ensembles H = (G, π )
of bipartite graphs with the same degree sequences and the
same number of butterflies, because the state space is not
strongly connected by edge swap operations that involve only
up to a fixed, universal, number of edges, as is instead the
case for simpler null models. Rather, the minimum number
of edges that must be involved depends on properties of the
state space G, not just of the observed network. These may
not be easily computable, as they may not depend just on the
observed network, if any.

This result has profound implications for the design of
network null models and for network science in general. If
it is unfeasible to preserve the occurrences of the simplest
building block of bipartite graphs (the butterfly), it becomes
unfeasible to preserve larger structures. When dealing with
bipartite graphs and complex observed characteristics, ensem-
bles with “soft” constraints, where the constraints are retained
on average over all the graphs sampled from the ensemble
[32], might be the only viable option.

The algorithm to construct the graphs Gb and Ge is delin-
eated in the Supplemental Material [25]. We now describe the
main characteristics of such graphs.

Let s and t be two naturals with s > t � 2 and 2(s − 1) >

k. We define n
.= (s

2

) + (t
2

)
and a

.= ((s + 1) mod 2) + ((t +
1) mod 2). The graphs Gb and Ge output by the algorithm with
inputs s and t have the following properties:

(i) Gb and Ge have 7 + a left nodes (denoted with the letter
x) and s + t + n + 2 + a right nodes (denoted with the letter
y);
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FIG. 2. Bipartite graphs generated by our algorithm (see the Sup-
plemental Material [25]) for s = 2 and t = 3.

(ii) Gb and Ge have the same left and right degree se-
quences. In particular, x1 and x2 have degree s, x3 and x4 have
degree t , x5 and x6 have degree n + 1, yi has degree 2 for
1 � i � s + t + n + 1, and all the other left and right nodes
have degree 1;

(iii) b(Gb) = b(Ge ) = n + (n
2

)
;

(iv) |�Ge (x5) ∩ �Ge (x6)| = n + 1, which, with the previ-
ous point, implies that x5 and x6 belong to all butterflies in
Ge, and every other node y ∈ R belongs to no butterfly;

(v) |�Gb (x5) ∩ �Gb (x6)| = n, |�Gb (x1) ∩ �Gb (x2)| = s,
|�Gb (x3) ∩ �Gb (x4)| = t , which implies, with point two, that
x5 and x6 do not belong to all butterflies in Gb.

Figure 2 shows the bipartite graphs generated for s = 2 and
t = 3.

Discussion. MCMC approaches based on swaps of pairs
of edges can efficiently sample graphs from simple ensem-
bles, such as those including graphs with prescribed degree
sequences, or fixed number of paths of length up to three [11].
The correctness of these approaches relies on the fact that
pairwise edge swaps create a strongly connected state space.
They are efficient because proposing a neighbor to move to is
relatively easy, requiring only to be able to efficiently sample
pairs of edges.

In the case of ensembles preserving more complex proper-
ties of the networks, the strong connectivity of the state space
may require more than two edges to be swapped at every step,
i.e., performing q switches [24], or q-BSOs, for some value
of q.

In this work, we consider the ensemble of bipartite graphs
with fixed degree sequences and fixed number of butterflies
(k2,2 bicliques), for its important role in a variety of appli-
cations, e.g., investigating clustering patterns [21]. We show
that the state space is not strongly connected by sequences of
q-BSOs for any fixed, universal, constant q. In other words,
the number of edges to be rewired at each step is upper
bounded by a quantity that depends on properties of the graphs
in the ensemble. This result is in strong contrast with the cases
for the space of bipartite graphs with fixed degree sequences,
and for that of bipartite graphs with fixed degree sequences
and fixed number of paths of length three (a.k.a. caterpillars),
where q = 2 is sufficient for all ensembles [11,31].

This discovery has far-reaching implications for network
science. First and foremost, we rule out the possibility of
designing efficient MCMC algorithms for sampling from the
space of bipartite graphs with fixed degree sequences and
fixed number of butterflies, specifically, from the microcanon-
ical ensemble that maintains these properties exactly. In fact,

we demonstrate the necessity of swaps with size dependent on
the characteristics of the graph space G, not necessarily just
on the observed network. Finding what this size q∗

G is may
not even be feasible. It may perhaps be possible to develop
an efficient procedure to find this quantity, but then one also
needs an efficient procedure to, at each step of the Markov
chain, generate a q-BSO for q � q∗

G , to propose a neighbor to
move to. Solving both these algorithmic questions seems chal-
lenging. Moreover, the lower bound q̄ to the size of the BSOs
needed to connect the two graphs Gb and Ge from Theorem 1
gives only a necessary condition for the strong connectivity of
the graph space, not a sufficient one: we only know that one of
the BSOs to connect these two graphs must contain more than
q̄ edges, but not exactly how many. Even if we knew exactly
this number q̂, there may be other pairs of graphs in the same
ensemble (i.e., with the same degree sequences and number of
butterflies) such that any sequence of BSOs connecting these
two graphs must have size even greater than q̂. Therefore, the
situation might be even more dire than our findings suggest.

Given that sampling from a null model that preserves the
number of butterflies is impractical, preserving larger struc-
tures seems an even more unattainable task. A butterfly is at
the same time the smallest cycle and the smallest nontrivial
biclique, hence it is a basic building block of bipartite graphs.
Thus, our findings present a large obstacle to developing ef-
ficient algorithms to sample from more complex ensembles,
and therefore to testing network properties under more de-
scriptive null models.

What other options are then available, if any? If one wishes
to maintain the number of butterflies as a hard constraint
(i.e., to sample from the microcanonical ensemble), one po-
tential approach involves avoiding MCMC algorithms and
opting for a direct-sampling algorithm like stub matching
[33]. However, such algorithms are already limited to small
graph instances, for the case of sampling from the space of
graphs with the same degree sequence, due to their complexity
scaling quadratically or cubically with the number of nodes,
depending on the graph density [34,35]. The straightforward
application of existing stub-matching techniques may also
suffer from generating graphs with a different number of
butterflies, thus leading to a high rejection rate. Thus, we
need to explore alternative methodologies or refine existing
stub-matching algorithms to better accommodate these more
complex constraints. Finally, implementations of canonical
methods, such as the Chung-Lu model [36], offer a more
efficient alternative, albeit at the cost of imposing a soft con-
straint. Indeed, while the ensemble average aligns precisely
with the desired value of each constraint, individual graph
instances may lie far from the desired constraints. The canon-
ical ensemble brings other challenges, including difficulties in
generating graphs that closely match the desired expectations
for certain degree distributions (degeneracy problem) [37–41].

Overall, our findings represent a strong negative result that
the network science community needs to reckon with. By
showing that this research avenue is not fruitful, we hope
to spur alternative and innovative approaches to designing
null models for graphs, and algorithms for sampling from
them.
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