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In amorphous materials, plasticity is localized and occurs as shear transformations. It was recently shown by
Wu et al. that these shear transformations can be predicted by applying topological defect concepts developed
for liquid crystals to an analysis of vibrational eigenmodes [Z. W. Wu et al., Nat. Commun. 14, 2955 (2023)].
This study relates the −1 topological defects to the displacement fields expected of an Eshelby inclusion,
which are characterized by an orientation and the magnitude of the eigenstrain. A corresponding orientation
and magnitude can be defined for each defect using the local displacement field around each defect. These
parameters characterize the plastic stress relaxation associated with the local structural rearrangement and can
be extracted using the fit to either the global displacement field or the local field. Both methods provide a
reasonable estimation of the molecular-dynamics-measured stress drop, confirming the localized nature of the
displacements that control both long-range deformation and stress relaxation.
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It has been long appreciated that structural defects play
an essential role in the mechanical behavior of crystalline
materials. For instance, their yield stress is determined by the
behavior of dislocations [1]. These defects are described as
breaks in the invariance of the crystal lattice [2].

In amorphous materials, there is no lattice structure, and
it is challenging to define discrete defects linked to de-
formation. The lack of clearly defined defects inhibits the
development of a deformation theory for amorphous materials
that is specifically linked to aspects of the atomic struc-
ture [3,4]. Consequently, predicting structural features that
give rise to a larger-scale deformation remains an area of
active investigation [5]. The shear transformations (STs),
where the structural relaxation takes place, are characterized
by large nonaffine displacements of the atoms [6] and high po-
tential energy release [7]. As such, they are local irreversible
atomic displacements that contribute to the transition of the
system from one inherent structure to another [8] character-
istic of plasticity in glasses. STs can be quantified in terms
of number [9,10] and activation energy [11,12]. As such they
have been integrated as a fundamental micromechanism into
numerous constitutive equations [13–17].

Previous studies have characterized the spatial rearrange-
ment taking place in the STs in two-dimensional (2D) [18–20]
and three-dimensional (3D) [21] simulated glasses, and exper-
imentally in colloidal [22] and metallic [23,24] glasses. They
are typically analyzed in terms of the nonaffine displacements
occurring during a structural relaxation, a review of which has
been written by Nicolas and Röttler [25]. In particular, these
STs can be described as quadrupolar zones [26]. Moreover,
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an orientation can be assigned to these quadrupoles [25].
More recently, the concept of topological defect (TD) from the
liquid-crystal literature has been applied to the displacement
field to characterize STs [27]. Another ongoing and important
effort is being made to improve the predictions of the positions
of sites susceptible to local rearrangements: the shear transfor-
mation zones. Many indicators have been developed, and an
overview can be found in the review paper of Richard et al.
[5]. One of the approaches is to consider the eigenmodes of
the system, with features of the lowest-frequency eigenmodes
predicting the next instability [28,29]. Very recently, Wu et al.
also identified TDs within low-frequency eigenmodes to pre-
dict the STs [30].

These small-scale STs have long-range repercussions. In
particular, the quadrupolar zones give rise to long-range elas-
tic deformations, and these can be described using the Eshelby
inclusion model [31]. This has been extensively incorporated
into mesoscale models of glass plasticity [18,32,33]. Notably,
Albaret et al. showed that the stress drop due to relaxation can
be accurately estimated using the position and characteristics
of the Eshelby inclusions [34]. A similar analysis has been
performed to study the orientation [25].

In this Letter, we show that the plastic relaxation can be
characterized using the core of the STs and their immediate
surroundings. First, the STs are located by characterizing the
topological defects within the displacement field, and mea-
suring the orientation and magnitude of each defect. We then
show that this information can be used to reproduce the entire
displacement field using the Eshelby inclusion model. Finally,
we relate the orientation and magnitude of the STs to the
stress drops using values estimated from either the global
displacement field or from the local displacement around the
STs only. The topological character of the STs has yet, to our
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FIG. 1. Representation of the nonaffine displacements during a plastic event: (a) Displacements mapped on atomic positions, (b) coarse-
grained displacements, and (c) normed coarse-grained displacement vectors (black arrows) used to determine the topological defect positions
(blue crosses for −1 defects and red circles for +1 defects).

knowledge, to be linked to their elastic field as described by
the Eshelby equations or the magnitude and orientation of the
resulting stress relaxation.

The glass samples studied here are 2D binary Lennard-
Jones (LJ) glass squares with a side length of 98.8 (Lennard-
Jones reduced units) and containing 10 000 atoms, created
using the same potential parameters and the slow quench at
constant volume approach described by Barbot et al. [35].
Fourteen independent samples using different initial spatial
distributions are created. These glasses are then deformed in
simple shear using an athermal quasistatic (AQS) algorithm
[36]. That is, the system is deformed stepwise with a strain
step (δγ ) of 1 × 10−5 and then relaxed to mechanical equi-
librium using a conjugate gradient method before performing
the next strain step. This is repeated until a strain (γ ) of
0.5 is reached. Lees-Edwards periodic boundary conditions
are maintained throughout, and all simulations are performed
using LAMMPS [37].

During the deformations, the stress and strain of the whole
box are recorded at each deformation step, and the atomic
positions are recorded before and after each plastic event.
A plastic event, or stress relaxation event, is defined in this
study as a shear step that results in the global stresses in the
shear direction σxy decreasing. The impact of this choice is
discussed in the Supplemental Material [38]. The nonaffine
displacements are computed using the atom positions before
the event r j−1 and after the event r j ,

u j = r j − r j−1 − uaff
j , (1)

with uaff
j the imposed affine displacement (ux = δγ ry, uy = 0).

To represent the nonaffine displacement field corresponding
to the structural relaxation, the displacements computed via
Eq. (1) are mapped onto the position of the atoms just be-
fore the stress drop with the added affine deformation; this
is depicted in Fig. 1(a). Additionally, after each stress drop,
the stress state after the reversion of a single strain step is
computed. The occurrence of a plastic event during this step
is very unlikely. This state will be useful for the computation
of the shear modulus of the inherent state and is referred to as
a reverted state in the following.

The first step of the analysis is to identify the positions
of the STs that give rise to the stress drop. This is done by

identifying topological defects in the displacement field, in a
very similar way to the approach developed by Wu et al. [30].
First, atomic displacements are projected onto a 100 × 100 or-
thogonal regular grid [see Fig. 1(b)] with the coarse-graining
function described by Albaret et al. [34] using a length of
1.17 Lennard-Jones distance units (σLJ). The topological de-
fects are defined by the smallest closed loop for which the
topological charge q takes a nonzero value, as defined by the
equation [39] ∮

dθ = 2πq. (2)

Here, θ is the orientation of the displacement [as represented
by the orientation of the normed vector in Fig. 1(c)]. As a sim-
plification, the topological defects are computed for each point
of the grid by considering a 4 × 4 square loop around the point
considered. Note that the coarse-graining step does not reduce
the number of points and is used to ease the implementation
of Eq. (2), as suggested by Wu et al. [30]. An example of the
resulting charges is given in Fig. 1(c). The final position of the
defect is the center of mass of the contiguous patches sharing
the same topological charge. The quadrupoles and vortices
arising upon deformation of a 2D glass [40] will appear as
−1 and +1 defects, respectively. Importantly, those are the
only topological charge values that we observe, meaning that
the displacement field can be described as a superposition of
quadrupoles and vortices. In Fig. 1(c), a −1 topological charge
is detected in the central quadrupolar zone visible in Figs. 1(a)
and 1(b), as well as other charges. These other charges appear
in regions where the displacements are smaller. Some of these
+1 charges appear due to the periodic boundary conditions,
because the edges of the central quadrupolar zone connect
through vortices. Other −1 defects correspond to other minor
(characterized by minute displacements) STs. As this analysis
stems from nematics, it considers directors and not vectors; as
such, the quadrupoles are fourfold symmetric.

More information about the −1 defects can be extracted
from the displacement field in their immediate proximity. We
assume that the STs are zones that undergo pure shear. This
corresponds to the volume-conserving elongation of a circle
along a specific orientation. This orientation φesh-loc can be
estimated using the angle between the x axis and displacement
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of each atom relative to the center of STs. This is done through
the phase shift of the second term in the Fourier series of
the inner product of the displacement for each atom and their
position relative to the center of the ST, i.e.,

φesh-loc = arg

⎛
⎝Nshell∑

j=0

u j · (r j − xesh) exp(−i2� j )

⎞
⎠. (3)

Here, � j is the angular position of atom j relative to the Es-
helby inclusion position (xesh), and j is the imaginary number.
The sum of Eq. (3) runs on all the atoms within 4 interatomic
distances of the center of the −1 defect considered (Nshell).
This approach is similar to the method MD/azi introduced by
Nicolas and Röttler [25]. The displacement amplitude near the
defects can be used to describe the importance of the defect,
both relative to other defects and relative to the global stress
relaxation. This can be described using the average atomic
nonaffine displacement around the −1 defect that we will
denote as 〈|una|〉defect. More precisely, we use the contiguous
grid positions for which the 4 × 4 closed loop yield a −1
defect. Their center of mass is shown in Fig. 1(c).

The −1 defects correspond to quadrupoles and can be
interpreted as the center of an Eshelby inclusion. The Eshelby
inclusion concept assumes that the ST can be modeled as
a circular inclusion that has been deformed into an ellipse.
Assuming that the medium is homogenous and infinite outside
of the inclusion, the following solution, derived by Dasgupta
et al. [32], can be applied,

ux = ε∗

4(1 − ν)

a2

r2

{[
2(1 − 2ν) + a2

r2

]
[x cos 2φ + y sin 2φ]

+
[

1 − a2

r2

][
(x2 − y2) cos 2φ + 2xy sin 2φ

r2

]
2x

}
,

uy = ε∗

4(1 − ν)

a2

r2

{[
2(1 − 2ν) + a2

r2

]
[x sin 2φ − y cos 2φ]

+
[

1 − a2

r2

][
(x2 − y2) cos 2φ + 2xy sin 2φ

r2

]
2y

}
. (4)

Here, a is the radius of the inclusion; φ is the orientation of the
quadrupolar zone; r is the distance to the center of the core;
x and y describe the position of the center of the inclusion;

ε∗ is the eigenstrain magnitude; and ν is the Poisson ratio.
The Poisson ratio is set at 0.46, based on an AQS tensile
deformation simulation of the same glass, and is considered to
be homogeneous and constant through the simulation. Equa-
tion (4) provides a solution for the displacements outside the
core (r > a) in an infinite homogeneous medium and can
be used to fit the displacement field obtained via molecular
dynamics (MD). To this end, the global field is reproduced
by summing the displacement fields of all the −1 defects
obtained by applying Eq. (4) whenever a stress drop is de-
tected. Thus all the −1 defects are considered, for instance, in
Fig. 1(c), including the central negative defect and all the other
minor ones. This assumes that the defects are independent.
The parameter a is set to 2σLJ, and ε∗ and φ are fitted using
a conjugated direction method. As a result, for each event,
the displacement field is fitted using two parameters (ε∗ and
φ) per defect. Importantly, only the atoms at a distance greater
than a = 2σLJ away from defects are considered. Details about
the fitting process and visualizations of the fitted displace-
ments can be found in the Supplemental Material [38].

The parameters φ and ε∗ describe the displacements as-
sociated with the local ST while φesh-loc and 〈|una|〉defect

characterize the displacement field surrounding the ST. Their
correlation is displayed in Fig. 2. The link between φesh-fit and
φesh-loc appears clearly in Fig. 2(a) with a diagonal distribution
showing a one-to-one correspondence. It spans over [0, π/2]
because of the fourfold symmetry of the quadrupolar zones.
The Pearson correlation between the two parameters is 0.26.
It also appears that the distribution is not uniform over the
whole set of angles, but rather appears centered around π/4.
This π/4 value corresponds approximately to the orientation
of the rearrangement shown in Fig. 1 and aligns with simple
shear in the x direction [25,40].

The Eshelby inclusion eigenstrain magnitude ε∗ can be
characterized by the displacement within the core, and ap-
proximated using 〈|una|〉defect. As shown in Fig. 2(b), these
terms can be linked through a linear fit with a R2 of 0.72, and
this correlation is stable if the fit and correlation are performed
on the subset of events for which γ < 0.1 or γ > 0.3, or all
the events. In this figure, one can also notice that there is an
important concentration of ε∗ values around 1 × 10−1 and a
long tail up to 1 × 10−4. It can be noted that less than 1%
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FIG. 2. (a) Distribution of the angle φ obtained from the fitting of the whole displacement field to Eq. (4) vis-à-vis φesh-loc the angle of
the local displacement field from Eq. (3). The diagonal blue line represents one-to-one correspondence. (b) The eigenstrain of the Eshelby
equation ε∗ vis-à-vis the average displacement around the defect. The blue line represents the linear fit.
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FIG. 3. 2D histogram of the stress drop of each event �σ0: (a) as a function of the stress drop computed from Eq. (5) using the parameters
obtained with the Eshelby fit �σesh-fit, and (b) compared to using the defect description parameters �σesh-loc. The blue lines representing where
the two are exactly equal.

of the defects have an associated ε∗ below 1 × 10−10. These
are not displayed in Fig. 2(b). A full distribution of ε∗ can be
found in the Supplemental Material [38].

As described by Albaret et al. [34] the stress drop (�σxy)
associated with an event can be recomputed by summing the
individual contribution of each inclusion,

�σxy =
nin∑ a2π

V
Gjε

∗ sin(2φ), (5)

with V the volume of the simulation cell and Gj the shear
modulus during event j. This has been obtained by identifying
the parameters of Eq. (4) in the equation derived by Albaret
et al. [34]. From this point on, unless otherwise stated, �σ or
σ will refer to the xy component, the only one being treated
in this study. The shear modulus is estimated using the same
method as Albaret et al.: It is the difference between the
σxy after the event and on the reverted state divided by δγ .
This gives an estimation of the shear modulus of the inherent
structure in the absence of plasticity. Other approximations
not relying on the reversion of events can be used but do not
perform as well for the prediction of �σ (see Supplemental
Material [38]). As for Eq. (4), a homogeneous medium is
assumed. As shown in Fig. 3(a), the MD-derived stress drop
�σ0 and the value derived from the displacement field fit
through Eq. (5), �σesh-fit, have almost a one-to-one corre-
spondence. This is particularly true for stress drops above
1 × 10−3, which account for most of the stress relaxation [38].
The Pearson correlation coefficient between fitted and MD

stress drops is 0.97. More importantly, using the parameters
derived from the field displacement in the vicinity of the
defects alone yields a similarly good correlation, with the
Pearson correlation coefficient shifting to 0.92 as shown in
Fig. 3(b). It is also worth mentioning that the distribution of
stress drops is not uniform over a range but that there is an
important concentration around 1 × 10−2 and a long tail at
lower values, much as for the distribution of the eigenstrain
magnitudes.

The stress-strain curves can be reproduced by adding the
elastic part to the result Eq. (5),

σ n
esh =

n∑
j

�σesh- j + δγ jG j, (6)

and are displayed in Fig. 4. Despite the close correspondence
observed in Fig. 3(a) the stress is overestimated, meaning that
the stress relaxation computed with Eq. (5) is underestimated.
This underestimation averages at −3% in relative error, the
full distribution can be found in the Supplemental Material
[38].

We have shown that the stress drops linked to plastic events
are correlated to the displacement field around the −1 topo-
logical defects and can be predicted with a fair accuracy across
3 decades.

This analysis is in essence close to the D2
min analysis intro-

duced by Falk and Langer [6] which is still widely used [5],
both quantify heterogeneities in the nonaffine displacement
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FIG. 4. Stress-strain curves from the simulation (dotted red line), and estimated from Eq. (5) with the parameters fitted from Eq. (4):
(a) Example with good correspondence and (b) poor correspondence.
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field. But the analysis presented here contains more infor-
mation and can be used to identify quadrupolar zones (−1
defects) and vortices (+1 defects) [30]. As described by Sopu
et al. [40], those two structures can be used to describe plastic
phenomena in glasses, notably shear banding. Moreover, it is
less complex than the method of Fusco et al., which relies on
the spatial decay of the plastic energy [7].

Albaret et al. previously reproduced the stress-strain curves
from the displacement field for a 3D amorphous silicon, with
a very good accuracy [34]. This accuracy can partially be
attributed to the consideration of a variable inclusion size. We
and others have relied on a constant a [32], a ST size that
varies from event to event can also be estimated based on the
spatial decay of plastic potential energy [34], or the number of
atoms having a high D2

min [25]. In those studies, a ranged from
2 to 10 interatomic distances for a-Si and 2 to 20 for the LJ
glasses. However, the estimation of the ST size is bound to the
estimation of the position of the ST, and this position does not
always precisely match the topological defect position. This
constant a impacts the value of ε∗ leading to an underestima-
tion that explains, at least in part, our inability to consistently
reproduce the stress-strain curves as shown in Fig. 4. It might
be possible to circumvent this issue by isolating every ST by
pinning the atoms of other STs in an auxiliary simulation, as
proposed by Nicolas and Röttler [25]. However, this will most
probably impact ε∗ due to the altered boundary conditions
in the immediate surroundings of the inclusion. Moreover,
using relative fitting error as defined by Albaret et al., we find
a similar distribution. [34]. It is rather spread and provides
an estimate with high error for some events, but achieved a
lower error for the high-stress drop events (see Supplemental
Material [38]).

Due to the elaboration method, the samples are in hy-
drostatic compression. This will increase the stress at which
the deformation appears, as glasses appear to obey a Mohr-
Coulomb yield criteria as shown by Lund and Schuh [41].
However, since the deformation is done at a constant volume,
this hydrostatic pressure does not induce further relaxation.

This study relies on the formulation of the Eshelby
displacement field, which assumes a homogeneous infinite

medium. Thus, the solution for individual inclusion does not
consider self-interaction through the periodic boundary con-
dition, and a size effect might arise. If there is indeed a size
effect observable for smaller sizes, the error seems to stabi-
lize within 3% from a size of 100σLJ on (see Supplemental
Material [38]). Moreover, the relative stress drop error distri-
bution is not dependent on the number of events [38]. This
hints that the underestimation is not caused by neglecting the
interaction between defects, and much less by self-interaction
through the boundary conditions. Albaret et al. considered the
interaction owing to the superposition of displacement fields
due to inclusion in periodic images [34], but in our case it does
not improve the results and increases the computational cost.

We conclude that there is an essential relationship between
the rearrangements that control plasticity and −1 topologi-
cal defects in the displacement field. They can be used to
identify the center of the shear transformations from which
quadrupolar relaxation arise. An orientation and magnitude
of the eigenstrain can be assigned to these centers either by
fitting the displacement field using the Eshelby inclusions
model or using the nonaffine displacement in the vicinity of
the defect. Using the characteristics of the inclusions obtained
from the fits or from the local displacement field, it is possible
to obtain a reasonable approximation of the stress relaxation.
This reaffirms, with earlier studies [4,8,32,42], that rearrange-
ments in amorphous materials are composed of discrete, local
STs that can be enumerated and characterized as such. This
is likely true not only in the 3D covalent glasses previously
studied by Albaret, but across a wide range of glasses, includ-
ing metallic glasses and 2D systems. The topological defect
concept provides an unambiguous methodology for locating
and characterizing such STs.
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