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Bendability parameter for twisted ribbons to describe longitudinal
wrinkling and delineate the near-threshold regime
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We propose a dimensionless bendability parameter, ε−1 = [(h/W )2T −1]−1, for wrinkling of thin, twisted rib-
bons with thickness h, width W , and tensional strain T . Bendability permits efficient collapse of data for wrinkle
onset, wavelength, critical stress, and residual stress, demonstrating longitudinal wrinkling’s primary dependence
on this parameter. This parameter also allows us to distinguish the highly bendable range (ε−1 > 20) from
moderately bendable samples (ε−1 ∈ (0, 20]). We identify scaling relations to describe longitudinal wrinkles that
are valid across our entire set of simulated ribbons. When restricted to the highly bendable regime, simulations
confirm theoretical near-threshold (NT) predictions for wrinkle onset and wavelength.

DOI: 10.1103/PhysRevE.109.L053001

Wrinkling of geometrically frustrated sheets is a well-
studied subject. Recently, systematic treatments of thin sheet
wrinkling examined flat sheets on compressed substrates [1,2]
and frustrated annuli [3–6], which possess tractable axial sym-
metries. Next, thin films were floated on deformable fluid
surfaces [7–13] or adhered to curved planes [14–16], fur-
ther complicating the forces complicit in wrinkle formation.
Many features of such wrinkled sheets were successfully
described using near-threshold (NT) approximations which
assume wrinkling amplitude is a small perturbation from the
flat state [4,5,13]. In some cases, it was helpful to use a far-
from-threshold (FT) expansion which assumes compressive
stress in the sheet is alleviated to first order by the onset of
wrinkles [1,4–6,12,14–16].

A thin ribbon when twisted also develops wrinkles due
to geometric frustration. Wrinkled ribbons were first docu-
mented in the 1930s [17], but the longitudinally wrinkled
phase was not verified numerically until nearly 50 years later
[18]. Since then, twisted ribbons have been theoretically an-
alyzed [19–21] and their phase space experimentally mapped
[22]. We previously showed simulations can replicate the mor-
phology and mechanics of ribbons buckled and wrinkled via
twisting [23] and investigated NT and FT predictions across
a broad swath of the parameter space. Despite some of the
successes of NT and FT approximations for the twisted ribbon
[19,20,24], the transition between their regimes of validity
remains elusive. Exact predictions for the onset and wave-
length of wrinkling are lacking [23]. Simulations offer a grip
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on ribbons that are neither very thin nor free of compressive
stress, with the potential to illuminate the murky demarcation
of NT and FT predictions.

Bendability parameter. A thin, twisted ribbon develops
longitudinal wrinkles when a longitudinal force F and end-
to-end twist θ are applied, as shown in Fig. 1(a). The wrinkles
have wavelength λlon and are confined to the “wrinkled zone”,
which is symmetric about the center line with width 2rwr,
labeled in Fig. 1(b).

The two dimensionless parameter groupings useful for
analyzing wrinkling in other thin sheets, such as frustrated
annuli or floating films, are the confinement (here called α)
and the bendability (ε−1) [4,5,12–16,25]. For twisted rib-
bons, the appropriate confinement parameter was previously
identified [20],

α ≡ η2

T
, (1)

where η represents the geometric strain, and T the tensional
strain. η and T are themselves dimensionless,

η = θ
W

L
, T = F

EhW
, (2)

where E is Young’s modulus, h is ribbon thickness, W the
ribbon width, and L the ribbon length.

On the other hand, bendability for the twisted ribbon, the
dimensionless ε−1, has not yet been identified in the literature.
We propose

ε ≡ 12(1 − ν2)B

W F
=

(
h

W

)2 1

T
(3)

to define inverse bendability for twisted ribbons, where ν is
Poisson’s ratio and B is the bending modulus.
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FIG. 1. (a) Observed snapshots of wrinkled ribbons with width W = 5.08 cm (left) and 2.54 cm (right) at tensions T and twisted by η are
displayed here, both with thickness h = 0.254 mm and T = 2.5 × 10−3. Overlaid in purple (green) is the mean curvature H of the ribbon,
buckled above (below) the plane. (b) The ribbon projected on a flat plane with H rendered according to the color map shows the wrinkling is
confined to a region of width 2rwr, marked here by vertical dashed lines, and has a wavelength λlon. (c) The critical confinement, αc, at which
wrinkles appear plotted against longitudinally applied tension. An infinitely thin ribbon would develop wrinkles at confinement α0 = 24 (solid
green line). Ribbons with finite thickness, however, transition to the wrinkled state at αc > α0. (d) αc versus the bendability parameter, defined
in Eq. (3), with data collapsing onto the line αc − α0 ∝ εγ with γ = 0.585 ± 0.004.

Previous studies that use bendability, such as Refs. [4,5,12–
16,25], focused primarily on the highly bendable limit, such
that ε−1 � 1. Many of our ribbon samples fall into a mod-
erately bendable range with ε−1 ∈ (0, 20]. We first identify
scaling laws for the full range of samples, then examine only
the highly bendable sheets (ε−1 > 20) to compare directly to
theoretical NT estimates.

Simulation details. Ribbons are simulated by an underly-
ing topology of either 11 250 or 22 500 randomly distributed
nodes connected by in-plane springs, and bending between
adjacent facets is quadratically penalized [26]. Both in-plane
stretching and out-of-plane bending models are generalized
to the random mesh using modifications adapted from van
Gelder, Lloyd [27,28], and Grinspun and coworkers [29,30],
respectively. Full derivation and validation of the model are
presented by Leembruggen et al. [23].

Interactions between nodes are described by Newton’s sec-
ond law. Since the ribbon is in the quasistatic limit where
F ≈ 0, we use an implicit integration scheme. A typical rib-
bon simulation requires a wall-clock time of 8 h, using eight
threads on a Linux computer with dual 2.40 GHz Intel Xeon
E5-2630 CPUs.

Six ribbons with L = 45.7 cm were used in this study:
two of width W = 5.08 cm with thicknesses h/W = 5 ×
10−3, 10−2 and four of width W = 2.54 cm with thicknesses
h/W = 5 × 10−3, 1 × 10−2, 1.5 × 10−2, 2 × 10−2. Young’s
modulus for these ribbons was E = 3.4 GPa, and Poisson’s
ratio was ν = 1/3 [26,28]. The short edges of each ribbon
were fixed to a rigid rod rotating at constant rotational veloc-
ity θ̇ ; thus, the position of each node on the boundary was
imposed at each time step. Ribbons were additionally held

at fixed tensions, T , within the longitudinal buckling phase.
Ultimately, we had 96 samples of longitudinally wrinkled
ribbons with varying λlon.

Wrinkling onset. Examining the ribbon’s stress in the lon-
gitudinal (y) direction [20],

σ yy(x)

T
= 1 + α

2

(( x

W

)
− 1

12

)
, (4)

identifies α0 = 24 as the confinement at which stress becomes
compressive along x = 0 (the ribbon’s spine). An infinitely
thin ribbon, unable to support compressive stress, buckles at
α0. But ribbons with thickness support stress and thus buckle
at confinements αc > α0, as demonstrated across samples in
Fig. 1(d). (Details concerning the appearance of wrinkles,
determination of wrinkle onset, and calculation of wavelength
are presented by Leembruggen et al. in Fig. 4 of Ref. [23].)
Previous estimates of this finite thickness correction based
on experiments followed the form ηc = η0 + Clon

h
W , where

η0 = √
24T coincides with α0 = 24 [22]. Written in terms

of proposed bendability, this translates to a correction on the
order of αc − α0 ∝ ε. However, as plotted in Fig. 1(e), we
observe

αc − α0 ∝ εγ , (5)

with γ = 0.585 ± 0.004. As shown by the data collapse in
Fig. 1(e), the tension dependence and geometric parame-
ters are captured by the bendability parameter introduced in
Eq. (3). The previously proposed correction of O(ε) overcom-
pensated for the thickness of the ribbon. Chopin et al. posited
that, using the NT approximation, (αc − α0) ∼ (h/W )T −1/2
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FIG. 2. (a) Wavelength per unit length as a function of ribbon
dimensions and applied tension, compared with Chopin and Ku-
drolli’s experimental normalization (dashed black line) [22]. Plotted
with this normalization, data are broadly distributed. (b) Plotted
against bendability, wavelengths collapse more closely. In terms of
ε−1, theoretical NT analyses [19,20] predict δ = 1/4, plotted by the
blue, dotted line. Adjusting the NT approximation by substituting γ

observed in Fig. 1(e), such that δ = γ /2 = 0.293 ± 0.002, is shown
here by the green, dash-dotted line. Note that points with ε−1 > 20
roughly follow the slope of the NT prediction, but diverge from this
line when ε−1 < 20.

[20]. Recast using ε−1, the equivalent prediction is αc − α0 ∝
εγ with γ = 1/2.

Wavelength at the onset of longitudinal wrinkling is con-
stant in α, so we wait until the wrinkle pattern has appreciable
amplitude before extracting λlon to make the measurement
more precise [23]. NT approximations have been used to
estimate wavelength at onset [19,20]: λ ∝ rwr ∝ √

h/W T −1/4,
and were noted to describe experimentally measured wave-
lengths [22].

In Fig. 2(a), we plot wavelength per unit length (i.e., the
inverse of preferred wave number) using the same normaliza-
tion as Chopin and Kudrolli’s experiment [22], which differs
from the NT prediction by a factor of W but has the same
dependence on T . Also plotted in this figure is a best fit as a
function of T , represented by the black, dashed line. Vertical
spread in these data suggests the dependence on h and W
is not captured by

√
hW normalization. However, plotting

wavelengths against the bendability, in Fig. 2(b), the val-
ues collapse, scaling as λlon/L ∝ εδ with δ = 0.342 ± 0.019,
shown as a black dashed line.

Recast in terms of bendability, the theoretical NT pre-
diction for wavelength is λlon/L ∝ (αc − α0)1/2 ∝ εδ , with

δ = γ /2 = 1/4 in this case. Alternatively, we could assume
adjusting γ propagates to other NT predictions. In which case,
δ = γ /2 = 0.293 ± 0.002, using Eq. (5). In Fig. 2(b), we plot
the theoretical NT δ = 1/4 in a blue dotted line, and adjusted
NT δ = 0.293 in a green dash-dotted line.

All in all, scaling λlon in terms of ε−1 is a vast improvement
over past investigations of wavelength versus tension. Regard-
less of the collapse’s precise slope, the points are clustered
more closely than in previous studies [23], further affirming
ε’s usefulness.

Residual stress. Throughout the simulation, we extract
the stress tensor via the mesh’s deformation gradient tensor
[23]. Longitudinal slices are taken along the middle third
of the ribbon, then averaged along the y direction to obtain
〈σ yy(x)〉y. Instinctually, one might expect critical buckling
stress 〈σ yy

c (0)〉y is proportional to the cross-sectional area
(hW/W 2 = h/W in dimensionless units). In Fig. 3(a), we plot
critical stress at x = 0 against this candidate scaling factor.
This simple estimate, however, results in incomplete collapse
of the data.

Turning back to our stress equation, Eq. (4), along x = 0
we expect the stress at α > α0 to be

σ yy

T
= 1 − α

24
= 1 − α0

24
− α − α0

24
= −α − α0

24
. (6)

Since we observe the scaling for confinement in Eq. (5),
critical stress should go as

σ
yy
c

T
= −αc − α0

24
∝ −εγ . (7)

This is consistent with our measurements, plotted in
Fig. 3(b), which find σ

yy
c /T ∝ −εγ ′

, with the measured
γ ′ = 0.599 ± 0.006.

It is not clear from analytical studies whether the rib-
bon’s residual, postbuckling, compressive stress should scale
the same as its critical stress, especially as α > αc changes
[16,31]. However, as shown in Fig. 3(c), stress saturates at
values very close to critical stress; we measure γ ′

res = 0.591 ±
0.003.

The boundary of near threshold. It is expected that NT re-
lations are valid only for highly bendable sheets (h/W )2 � T
or, equivalently, ε−1 � 1. Although there are no sharp transi-
tions in the data of Figs. 1 and 2 as a function of ε−1, we could
exclude points with small bendability to better understand
how confinement (αc − α0), wavelength (λlon), and critical
stress (〈σ yy

c (0)〉y/T ) scale in the highly bendable limit.
In Fig. 4(a), we plot the value of scaling exponents for

confinement (γ ) and wavelength (δ) as a function of the lower
threshold, ε−1

lb . As ε−1
lb increases, further restricting the data to

a highly bendable range, γ changes little, hovering around 0.5.
On the other hand, δ is quite sensitive to ε−1

lb , but converges
to ≈0.25 when ε−1

lb > 20. Therefore, when constrained by a
highly bendable limit, our simulations agree entirely with NT
predictions that (αc − α0)NT ∝ ε1/2 and λNT

lon ∝ ε1/4.
Figures 4(b)–4(d) recreate Figs. 1(d), 2(b), and 3(b), re-

spectively, this time restricting the data such that only highly
bendable ribbons are included in the scaling exponent fit.
Excluded data are desaturated, left of the vertical dotted lines,
and included data are fully saturated to the right of the cut-
off line. With this threshold imposed, the confinement in
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FIG. 3. (a) The critical stress along the ribbon center at onset of
wrinkling plotted against W

h T results in incomplete collapse of the
data. (b) When written as a function of bendability, stress at critical
confinement follows the curve σ yy

c (0) ∝ −εγ ′
, γ ′ = 0.599 ± 0.006.

This relationship follows from Eqs. (4) and (7). (c) The stress of
each ribbon sample at four different confinements, α, resulting in
384 points. Open markers indicate the stress in a ribbon before it
has buckled, whereas filled markers indicate the stress postbuckling.
Marker shape refers to the confinement, α, at which the stress was
sampled. Postbuckling, the ribbons support residual stress. Residual
stress saturates according to ribbon bendability and is independent of
α. Postbuckling residual stress follows the relationship σ

yy
residual(0) ∝

−εγ ′
res , γ ′

res = 0.591 ± 0.003, similar to the scaling of σ yy
c in (b).

Fig. 4(b) has γ = 0.513 ± 0.001; wavelength in Fig. 4(c) has
δ = 0.255 ± 0.044; and critical stress in Fig. 4(d) has γ ′ =
0.608 ± 0.029. Interestingly, critical stress remains largely
unchanged when thresholded, and is inconsistent with the
stress [Eq. (7)] expected using the thresholded confinement
scaling.

FIG. 4. (a) Various thresholds are placed on the lower bound of
ε−1. The confinement scaling exponent, γ (upper, blue circles, solid
border) remains largely unchanged as lower bound changes. The
wavelength exponent, δ (lower, red circles, dashed border), is more
sensitive to the threshold of ε−1 when the threshold reaches ε−1

lb ≈
20, δ ≈ 0.25. Horizontal lines are plotted at 0.25 and 0.5 to guide the
eye. (b)–(d) Replications of Figs. 1(d), 2(b), and 3(b) where the scal-
ing exponent (dashed, black line) is fitted only using data with ε−1 >

20. Darker points, right of the vertical dotted lines, are included in the
scaling fit; desaturated points to the left are not. With this threshold
imposed, γ = 0.513 ± 0.001 and δ = 0.255 ± 0.044 (compared to
NT predictions of γ = 0.50 and δ = 0.25). The critical stress scaling
remains essentially unchanged, with γ ′ = 0.608 ± 0.029.

Discussion. Inspired by studies of complementary wrin-
kled systems, we introduced a dimensionless parameter for
bendability of a twisted ribbon ε−1. Specifically, ε−1 incor-
porates finite thicknes, and extends predictions concerning
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infinitely thin ribbons. Then, we demonstrated ε−1 success-
fully describes onset of wrinkling, wavelength, and even
stress at and after wrinkle onset. By rewriting NT and FT
predictions [20] in terms of ε−1, we show the onset of
wrinkling scales somewhere between the NT and FT pre-
dictions of Ref. [20], but more closely to NT results. When
data are restricted to a highly bendable region (ε−1 > 20),
they exactly match NT predictions. With our simulation
framework, additional simulations of even more bendable
ribbons could readily be performed to further probe the NT
theory. Perhaps most successfully, ε−1 allows the investiga-
tion of ribbons in the moderately bendable (ε−1 ∈ (0, 20])
limit, which are less bendable than theoretically tractable
ribbons. Including this broader set of bendabilities enabled
determination of scaling laws valid for a wide range of
ribbons.

Further, analyzing simulated ribbons allowed us to extract
stress throughout the twist, which is prohibitively difficult to
measure in experiments. Thus, the simulations reveal stress
in finite-thickness ribbons is not completely alleviated by

buckling, as is assumed in FT analysis, and the compres-
sive stress they support saturates at critical buckling stress.
Our simulations also demonstrate that critical stress, and thus
saturated stress, depends only on ribbon bendability. Other
quantities, such as suppression of wrinkles near the bound-
aries, and growth of wrinkle amplitude can also likely be
scaled according to ε−1 [23]; additional analytical and exper-
imental studies should be performed to verify and identify
these relationships. We anticipate these facts uncovered by
our simulations, and introduction of a bendability parameter
for twisted sheets, will prove useful in further theoretical
development of scaling laws.
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