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Synchronization through frequency shuffling
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A wide variety of engineered and natural systems are modeled as networks of coupled nonlinear oscillators.
In nature, the intrinsic frequencies of these oscillators are not constant in time. Here, we probe the effect of such
a temporal heterogeneity on coupled oscillator networks through the lens of the Kuramoto model. To do this,
we shuffle repeatedly the intrinsic frequencies among the oscillators at either random or regular time intervals.
What emerges is the remarkable effect that frequent shuffling induces earlier onset (i.e., at a lower coupling)
of synchrony among the oscillator phases. Our study provides a novel strategy to induce and control synchrony
under resource constraints. We demonstrate our results analytically and in experiments with a network of Wien
Bridge oscillators with internal frequencies being shuffled in time.
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Synchronization is crucial for proper functionality, sur-
vival, and adaptation at various length and time scales across
disciplines, from biology to physics to real-world systems
[1]. Attaining synchronization often comes with unavoidable
energy costs under limited resources. For instance, in the
Kai system underlying the cyanobacterial circadian clock,
energy dissipation drives the coupling between the oscillators,
and synchronization is achieved beyond a critical dissipa-
tion [2]. Another instance is multiagent network systems,
e.g., sensor networks, distributed computation, and multiple
robot systems, where the control energy is limited, leading
to tradeoffs between synchronization-regulation performance
and energy budget [3]. In systems modeled as interacting
oscillators of distributed intrinsic frequencies, one constraint
is the limited coupling budget [4,5], which might be insuffi-
cient for synchrony. Designing an optimal protocol to achieve
synchronization with a given energy/coupling budget is of
great practical relevance. Synchrony at low couplings has
mostly been achieved via developing networks whose topol-
ogy changes in time [5]. This Letter achieves the goal by
introducing a protocol of shuffling the oscillator frequencies,
which we show to be inducing synchrony even in a static
network in otherwise unfavorable conditions.

A compelling motivation for adopting a protocol such as
ours stems from the time variability of internal system param-
eters. Examples include variability in neuronal firing activity
in the brain, facilitating development of epileptic seizures
[6], time variability in cardiac and respiratory frequencies
during anesthesia [7], and cardiovascular signals containing
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oscillatory components with time-varying frequencies, e.g.,
the effects of aging on heart rate variability [8]. Understand-
ing the effects of temporal variation of intrinsic frequencies
gives insights into such systems, often modeled as nonau-
tonomous systems with time-varying forcing [9–11]. We offer
an alternative way of incorporating temporal heterogeneity
in internal parameters by introducing shuffling of intrinsic
frequencies.

We develop a framework in the ambit of the paradigmatic
model of synchronization [1]: the Kuramoto model of coupled
phase-only oscillators with distributed frequencies [12–28].
Here, we ask the following: What happens when the Ku-
ramoto model undergoing its bare evolution is interspersed
with instantaneous frequency-shuffling at random times with a
constant shuffling rate λ > 0? Shuffling involves a redistribu-
tion of frequencies among the oscillators. Our main message
is analytical and experimental demonstration that shuffling
leads to the remarkable effect of an earlier onset of synchro-
nization and reduction in the value of critical K to observe
synchronization: the shuffled system synchronizes even when
the corresponding unshuffled system does not [see the phase
diagram in the (K, λ)-plane in Fig. 2(a), where λ → 0 refers
to the unshuffled system]. In the bare Kuramoto model, the
coupling needs to be finely tuned beyond a threshold to
observe synchrony, whereas shuffling when done frequently
enough leads to synchrony at arbitrary coupling. These fea-
tures conform to the objective of attaining synchronization
under a coupling budget. Not just that, the time trelax to achieve
synchronization starting from an unsynchronized state has a
dramatic consequence of shuffling: trelax for a given K de-
creases with increasing λ [Fig. 2(b)]. Thus, synchronization
under shuffling gets easier in every practical sense: one re-
quires smaller coupling and less time to achieve synchrony.
Shuffling at random times is not restrictive, as we show similar
results on shuffling at fixed time intervals. We experimen-
tally demonstrate synchronization under shuffling using Wien
Bridge oscillators.
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FIG. 1. Onset of synchrony [synchronized temporal evolution
of phases θ j and sin(θ j )] in the Kuramoto model (middle figure)
on introducing frequency shuffling (right panels) even at coupling
constant values at which the unshuffled system (left panels) does not
support such a state.

Synchronization in our system is induced by the noise
introduced by shuffling in the otherwise deterministic dy-
namics. Noise-induced synchronization among limit-cycle
oscillators has been extensively studied [29–35]. The basic
framework involves Langevin dynamics for the oscillator-
variables that includes a common Gaussian white noise ξ (t )
(or colored noise) acting on all oscillators: (i) dX j/dt =
F(X j ) + ξ(t ), or (ii) for phase-only oscillators, dθ j/dt =
ω j + ε f (θ j )ξ (t ) and dθ j/dt = ω j + (K/N )

∑N
k=1 sin(θk −

θ j ) + sin(θ j )ξ (t ) for Kuramoto oscillators. This results in
an effective time-varying intrinsic frequency given by ω j +
ε f (θ j )ξ (t ) and ω j + sin(θ j )ξ (t ), respectively, yielding in-
cremental variation of effective frequencies in time: in a
small time dt , only a small change ∝ √

dt [in addition to
a “noise-induced drift” term ∝ dt for (ii)] takes place. This
case is restrictive and very different from our case, in which
the frequencies undergo large changes in dt only at shuf-
fling instants, making the dynamics piecewise-deterministic.
Obviously, the emerging behavior will be different in the
two cases: The theme of piecewise-deterministic frequency-
changes inducing synchronization remains unexplored to date,
highlighting the novelty of our contribution.

Figure 1 shows our results schematically. For weak cou-
pling, the unshuffled system has phases θ j of individual
oscillators with different intrinsic frequencies growing inde-
pendently in time and sin(θ j )’s varying periodically in time
with different frequencies. Even at such a low K , when the un-
shuffled system is unsynchronized, shuffling leads remarkably
to synchronization in oscillator phases and in the sin(θ j )’s.

The Kuramoto model comprises N globally coupled oscil-
lators with distributed intrinsic frequencies. The phase θ j ∈
[0, 2π ) of the jth oscillator, j = 1, 2, . . . , N , evolves as

dθ j

dt
= ω j + K

N

N∑
k=1

sin(θk − θ j ). (1)

Here, K � 0 is the coupling, while ω j denotes the intrin-
sic frequency. The frequencies {ω j} are independent and
identically distributed random variables following a given
distribution G(ω);

∫ ∞
−∞ dω G(ω) = 1. We take G(ω) to have

zero mean (the effect of any finite mean vanishes by going
to a corotating frame) and finite variance σ 2. The effect of the

latter is made explicit by rewriting Eq. (1) as dθ j/dt = σω j +
(K/N )

∑N
k=1 sin(θk − θ j ), and by taking {ω j}’s to follow a

distribution g(ω) with zero mean and unit variance. Un-
der rescaling, K → K ′ ≡ K/σ , t → t ′ ≡ tσ , and λ → λ′ ≡
λ/σ , and omitting the primes, the rescaled equation has the
same form as Eq. (1), with the {ω j}’s sampled from a dis-
tribution g(ω) with zero mean and unit variance. We refer
to this setup as the bare Kuramoto model. In this bare
model, the set {ω j} is constructed once at time t = 0 and
is fixed throughout the temporal evolution. In the model
with shuffling, wherein the frequencies are repeatedly shuffled
and redistributed among the oscillators after random time
intervals, the definition of the shuffling rate λ implies that the
time interval τ between successive shuffling is distributed as
an exponential p(τ ) = λe−λτ ; the average time between two
successive shuffling is 〈τ 〉 = 1/λ. The bare model is recov-
ered in the limit λ → 0, and as N → ∞ and at long times
t → ∞ (stationary state) it exhibits a phase transition in the
order parameter R(t ) = r(t )eiψ (t ) = (1/N )

∑
j eiθ j (t ), between

a low-K unsynchronized phase [rst ≡ r(t → ∞) = 0] and a
high-K synchronized phase (0 < rst � 1) across the critical
value Kc = 2/πg(0) [15]. As detailed below, a finite λ leads to
a rich stationary-state phase diagram in the (K, λ)-plane [e.g.,
Fig. 2(a) for Gaussian g(ω)], with a synchronized phase in a
region where the bare model does not support such a phase
and with the critical coupling Kc(λ) most notably decreasing
with increasing λ.

To analyze the model with shuffling in the limit N → ∞,
we define a conditional probability density P(s)

ω (θ, t |θ ′, t ′)
to find an oscillator with frequency ω that has phase θ

at time t , conditioned on having found an oscillator with
the same frequency and with phase θ ′ at an earlier instant
t ′ < t . Here, the superscript “s” stands for shuffling. The
normalization reads

∫ 2π

0 dθ P(s)
ω (θ, t |θ ′, t ′) = 1 ∀ω, θ ′, t, t ′ <

t , while the order parameter reads R(s)(t ) = r (s)(t )eiψ (s) (t ) =∫
dθdω g(ω)P(s)

ω (θ, t |θ ′, t ′)eiθ . Note that shuffling implies
that the oscillator(s) with frequency ω and phase θ at time t
could be different from the one(s) with the same frequency
but with phase θ ′ at time t ′ < t . This is unlike the case in
the absence of shuffling, when the oscillators have the same
frequency throughout the evolution. Note that the number of
oscillators with a given frequency is conserved in time both
in the presence and absence of shuffling. In the latter case,
the corresponding probability density Pω(θ, t |θ ′, t ′) evolves
as [13]

∂Pω(θ, t |θ ′, t ′)
∂t

= − ∂

∂θ
{[ω + Kr(t ) sin (ψ (t ) − θ )]Pω}, (2)

with R(t ) = r(t )eiψ (t ) = ∫
dθdω g(ω)Pω(θ, t |θ ′, t ′)eiθ .

Knowing Pω(θ, t |θ ′, t ′) yields P(s)
ω (θ, t |θ0, 0), with

P(s)
ω (θ, 0|θ0, 0) = δ(θ − θ0) describing the (given) initial

condition θ = θ0 for all oscillators, and using renewal theory
[36], as

P(s)
ω = e−λt Pω(θ, t |θ0, 0) + λ

∫ t

0
dτ e−λτ Pω(θ, t |θ (t ′), t ′),

(3)

with t ′ = t − τ . Indeed, for the given initial condition,
the probability to observe an oscillator with phase θ and
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FIG. 2. (a) Phase diagram in the (K, λ)-plane for the Kuramoto model subject to shuffling at random times with a constant rate λ. The
red square is the result for the bare Kuramoto dynamics. The boundary between the two depicted phases marks the critical coupling Kc(λ).
Alternatively, if we fix a value of K , then the critical λ to observe synchronization is the value of λ that lies on the phase boundary corresponding
to the given K . (b) Time evolution of the order parameter r (s), starting from a random initial condition, for no shuffling (λ = 0) and shuffling
with rates λ = 5, 6, 8, 10, and 20. The system size is N = 800 and coupling strength is K = 0.5. Inset: trelax [time for r (s)(t ) to attain half of
its stationary-state value] as a function of λ, for K = 0.5 and N = 800. (c) Exact result (see text) and its numerical verification for the case
K = 0 and simultaneous shuffling and phase resetting at a constant rate λ. The system size is N = 1600. (d) Stationary order parameter r (s)

st

vs K for shuffling rate λ = 5.0. Three system sizes—N = 400, 800, and 1600—are considered (the limiting behavior as N → ∞ shown by
the dashed line). Inset (left): Stationary-state fluctuations χ (N ) ≡ N[〈(r (s)

st )2〉 − 〈r (s)
st 〉2] vs K for the same parameter values and system sizes,

bearing a signature of a phase transition in the limit N → ∞. Inset (right): Agreement between theory and simulations for r (s)
st , for N = 1600

and λ = 5.0. (e) r (s)
st vs K from simulations of the Kuramoto model subject to shuffling at regular intervals of duration Tshuffle = 0.2, 0.5, and

1.0. The system size is N = 1600. In all cases, the frequency distribution is a Gaussian with zero mean and unit variance.

frequency ω at time t requires the dynamics to either (i) not
have undergone a single shuffling since the initial time instant
t = 0, or (ii) have the last shuffling during the time interval
[t − τ − dτ, t − τ ]; τ ∈ [0, t], and thereafter free evolution
up to time t starting with the phase value θ (t − τ ) attained
at time instant t − τ under the dynamical evolution. The first
and second terms on the right-hand side (RHS) of Eq. (3)
correspond to the cases (i) and (ii), respectively. The function
Pω(θ, t |θ (t − τ ), t − τ ) needs to be constructed by letting the
N oscillators undergo the Kuramoto dynamics interspersed
with shuffling at random times, from t = 0 to t = t , and
noting the fraction of oscillators that at time t have frequency
ω and phase θ , and which have undergone the last shuffling
at time instant t − τ (to frequency ω) when their phase value
was θ (t − τ ). One obtains from Eq. (3) the order parameter as

R(s)(t )|θ0 = e−λt R(t )|θ0 + λ

∫ t

0
dτ e−λτ R(t )|θ (t−τ ). (4)

Here, R(t )|θ (t−τ ) is the value of R(t ) under dynamical evolu-
tion according to the bare Kuramoto model and with θ (t − τ )
as the initial condition. On the other hand, R(s)(t )|θ0 is the
value of R(s)(t ) under dynamical evolution according to the
Kuramoto model with shuffling and with θ0 as the initial
condition. As t → ∞, Eq. (4) yields the stationary value

R(s)
st = r (s)

st eiψ (s)
st = lim

t→∞ λ

∫ t

0
dτ e−λτ R(t )|θ (t−τ ). (5)

The RHS of the second equality does not depend on θ0.
Equation (5) will prove crucial in obtaining our main results.
Note that Eqs. (3), (4), and (5) are very general and apply to
any g(ω).

Proceeding further requires knowing Pω(θ, t |θ ′, t ′),
which being 2π -periodic in θ admits the Fourier expansion
Pω(θ, t |θ ′, t ′) = ∑∞

n=−∞ P̃(ω)
n (t |θ ′, t ′)einθ ; Pω being real,

[P̃(ω)
n ]� = P̃(ω)

−n , with a star denoting complex conjugation.

Equation (2) yields

∂P̃(ω)
n

∂t
= −inωP̃(ω)

n − r(t )Kn

2

(
eiψ (t )P̃(ω)

n+1 − e−iψ (t )P̃(ω)
n−1

)
,

(6)

with r(t )eiψ (t ) = ∫
dω g(ω)P̃(ω)

−1 . Equation (6) is a nonlinear
integrodifferential equation, whose solution is difficult to ob-
tain in general. Before proceeding, it proves worthwhile to
analyze the special case of noninteracting oscillators.

For noninteracting oscillators (K = 0), the solution
of Eq. (6), with the obvious condition Pω(θ, t ′|θ ′, t ′) =
δ(θ − θ ′), is P̃(ω)

n (t |θ ′, t ′) = e−i[nω(t−t ′ )+nθ ′]/(2π ). We
get Pω(θ, t |θ ′, t ′) = ∑∞

n=−∞ ein(θ−θ ′−ω(t−t ′ )/(2π ), giving
R(t )|θ (t−τ ) = ∫

dω g(ω) ei[ωτ+θ (t−τ )], and Eq. (5) yielding

r (s)
st eiψ (s)

st = lim
t→∞ λ

∫ t

0
dτ

∫
dωg(ω)e−λτ+i[ωτ+θ (t−τ )], (7)

which still requires evolving the oscillators under Kuramoto
dynamics with K = 0 and interspersed with shuffling to
determine θ (t − τ ). Things simplify for the special case
of phase resetting, wherein at random time intervals, to-
gether with frequency shuffling, the oscillator phases are
reset to a common value �. Here, all memory of previ-
ous time evolution is washed out following every shuffling.
This corresponds to setting θ (t − τ ) = �, yielding the fol-
lowing from Eq. (7): ψ

(s)
st = �, r (s)

st = λ
∫

dω g(ω)/(λ − iω),
applicable to any g(ω). With even g(ω): g(ω) = g(−ω),
one gets r (s)

st = 2λ2
∫ ∞

0 dω g(ω)/(λ2 + ω2). For example, for
Gaussian g(ω) with zero mean and unit variance, we get
r (s)

st = λ
√

π/2 eλ2/2Erfc(λ/
√

2), with Erfc(x) the complemen-
tary error function. We have thus an exact result on the
stationary-state order parameter for noninteracting oscillators
subject to simultaneous shuffling and phase resetting. An ex-
cellent agreement between this exact result and simulations,
see Fig. 2(c), is a vindication of our theoretical approach.
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We now analyze shuffling among interacting oscillators
(K �= 0). In the absence of an analytical solution for θ as a
function of time, Eq. (5) may be evaluated semianalytically
by using for a large-enough N the data for θ (t − τ ) obtained
from simulations of the Kuramoto model with shuffling, and
the results may be compared against simulation results for
validation; the proposed analysis is very general and applies to
any g(ω). For the representative case of a Gaussian g(ω) with
zero mean and unit variance [37], Fig. 2(d) (right inset) shows
a very good match between theory and simulation results for
N = 1600. Such a good match with theory applies not just
to Fig. 2(d) (right inset), but to all our numerical results.
The main figure in Fig. 2(d) shows the behavior of r (s)

st for
three different N , with the black dashed line corresponding to
the behavior as N → ∞. A remarkable feature implied by the
figure is a phase transition as N → ∞ from an unsynchro-
nized (r (s)

st = 0) to a synchronized (r (s)
st �= 0) phase at a critical

K that depends on λ.
In simulations for a given λ, use of finite N rounds

off the phase transition point Kc, as is well known from
theory of phase transitions [38,39]. This requires finite-size
scaling analysis to extract the “true” phase transition point
occurring as N → ∞. To this end, one considers the quantity
χ (N ) ≡ N[〈(r (s)

st )2〉 − 〈r (s)
st 〉2], measuring stationary-state

fluctuations of the order parameter; here, angular
brackets denote averaging over dynamical realizations.
Concomitant with the existence of a phase transition at
Kc(λ) = Kc(λ, N → ∞) as N → ∞, the divergence of the
quantity χ (N → ∞) occurs at Kc(λ). For finite N , instead,
a peak in χ (N ) at a “pseudo”-critical point Kc(λ, N ) is
observed, with the peak value increasing with increasing N ;
see Fig. 2(d) (left inset) for Gaussian g(ω). Consequently,
the quantity Kc(λ) is obtained by identifying Kc(λ, N ) as the
point at which χ (N ) peaks and then by plotting Kc(λ, N )
versus N to extract the N → ∞ behavior. The result for Kc(λ)
as a function of λ is shown in the phase diagram in Fig. 2(a)
for Gaussian g(ω). In the limit λ → 0, when the system has
the bare Kuramoto evolution, the critical K is given by the
Kuramoto model result Kc = 2/[πg(0)] = 2

√
2/π . We see

that Kc(λ) decreases monotonically with increasing λ. Thus,
introducing shuffling dramatically alters the phase diagram
of the bare model: the shuffled system admits a synchronized
phase even when the bare model does not support such a
phase, and synchronizing gets easier with shuffling, which
is the main message of this work. The phase diagram in
Fig. 2(a) suggests that as λ → ∞, the critical K approaches
zero. Said differently, for noninteracting oscillators, a nonzero
r (s)

st is possible only in the trivial limit λ → ∞ (continuous
shuffling). Aside from this trivial case of noninteracting
oscillators, which cannot be called synchronization [12],
our main message nevertheless is what Fig. 2(a) depicts:
For interacting oscillators (K �= 0), shuffling dramatically
reduces the critical K to observe synchronization, facilitating
its occurrence. Until now, we have considered shuffling at a
constant rate λ. Figure 2(e) for shuffling after a regular time
interval Tshuffle shows qualitatively similar results: shuffling
facilitates synchronization.

To demonstrate our results experimentally, we construct a
Wien Bridge (WB) oscillator-network studying synchroniza-
tion [21,22,40]; see Fig. 3(a). A globally coupled network of

FIG. 3. (a) Schematic experimental setup. Six coupled Wien
Bridge (WB) oscillators (one of them shown within dashed lines)
with frequencies varied in real time through voltage-dependent resis-
tors R. The red lines depict incoming voltage signals to an oscillator,
and the green lines show the output voltage signals from each oscil-
lator. The collected voltage data were analyzed, and the results are
shown in panel (b). Here, C = 100 nF, R1 = 3.3 K�, R2 = 1 K�,
Ri = 1 K�, Ro = 30 K�. A potentiometer RP of 10 K� controls the
coupling K . (b) Mean cross-correlation coefficient (CCC) among the
six WB oscillator outputs, as a function of K and shuffling interval
Tshuffle.

N = 6 WB oscillators was built. The coupling strength K is
controlled by a potentiometer. A dimensionless measure of K
is obtained knowing the resistance Rc and the potentiometer
resistance RP: K = (RP − Rc)/RP. The intrinsic frequency of
each WB oscillator depends on the capacitance C and the re-
sistance R. To vary this frequency, voltage-dependent resistors
[41] were used to vary R. To control these resistors, voltage
signals sampled uniformly in [1.5, 2.5] V were generated
and transmitted through a high-speed data acquisition device
(DAQ)—Measurement Computing USB 1616HS. This gener-
ated oscillations with frequency in [250, 350] Hz. The voltage
outputs from individual oscillators were continually recorded
using the same DAQ. The DAQ was set up to collect and relay
voltages at a sampling rate 1.5 × 105 samples/s. The shuffling
interval Tshuffle is measured in multiples of sampling time
interval. The frequency of each oscillator stays constant under
a constant voltage applied to R. After a time interval Tshuffle,
a new voltage is chosen uniformly in [1.5, 2.5] V, effect-
ing sampling of frequencies from the same distribution. This
routine when extended to large N is equivalent to repeated
shuffling of the frequencies after time Tshuffle. After a long
runtime, recorded voltage outputs of the six oscillators were
analyzed. We measure synchrony by means of the mean cross-
correlation coefficient (CCC), i.e., the mean of all pairwise
Pearson correlation coefficients. Figure 3(b) shows a surface
plot of the mean CCC versus K and Tshuffle. The transition
to synchrony shifts to lower K for more frequent shuffling.
This experimental demonstration points to the robustness and
generality of easier synchronization with frequency shuffling.
Given small N = 6, the setup demonstrates shuffling-induced
synchronization not only for infinite, but also for finite (small)
N , despite fluctuations of the average frequency at every
frequency-sampling event.

In this work, the effect of shuffling of frequencies was stud-
ied in coupled nonlinear oscillators: under shuffling, at regular
or random time intervals, synchronization is achieved at arbi-
trary coupling, provided one shuffles frequently enough. Our
work offers a new leash for real applications, especially in
inducing and controlling synchronization under resource con-
straints, besides providing a framework to study time-varying
oscillator networks.
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