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Phase transitions are crucial in shaping the collective dynamics of a broad spectrum of natural systems across
disciplines. Here, we report two distinct heterogeneous nucleation facilitating single step and multistep phase
transitions to global synchronization in a finite-size adaptive network due to the trade off between time scale
adaptation and coupling strength disparities. Specifically, small intracluster nucleations coalesce either at the
population interface or within the populations resulting in the two distinct phase transitions depending on
the degree of the disparities. We find that the coupling strength disparity largely controls the nature of phase
transition in the phase diagram irrespective of the adaptation disparity. We provide a mesoscopic description
for the cluster dynamics using the collective coordinates approach that brilliantly captures the multicluster
dynamics among the populations leading to distinct phase transitions. Further, we also deduce the upper bound
for the coupling strength for the existence of two intraclusters explicitly in terms of adaptation and coupling
strength disparities. These insights may have implications across domains ranging from neurological disorders
to segregation dynamics in social networks.
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Introduction. Complex systems [1–3], characterized by
their intricate interconnections, often exhibit transitions
from incoherence to coherence [4–6]. Phase transitions are
observed in several physical phenomena including crystal-
lization and ferromagnetic transition. Beyond the physical
systems, phase transitions in complex networks can shed more
light on intriguing biological, ecological, and social problems
such as population collapse and species extinction [7], polar-
ization in society [8], and crashes in financial markets [9].
Particularly, transitions from incoherence to synchronization
have been extensively studied employing various network
topologies of real-world relevance [10–12]. Traditionally,
most studies have been primarily concentrated on static net-
works. However, a large class of real-world networks coevolve
with their dynamical states and adapt to the prevailing en-
vironments. For instance, from intricate dynamics of human
brain [13–15], technological systems [16–18], and biological
networks [19–21] to social dynamics [22–24], adaptability
manifests in the entire spectrum of complex networks across
disciplines.

Recent interest in adaptive dynamical networks has surged
due to their potential in addressing complex systems [25,26].
Adaptively coupled phase oscillator models are paradigms for
describing the interplay of function and structure in complex
systems [27]. Dynamical features such as frequency clusters
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[28,29], solitary states [30], recurrent synchronization [31],
and heterogeneous nucleation [32] are specific to adaptive
dynamical networks [33]. In addition to adaptivity, large-scale
systems consist of multiple populations exhibiting diverse
and multiscale behavior [34–36]. Examples include dynamics
of distinct brain regions spanning multiple time scales [37],
ecological communities exhibiting different time scales in
response to infectious diseases [38–40], and time scales of
social ties formation also vary across communities [41,42].
These investigations also reveal that time scale disparity plays
a nontrivial role in shaping their collective dynamics. Studies
have shown that depending on various factors, a system may
opt for different routes during phase transition. For instance,
multiple nucleation pathways can unfold in crystal formation,
each involving distinct intermediate states [43,44]. Similarly,
in the opinion formation dynamics on social networks, indi-
viduals can form a cohesive community with consensus or can
form fragmented structures known as echo chambers [45,46].
The ability to manipulate the transition pathways holds im-
mense importance as it allows to steer the system through the
appropriate intermediate states under favorable conditions.

In this work, we consider a finite-size adaptive network
comprised of two populations with time scale adaptation dis-
parity and coupling strength disparity without any quenched
disorder. We observe two distinct nucleation. In the first
scenario, we find a single large interpopulation frequency
cluster emerges at the population interface due to the coa-
lescence of small intrapopulation clusters. The single large
interfrequency cluster eventually enlarges to the system size
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as a function of the coupling strength facilitating a multi-
step transition to global synchronization. In sharp contrast,
intrapopulation clusters nucleate and coalesce together to
manifest two completely entrained intrapopulation clusters
as a function of the coupling strength for a strong intrapop-
ulation adaptation rate. Finally, the two intraclusters merge
together for a large coupling strength resulting in a single-step
transition to synchronization. Recently, similar heterogeneous
nucleation resulting in multistep and single-step transitions
are reported to be facilitated only by the presence of dis-
tinct disorders [32] in a single population. However, here
we show the manifestation of similar heterogeneous nu-
cleation leading to distinct phase transitions solely due to
adaptation and coupling strength disparities among two pop-
ulations. A strong interpopulation coupling strength always
favors nucleation of interfrequency clusters leading to multi-
step transition even with a strong intrapopulation adaptation
rate. Similarly, a strong intrapopulation coupling strength
always favors nucleation of intrafrequency clusters facilitat-
ing single-step transition even with a strong interpopulation
adaptation rate. These results reveal that the disparity in the
coupling strength determines the nature of nucleation leading
to distinct synchronization transition. We analytically deduce
the macroscopic evolution equations for the cluster dynamics
using the collective coordinates framework [47] and show
that the latter corroborates the simulation results. Further, we
also deduce the upper bound for the coupling strength for the
existence of two intraclusters explicitly, at which the abrupt
single-step transition manifests, in terms of adaptation and
coupling strength disparity parameters.

The model. We consider an extension to the adaptive Ku-
ramoto model, which has been used as a paradigmatic model
to study synchronization phenomena in fields ranging from
neuronal networks to electrical circuits [48]. Our model com-
prises of N globally coupled phase oscillators with adaptive
coupling represented as

dφ
η
i

dt
= ω

η
i − 1

N

∑
η′

σηη′

Nη′∑
j=1

κ
ηη′
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(
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η
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η′
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)
, (1a)
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η′
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]
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where ω
η
i and φ

η
i (t ) are the natural frequency and the phase

of the ith oscillator (i = 1, 2, . . . , Nη) in the ηth population,
respectively. Here, we consider two equally sized populations
η = {A, B}. The coupling weights κ

ηη′
i j (t ) ∈ [−1, 1] coevolve

with the phases of the oscillators, σηη′ is the coupling strength,
εηη′ is the time-scale parameter determining the adaptation
rate of the coupling weights, and the parameter β accounts
for different adaptation rules [49,50]. We have fixed β =
−0.53π , close to the symmetric rule [32], which is also re-
ferred to as Hebbian adaptation rule.

Interpopulation and intrapopulation coupling strengths
are governed by σAA = σ (1 + 
σ ) and σAB = σ (1 − 
σ ),
respectively, where 
σ is the coupling strength disparity
parameter, and σ is the control parameter. Analogously, in-
terpopulation and intrapopulation time scales are governed by
εAA = ε(1 + 
ε ) and εAB = ε(1 − 
ε ), respectively, where

ε is the adaptation disparity parameter. When 
σ=
ε= 0,

the network reduces to a single homogeneous population
without any disparity as in [32]. σAA(σAB) and εAA(εAB)
are larger (smaller) for 
σ > 0 and 
ε > 0, and smaller
(larger) for 
σ < 0 and 
ε < 0, respectively. The interac-
tions are chosen to be symmetric with σAA = σBB, εAA = εBB,

σAB = σBA, and εAB = εBA. Note that rescaling of time t with
the transformations ωi → ω′

i/τ , σ → σ ′/τ , and ε → ε′/τ re-
tains the dynamics of the model, where τ is a constant factor.

Results. The system of N = 50 adaptively coupled phase
oscillators (1) are numerically solved using the Runge-Kutta
fourth order integration scheme. We assign oscillators with
indices i = 1, . . . , N/2 to the first population, and oscillators
with indices N/2 + 1, . . . , N are assigned to the second pop-
ulation. The oscillators in each population are sorted in the
increasing order of their natural frequencies. φ

η
i ’s are chosen

randomly from the interval [0, 2π ). We have fixed κ
ηη′
i j (0) =

0 ∀ i, j, ε = 0.01, and β = −0.53π .
We employ the synchronization index S [32], to quantify

the degree of coherence in the network, represented as

S = 1

N2

∑
η,η′

Nη∑
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j=1

sηη′
i j , (2)

where sηη′
i j measures the pairwise frequency synchronization

between ith and jth oscillators defined as
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where δ is a predefined threshold and 〈φ̇η
i 〉 =

limT →∞(1/T )
∫ T0+T

T0
φ̇

η
i dt is the mean phase velocity of

the ith oscillator calculated after a large transient T0. For
S = 1, the system is completely synchronized, whereas
S = 1/N corresponds to complete incoherence.

First, we discuss the phase transition facilitated solely
by the adaptation disparity 
ε when 
σ = 0. The network
(1) exhibits a multistep transition to global synchronization
as a function of σ for 
ε = −0.5 as depicted in Fig. 1
(green/light gray squares). The dynamics of the coupling
weights κAB

i j (t ) unveil crucial insights on the underlying mech-
anism for such a transition. The snapshots of κAB

i j (t ) are
plotted in Figs. 2(a)–2(d) for 
ε = −0.5. It is evident that
a single large frequency cluster emerges at the interface
of the populations [Fig. 2(a)] due to strong interpopulation
adaptation (εAB > εAA). As the oscillators in each population
are arranged in the order of increasing frequencies, oscilla-
tors with nearby frequencies are entrained to form smaller
intrapopulation clusters as in Fig. 2(a) for σ = 0.7. The in-
terpopulation cluster grows in size with an increase in the
coupling strength due to the subsequent entrainment of nearby
oscillators [Figs. 2(a)–2(c)], which leads to gradual increase
in the synchronization index S as in Fig. 1 and eventually
results in the multistep transition to global synchronization
[Fig. 2(d)]. Note that the strong interpopulation adaptation
facilitates the rapid entrainment of oscillators from different
populations resulting in the intercluster nucleation, which in
turn leads to the multistep transition. In contrast, the inter-
cluster nucleation is seeded by the disorder at 〈ω〉 = 0 in [32].
In stark contrast, for 
ε > 0, the network exhibits a single-
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FIG. 1. Synchronization transition of the system of N = 50 glob-
ally coupled phase oscillators (1) for 500 realizations. The coupling
strength disparity is fixed as 
σ = 0. The system undergoes a multi-
step transition for 
ε = −0.5, whereas for 
ε = 0.5 system follows
a single-step transition to synchrony. The inset illustrates that the
natural frequencies of the oscillators are drawn from a uniform
distribution in the range of [−0.25, 0.25]. We have fixed δ = 0.001.
Other parameters are β = −0.53π and ε = 0.01.

step transition to global synchronization as corroborated by
S in Fig. 1 for 
ε = 0.5 (blue/dark gray squares). Again,
κAB

i j (t ) uncover the underlying mechanism for such an abrupt
synchronization transition. The snapshots of κAB

i j (t ) for 
ε =
0.5 are depicted in Figs. 2(e)–2(h). Strong intrapopulation
adaptation (εAA > εAB) for 
ε > 0 facilitates intrapopulation
clusters [Fig. 2(e)] due to rapid entrainment of nearby oscilla-
tors within populations. The intrapopulation clusters enlarge
[Fig. 2(f)] and eventually manifest as completely entrained
intrapopulation clusters as a function of the coupling strength
[Fig. 2(g)], which results in gradual increase in the synchro-
nization index S ≈ 0.5 as in Fig. 1. Finally, the completely
entrained intrapopulation clusters coalesce together above a
critical coupling strength resulting in single-step transition to
global synchronization [Fig. 2(h)], which is corroborated by

FIG. 2. The evolution of coupling weights with coupling strength
σ in the absence of the coupling strength disparity 
σ = 0 eluci-
dating multistep transition facilitated by interpopulation frequency
cluster (a)–(d) for 
ε = −0.5, and single-step transition facilitated
by intrapopulation frequency clusters (e)–(h) for 
ε = 0.5. The val-
ues of σ are (a) 0.7, (b) 1.2, (c) 1.4, (d) 3.9, (e) 0.75, (f) 0.95, (g) 5.0,
and (h) 7.7. Other parameters are the same as in Fig. 1.

an abrupt jump in the synchronization index to S = 1 (Fig. 1
for 
ε = 0.5). Note that the strong intrapopulation adaptation
facilitates the rapid entrainment of oscillators from within
populations resulting in the intracluster nucleation, which in
turn leads to the single-step transition. In contrast, the intr-
acluster nucleation is seeded by the disorders symmetrically
located away from 〈ω〉 = 0 in [32]. Thus, one can reinforce a
particular route to the phase transition by tuning the time scale
of adaptation.

Heat maps of S are depicted in the (σ,
ε ) parameter
space in Figs. 3(a)–3(c) for three distinct 
σ . For 
σ = 0,
there is a single-step transition for 
ε > 0 and multistep
transition for 
ε < 0 [Fig. 3(a)] as discussed above. Never-
theless, the effect of tradeoff between 
σ and 
ε is evident
from Figs. 3(b) and 3(c) obtained for 
σ = −0.5 and 0.5,
respectively. Stronger interpopulation coupling strength (σAB)
for 
σ = −0.5 and stronger interpopulation adaptation (εAB)
in the range of 
ε ∈ [−1, 0) manifest multistep transitions
[Fig. 3(b)]. Despite strong intrapopulation adaptation (εAA),
the stronger intrapopulation coupling (σAA) facilitates mul-
tistep transition in the range of 
ε ∈ (0, 0.7) in Fig. 3(b).
This elucidates that the coupling disparity (
σ ) dominates
the adaptation disparity (
ε) in facilitating phase transitions.
However, when 
ε → 1, εAB → 0, and hence stronger εAA

facilitates nucleation of clusters within populations which re-
sults in entrained intrapopulations and eventually facilitating
a single-step transition despite a stronger σAB in the range
of 
ε ∈ (0.7, 0.9). Further, εAB ≈ 0 when 
ε ≈ 1 and con-
sequently only two-cluster state manifest without any global
synchronization. Both εAA > εAB and σAA > σAB facilitate nu-
cleation within intrapopulations and a single-step transition
in the range of 
ε ∈ (0, 1) in Fig. 3(c) for 
σ = 0.5. Now,
again a stronger σAA leads to a single-step transition even in
the range of 
ε ∈ (0,−0.5) [Fig. 3(c)], where interpopula-
tion adaptation is larger, which reinforces that the coupling
disparity (
σ ) dominates the adaptation disparity. However,
εAB 
 εAA for 
ε ∈ (−0.5,−1) and hence a single large nu-
cleation manifests at the population interface leading to a
multistep transition.

Mesoscopic dynamics. Being evident that the transition
from asynchrony to global synchronization involves nucle-
ation and merging of frequency clusters, the dynamics of the
full system can be captured by cluster level description. In
the following, we employ a collective coordinate approach
to analyze the synchronization of intrapopulation clusters
[32,47,51,52]. First, we will sketch out the derivation of the
cluster level approximation and show that it captures the
synchronization transitions of the full system (1). Then, we
will use a perturbation approach in the weak coupling limit to
estimate the coupling strength at which the single-step transi-
tion takes place. The dynamical variables corresponding to the
phase and coupling weights of an oscillator can be expressed
in terms of collective coordinates φ

η
i,μ(t ) and κηη′

μν (t ) with the
ansatz

φ
η
i ≈ φ

η
i,μ = �η

μ(t )
(
ω

η
i − �η

μ

) + f η
μ (t ), (4a)

κ
ηη′
i j (t ) ≈ κηη′

μν (t ). (4b)

We consider Nη
c number of clusters in the ηth population,

and clusters are described by indices μ, ν. The term
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FIG. 3. Heat maps of synchronization index S, for ten different realizations, in the (σ,
ε) parameter space elucidating multistep and
single-step transitions. (a) 
σ = 0, (b) 
σ = −0.5, and (c) 
σ = 0.5. The dashed black curve is the analytical estimate for the upper bound
for the two cluster state. Other parameters are the same as in Fig. 1.

�η
μ(ωη

i − �η
μ) describes the frequency drift of the ith

oscillator within the μth cluster in the population η, �η
μ and

f η
μ are the mean frequency and collective phase of the μth

cluster, respectively. κηη′
μν governs the intercluster coupling

weights. Errors arising in describing the evolution of the
phase and coupling weights in terms of collective coordinates
can be defined as Eφ

η
i

= φ̇
η
i,μ − φ̇

η
i and E

κ
ηη′
i j

= κ̇ηη′
μν − κ̇

ηη′
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respectively. The evolution equations for the collective
coordinates (�η
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μ, κηη′

μν ) are obtained by requiring the error
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of the ansatz. The frequency distribution corresponding
to the μth cluster of the ηth population can be
expressed as ρη

μ(ω) = 2/nη
μ for (�η

μ − 0.25nη
μ � ω �

�η
μ + 0.25nη

μ), and zero otherwise. Here, nη
μ is the ratio

(Nη
μ/N) of oscillators. In the continuum limit, the cluster

order parameter rη
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μ| ∑i∈Cμ
eiφη

i,μ | can be expressed
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μ�η

μ) sin (nη
μ�η

μ/4) with the variance of natural
frequencies of the cluster as ξη

μ = (nη
μ)2/48. Consequently,

the evolution equations for the collective coordinates are
governed by

�̇η
μ = 1 + 1
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η
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η
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μ�η
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η′
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nη′
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ν σηη′κηη′
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f η
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κ̇ηη′
μν = −εηη′

[
κηη′

μν + rη
μrη′

ν sin
(

f η
μ − f η′

ν + β
)]

. (5c)

In the context of the mesoscopic description, the synchro-
nization index (2) can be redefined, to characterize the
synchronization of frequency clusters, as

S =
∑
η,η′

∑
μ,ν

nη
μnη′

ν sηη′
μν . (6)

Akin to microscopic context (3), sηη′
μν = 1, if 〈 ḟ η

μ〉 = 〈 ḟ η′
ν 〉,

otherwise sηη′
μν = 0. Although the single-step transition can

be described by a minimum of two clusters, a larger num-
ber of clusters are required for a complete description of
the multistep transition. The phase transitions displayed by S
(6), estimated from the evolution equations for the collective
coordinates, corresponding to two populations of four clusters
each are depicted in Fig. 4 for two values of 
ε. It is evident
from the figure that the collective coordinate approach clearly
displays single-step and multistep transitions for 
ε = 0.5
and −0.5, respectively, in agreement with the simulation re-
sults in Fig. 1.

Now, an analytical estimate of the upper bound for the
coupling strength corresponding to the completely entrained
clusters of intrapopulations [Fig. 2(g)] during the single-step
transition can be obtained using the perturbative approach
in the weak coupling limit [32]. Assuming the intracluster
phase difference ( f = fμ − fν) grows linearly in time with

FIG. 4. Phase transitions from the evolution equations for the
collective coordinates corresponding to two populations each hav-
ing four clusters for 
σ = 0 corroborating the simulation results in
Fig. 1. The natural angular frequencies of clusters (�η

μ) are drawn
from uniform frequency distribution in the range [−0.25, 0.25].
Other parameters are the same as in Fig. 1.
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the relative phase velocity �′, the collective coordinates can
be expressed in terms of perturbation in α as

�μ(t ) = �(0)
μ + α�(1)

μ (t ) + O(α2), (7a)

κμν (t ) = κ (0)
μν + ακ (1)

μν (t ) + O(α2), (7b)

f (t ) = �′t + α f (1)(t ) + O(α2). (7c)

Substituting the perturbed equations in (5) leads to the
quadratic equation in �′

(�′)2 + �′(�μ − �ν ) − εμνσμν

2

(
r (0)
μ r (0)

ν

)2
sin β = 0. (8)

The condition for the existence of the real solution of (8)
requires (�μ − �ν )2 � −2εμνσμν (r (0)

μ r (0)
ν )2 sin β. Now, the

upper bound for the coupling strength for the existence
of the completely entrained intrapopulation clusters can be
obtained as

σc =
⎛
⎝ (�μ − �ν )2

2ε(1 − 
ε )(1 − 
σ )
(
r (0)
μ r (0)

ν

)2
sin (−β )

⎞
⎠. (9)

It is evident that σc depends explicitly on the adaptation and
the coupling strength disparities. For a rough estimate of σc,
one can consider r (0)

μ ≈ r (0)
ν ≈ 1. For the values of the pa-

rameters in Fig. 1, the upper bound can be obtained as σc =
6.28 with �μ − �ν = −0.25, which almost agrees with the
single-step transition in Figs. 1 and 4. Now, the critical curve
corresponding to the upper bound can be obtained as 
ε =
1 − [(�μ − �ν )2/(2εσc(1 − 
σ )(r (0)

μ r (0)
ν )2 sin (−β ))], which

is depicted as a dashed curve in Figs. 3(a)–3(c) across which
the single-step transition takes place. The finite size effect and
the first order approximation for the order parameters r (0)

μ and
r (0)
ν contribute to the error between the analytical estimate and

the numerical results in Fig. 3.
Discussion and conclusion. We have considered a globally

coupled finite-size adaptive network, wherein the subpopu-
lations are distinguished by different degrees of time scale
adaptation (
ε ) and coupling strength (
σ ) but with uniform
distribution of natural frequencies. We have found that nu-
cleations of intrapopulation frequency clusters coalesce at the
interface of the two populations facilitating the manifestation
of a single large interpopulation frequency cluster for a strong
interpopulation adaptation rate, 
ε < 0, without any coupling
strength disparity. Eventually, the single large interfrequency
cluster grows to the system size as the coupling strength is
increased, facilitating a multistep transition to global synchro-
nization. In contrast, nucleations of intrapopulation frequency
clusters coalesce among themselves to manifest completely
entrained two intrapopulation frequency clusters as a function
of the coupling strength for a strong intrapopulation adap-
tation rate 
ε > 0, without any coupling strength disparity.
Finally, the two intra-frequency-clusters coalesce together fa-
cilitating a single-step transition to global synchronization.

Synchronization index S clearly displays the two distinct tran-
sitions for two distinct values of 
ε when 
σ = 0.

Further, we found that a strong interpopulation coupling
strength, 
σ < 0, always favors nucleation of interfrequency
clusters leading to multistep transition even for a strong
intrapopulation adaptation rate (
ε > 0). Furthermore, we
found that a strong intrapopulation coupling strength, 
σ > 0,
always favors nucleation of intrafrequency clusters facilitating
single-step transition even with a strong interpopulation adap-
tation rate (
ε < 0). These results corroborate that the degree
of disparity in the coupling strength strongly determines the
nature of nucleation leading to distinct synchronization transi-
tion. We have analytically deduced the macroscopic evolution
equations for the cluster dynamics using the framework of
collective coordinates [47]. The synchronization transitions
obtained using the collective coordinates are found to agree
with the simulation results. Further, we have also deduced
the upper bound for the coupling strength for the existence
of two intraclusters explicitly in terms of adaptation and cou-
pling strength disparity parameters, which is found to almost
match the coupling strength at the onset of abrupt single-step
transition. It is also evident that the mesoscopic description
brilliantly captures the multicluster dynamics.

Note that similar heterogeneous nucleation resulting in
multi- and single-step transitions are reported to be facilitated
by distinct quenched disorders [32], wherein the nucleations
emerge at the site of the disorder(s) resulting in multi-
(single-)step transitions. However, in our case with uniform
distribution of natural frequencies, small intracluster nucle-
ations coalesce either at the population interface or within
the populations resulting in multi- and single-step synchro-
nization transitions depending on the trade off between the
adaptation and coupling disparities. Understanding the mech-
anism of nucleations corresponding to distinct transition due
to the inherent disparities of complex real-world systems is
of paramount importance as they shed more light on the
role of disparities among different regions of the brain in
synchronization in unraveling brain functions and neurolog-
ical disorders [53], segregation and polarization dynamics in
social networks [46], etc. Moreover, our findings hold sig-
nificance in the network control theory, offering strategies to
optimize adaptive networks.
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