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Periodic driving shape controls energy transmission
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In the early 2000s, Geniet and Leon [Phys. Rev. Lett. 89, 134102 (2002)] discovered the nonlinear supra-
transmission (NST) in a medium with a forbidden frequency band gap. It is a process in which nonlinear
structures are created by a sinusoidal harmonic boundary condition imposed at a frequency in the band gap.
The present study extends this concept and shows that an optimal shape of a periodic nonsinusoidal excitation
may induce (or inhibit) energy flow through the lattice below (or above) the NST threshold, demonstrating
that nonlinear supratransmission is reliant not only on the driving amplitude but also on its shape. This is
evidenced through numerical simulations and mathematical calculations varying the excitation signal shape in
the Fermi-Pasta-Ulam case study. Setting the shape parameter to zero recovers the results of the literature in
relation to the sinusoidal signal.
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Introduction. A periodic boundary condition placed at a
frequency in the band gap creates nonlinear structures termed
gap solitons in a medium with a naturally forbidden frequency
band gap (FFBG) [1]. The NST phenomenon is induced by
an instability of the evanescent wave profile of the drive over
a critical amplitude [2–4], and it may be found in a variety
of physical systems, including mechanical [1], electrical [2],
and optical arrays [5]. The system can be multicomponent [6],
two-dimensional [7], diatomic [8], cross-linked [9,10], coni-
cal granular [11], or flat-band lattices [12].

The NST is controlled in unique circumstances such
as inelastic impact limitations [13], collective escape [14],
waves collisions [15], noise [16], impurity [17], finite-size
effect [18], zero-frequency drive [10], disorder [19,20], or
hysteretic damping [21]. The unanswered topic of how this
phenomenon may develop from nonsinusoidal external sig-
nals motivated the present study.

Although harmonic sinusoidal driving is the most com-
mon kind of excitation in prior studies [1–21], it does not
reflect generic excitations seen in nature and is mostly a
solution of linear systems. Nonsinusoidal and shape-varying
periodic forces driving nonlinear systems have lately at-
tracted attention. A sole adjustment of the external driving
force shape (with its period and amplitude kept constant)
can regulate chaos, escape, and resonance, to name a few
examples [22–24]. It can control the mobility and stability of
intrinsic localized modes in nonlinear lattices [25,26].

While previous studies have all looked for a driving
amplitude threshold greater than a certain value (frequency-
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dependent) known as the supratransmission threshold to
trigger wave propagation [1–11,13–20], obvious questions
arise, such as the following: Can the NST phenomenon be
controlled with signal parameters other than its amplitude?
The present study shows that a signal shape may induce (or
inhibit) FFBG energy flow through the lattice, indicating that
NST is dependent on signal form as well as driving amplitude.

Nonlinear Lattice and the External Signal. We
consider the β-Fermi-Pasta-Ulam (FPU) system ün =
un−1 − 2un + un+1 − (un+1 − un)3 + (un − un−1)3, where
n = 1, 2, 3, . . . , N − 1, N [27]; un stands for the displacement
from its equilibrium position of the nth particle of unit mass.
This model is selected as an illustrative case study for the
sake of simplicity and comparison purposes with literature
results [27], but any other nonlinear lattice [1–21] can
be analyzed, too. After setting the plane-wave solution
un(t ) = A cos(ωt − qn), with q and ω the wave number
and frequency, respectively, the linear dispersion relation is
ω(q) = √

2[1 − cos(q)]. For q in the first Brillouin zone [28]
(q ∈ [0, π ]), the FFBG is ω ∈]2,∞[. To study the effects of
variable shape excitation, two types of boundary conditions

u0(t ) =
{

u(1)
0 = A sn

( 2κ (r)ω
π

t
)
,

u(2)
0 = A 2r+(1+r2 ) cos(ωt )

1+r2+2r cos(ωt ) ,
(1)

are considered. In Eq. (1), sn(•) is the Jacobi elliptic function
and κ (•) is the complete elliptic function of the first kind. The
variable r is the shape parameter of the time-periodic function
u0(t ) with the frequency ω. When the parameter r is varied
(Fig. 1), the functions u(1)

0 and u(2)
0 keep the same amplitude

A and period T = 2π/ω and adopt symmetric and asymmet-
ric shapes, respectively. The functions u(1)

0 (Jacobi elliptic)
and u(2)

0 (modified Remoissenet-Peyrard function) [22,23] are
crafted in such a way that when r = 0, the usual harmonic
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FIG. 1. Signals u(1)
0 and u2

0 for several values of the shape pa-
rameter r: (a) blue dash-dotted line (r = 1–10−10), black diamond
(r = 0.99), red solid line (r = 0). The blue circles stand for sinu-
soidal signal A0 sin(ωt ); (b) black dotted line (r = −0.9), red solid
line (r = 0), red squares (r = 0.35), blue dashed line (r = 0.9). Blue
circles stand for the sinusoidal signal A0 cos(ωt ). For both figures, the
amplitude and the frequency are A0 = 1 and ω = 3.5, respectively.

functions u0(t ) = A sin(ωt ) and u0(t ) = A cos(ωt ) used in
the NST literature [1–11,13–20] are recovered, respectively.
Therefore, they represent generalized nonsinusoidal periodic
functions.

Analytical Treatment of the NST. To gain a good un-
derstanding of the shape parameter effect, the methodology
employed in Refs. [14,27,29] for estimating analytically the
NST threshold is employed. Following Refs. [30,31], by using
the Fourier series expansion of the function u(1)

0 , and keeping
only the first three terms, the elliptic deformable function can
be rewritten as a sum of sinusoidal signals

u(1)
0 (t )

A
= χ1 sin(ωt ) + χ3 sin(3ωt ) + χ5 sin(5ωt ), (2)

where χ1 = 2π
rκ (r)

√
c

1−c , χ3 = 2π
rκ (r)

c
√

c
1−c3 , and χ5 = 2π

rκ (r)
c2√c
1−c5 ,

with c = exp[−πκ (
√

1 − r2)/κ (r)] and 0 � r � 1. Follow-
ing Ndjomatchoua et al. [22,23], a Fourier expansion that
approximates u(2)

0 is

u(2)
0 (t )

A
= λ0 + λ1 cos(ωt ) + λ2 cos(2ωt ) + λ3 cos(3ωt ),

(3)
where λ0 = r, λ1 = 1 − r2, λ2 = −(1 − r2)r, and λ3 = (1 −
r2)r2. This second approximation is more accurate for |r| �
0.5. The approximations in Eqs. (2) and (3) correctly match
their original analog in Eq. (1). Since the coefficients χi, i =
1, 3, 5 and λi, i = 1, 2, 3, respectively, are of the same order,
and considering the contribution of higher harmonic terms to
the fundamental frequency’s signal (ω), the solutions to the
FPU lattice equation are sought in the form

u(1)
n (t ) = 1

2
An(t )

2∑
�=0

χ2�+1 exp[j ((2� + 1)ωt − qn)] + c.c.,

u(2)
n (t ) = λ0An(t ) + 1

2
An(t )

3∑
�=1

λ� exp[j (�ωt − qn)] + c.c.,

where j 2 = −1, and c.c. stands for the complex conjugate.
In what follows, the triplets (χ1, χ3, χ5) and (λ1, λ2, λ3) will
be uniquely denoted (	1, 	2, 	3). After inserting these An-
sätze in the FPU equation, and consider the slowly varying

envelope approximation (in space and time), we use the
continuum approximation [An(t ) → A(x, t )] and Taylor’s ex-
pansion. We obtain at the edge q = π of the first Brillouin
zone, when collecting terms of exp(jωt ), the well-known
nonlinear Schrödinger equation

− j∂t A +
(

ω2 − 4

2ω

)
A − 1

2ω
∂2

x A − Q|A|2A = 0,

Q = 6

ω

(
	2

1 + 2	2
2 + 2	2

3 + 	2
2	3

	1

)
, (4)

where ∂t ≡ ∂/∂t and ∂2
x ≡ ∂2/∂x2. Similarly to [8,27,29],

the supratransmission threshold (Ath) is obtained through the
maximum amplitude of the static breather solution of Eq. (4).
Since this last equation is derived through terms of exp(jωt ),
only terms of cos(�ωt ), � � 1 shall be considered for the
derivation of the threshold, which is thus expressed as

Ath(ω, r) = γ

√√√√ ω2 − 4

6	2
1 + 12	2

2 + 12	2
3 + 6 	2

2	3

	1

, (5)

where γ = χ1 and γ = |λ0| + λ1 for symmetric [u(1)
0 (t )]

and asymmetric [u(2)
0 (t )] shape signals, respectively, and

	i = 	i(r), i = 1, 2, 3. When r = 0, we recover the NST
threshold Ath =

√
(ω2 − 4)/6 previously found by Khomeriki

et al. [27].
Energy Transmission Control. The nonlinear supratrans-

mission allows energy to flow through the medium with
the condition ω > 2. Following the literature [14], the NST
threshold is estimated numerically by the brute-force method
combined with the dichotomic search with a precision of
10−6. This energy flow below and above the threshold is
studied with the energy density flux between two consecutive
particles [20,27],

Jn,n+1 = (u̇n − u̇n−1)[(un − un−1) + (un − un−1)3]. (6)

The size of the lattice is fixed at N = 100 particles. To
avoid initial shocks, the signal shall be introduced smoothly
(u0(t ) → u0[1 − exp(−t/τ )], with τ = 10) in the system,
with the chain initially at rest [un(0) = u̇n(0) = 0] [14,27].
The reflected waves coming back from the boundary n = N
are attenuated by adding a dissipative term (−γ u̇n, with γ =
5) to the last ten particles [14,27]. The threshold [Eq. (5)]
versus the driving frequency is plotted together with its nu-
merical analog for the symmetric and asymmetric signals
shape deformations (Fig. 2). A good agreement between both
solutions can be observed. Moreover, displaying the energy
density as a function of the shape parameter for fixed values
of the driving amplitude illustrates the following:

(i) A sharp increase (revealing the NST triggering) for the
case of symmetric shape deformation [Fig. 3(a)].

(ii) A sharp increase (NST triggering), followed by a zone
of nonzero density (energy transmission), and thereafter a
sharp decrease (suppression of NST) for the case of asym-
metric shape deformation [Fig. 3(b)].

The NST threshold value A = Ath = 1.229, which was
found early for a FPU lattice driven by a sinusoidal signal
of frequency ω = 3.5 [27], emerges distinctly (J50,51 > 0) for
r = 0 [Fig. 3(c)]. Surprisingly, Fig. 3(a) reveals an energy
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FIG. 2. Analytical (blue solid lines) and numerical (red circles)
thresholds vs driving frequency for symmetric (a) and asymmetric
(b) shape deformations; r = 0.5 (a) and r = 0.99 (b).

propagation for a driving amplitude A = 1.1 triggered at a
critical shape parameter value r = 0.984 of the signal u(1)

0 .
In contrast, when considering the signal u(2)

0 with an ampli-
tude of A = 1.4 [Fig. 3(b)], the wave transmission does not
occur when the shape parameter is beyond |r| = 0.35. On the
range of interesting observations, we note a decrease of the
supratransmission threshold with the increase of the shape
parameter in the case of symmetric shape deformation and,
in contrast, an increase of this threshold with the increase of
the absolute value of the shape parameter in the asymmetric
case (Fig. 4), revealing that the supratransmission is strongly
dependent on the shape of the periodic signal.

The difference in behavior between the two analyzed sig-
nals regarding the NST threshold is not due to symmetry but
rather stems from the interaction among various harmonics
observed in the Fourier series expansion. Specifically, for the
symmetric signal, the coefficients of the harmonics are exclu-
sively positive, leading to cooperative effects that amplify the
amplitude of the fundamental harmonic up to that of the sinu-
soidal signal A sin(ωt ). This amplification boosts its energy,
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FIG. 3. Energy density flux at the middle of the nonlinear chain
J50,51 vs the shape parameter for symmetric deformation (a) and
asymmetric deformation (b). Energy density vs the driving amplitude
for shape parameter r = 0 (c). A0 = 1.1 (a) and A = 1.4 (b). For all
three subfigures, ω = 3.5.
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FIG. 4. Analytical (a),(b) and numerical (c),(d) threshold vs
driving frequency in the FFBG for several values of r. (a) and
(c) Symmetric, (b) and (d) asymmetric deformations.

subsequently resulting in the reduction of the NST threshold.
Conversely, for the asymmetric signal, the coefficients of the
harmonics can vary in sign, resulting in competitive effects
that diminish the amplitude of the fundamental harmonic
below A. Consequently, more energy is required to initiate
supratransmission, thereby enhancing the NST threshold. This
phenomenon can be visualized through the spectral represen-
tation of both external signals u(1)

0 and u(2)
0 (Fig. 5).

Discussion and Conclusion. Through this study on the
supratransmission phenomenon with changing shape signals,
we discovered that, contrary to popular belief, supratransmis-
sion is a phenomenon that depends on more than just the
driving amplitude. The shape of the signal is an important
parameter in the study of the phenomenon and should be
considered in all studies on the subject.

Adjustment of the threshold, especially lowering it, is cru-
cial in the quest for a purer waveform of solitonic pulses,
as well as improving the efficiency and flexibility of hyper-
sensitive detectors [32,33] and emitting solitonic pulses in a
range of applications. The usage of defects can achieve an
important threshold reduction [17]. Although they achieve a
good result, such approaches cannot be easily implemented
due to the need to modify the system itself at specific lattice
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FIG. 5. Spectral density of the signals u(1)
0 (a) and u(2)

0 (b). ω =
3.5, A = 0.6, r = 0.9999. Red dash-dotted lines stand for the driving
amplitude values.
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locations [17]. This study demonstrated that a well-selected
shape for the exciting signal can achieve a satisfying result
without modifying the system.

Other original methods were employed to transmit a peri-
odic wave with an amplitude below the threshold. This wave
can propagate if another harmonic driving is added at the right
end [15], or if a noise is added in the initial incident driv-
ing [16]. The present study showed that the shape variation
suffices to achieve wave energy flow in the lattice.

To experimentally verify the theoretical prediction of this
work, such deformable signals may be easily built in a

laboratory, for example using electrical circuits (e.g., see
Ref. [22]).

In conclusion, the current research expands the nonlin-
ear supratransmission notion by proving that an appropriate
signal shape may induce (or block) energy flow through the
lattice below (or above) the NST threshold, revealing that
nonlinear supratransmission is dependent not only on driving
amplitude but also on signal form, and thereafter that for a
given frequency, there is not only one but rather an infinity of
supratransmission thresholds depending on the shape of the
driving signal.
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