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This paper addresses the exploration-exploitation dilemma inherent in decision-making, focusing on multi-
armed bandit problems. These involve an agent deciding whether to exploit current knowledge for immediate
gains or explore new avenues for potential long-term rewards. We here introduce a class of algorithms,
approximate information maximization (AIM), which employs a carefully chosen analytical approximation to
the gradient of the entropy to choose which arm to pull at each point in time. AIM matches the performance of
Thompson sampling, which is known to be asymptotically optimal, as well as that of Infomax from which
it derives. AIM thus retains the advantages of Infomax while also offering enhanced computational speed,
tractability, and ease of implementation. In particular, we demonstrate how to apply it to a 50-armed bandit
game. Its expression is tunable, which allows for specific optimization in various settings, making it possible to
surpass the performance of Thompson sampling at short and intermediary times.
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Introduction. The exploration-exploitation dilemma is a
fundamental challenge in decision-making. It arises when an
agent must choose between exploiting its current knowledge
to maximize immediate rewards or acquiring new information
that may lead to greater long-term gains. This dilemma is
ubiquitous in various fields, from anomaly detection [1] to
the modeling of biological search strategies [2–4] and human
decision-making [5–9].

The multiarmed bandit problem is a paradigmatic exam-
ple of an explore-exploit problem and has been extensively
studied and applied in a range of fields, including applied
mathematics [10–16], animal behavior [17], neuroscience
[18–21], clinical trials [22–24], finance [25], epidemic control
[26], and reinforcement learning [27,28], among others. In the
multiarmed bandit problem, an agent is presented with a set
of possible actions, or “arms,” each associated with a prob-
abilistic reward (akin to a multiarmed slot machine game).
The agent must choose which arm to pull at each time step
to maximize its cumulative reward over a fixed or infinite time
horizon. Hence, at each time step, the agent can either play the
arm with the best-observed average reward or explore other
arms to test if they would not lead to increased rewards.

The information maximization principle has emerged as
an effective decision-making strategy and has demonstrated
its applicability to different partially known and fluctuating
environments [29–31]. Specifically, its original application
to target search is termed infotaxis [2], and its application
to classical bandit settings was coined Infomax [32]. It has
shown empirical state-of-the-art performance.

Here, our goal is to build a class of algorithms based on this
information maximization principle with a focus on analytical
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tractability, computational efficiency, and extendability, all the
while demonstrating its robustness for a range of priors.

In the following, we begin with a brief introduction to the
bandit problem, followed by a presentation of the information-
maximization principle. We then introduce our procedure for
approximating the entropy analytically, leading to the approx-
imate information maximization (AIM) strategy. We finally
provide empirical evidence of AIM’s efficiency before delving
into a discussion of its various properties and implications.

Multiarmed bandit problems. We consider the classic mul-
tiarmed bandit setting [33]. At each point in time, t , an
agent chooses an arm, At , between K different arms, A =
{1, 2, . . . , K}. The chosen arm it returns a stochastic reward,
Xt , drawn from a distribution whose mean, μit , is unknown
to the agent [Fig. 1(a)]. The agent’s goal is to maximize
the cumulative reward (equivalently, minimize the cumulative
regret) with no time horizon. Formally, we aim to minimize
the expected regret [33] E[R(t )] with

R(t ) = μ∗t −
t∑

τ=1

Xτ , (1)

where μ∗ is the expected reward of the best arm. The re-
gret R(t ) measures the cumulative difference between the
rewards obtained by the algorithm and the expected reward
that it would have obtained by choosing the best action. Op-
timal strategies, regardless of their details, are characterized
by the following asymptotic bound (the Lai and Robbins
bound) [34]:

〈R(t )〉t→∞ � β log(t ), (2)

where β is a constant factor that depends on the
reward distributions. For the two-armed Bernoulli and
Gaussian bandit games we consider below, it is given by
β = (μ∗ − μ2)/DKL(μ2, μ

∗), where μ2 is the expected
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FIG. 1. (a) Illustration of the multiarmed bandit problem. At
each time step t the agent chooses an action, i = At , that returns
a reward, ri(t ), drawn from a distribution with unknown mean μi.
The agent’s goal is to minimize the cumulative regret R(t ) [see
Eq. (1)]. (b) Posterior distributions of bandit values after playing the
two-armed Bernoulli game for 201 rounds with r1(t ) = 5, n1(t ) = 9,
r2(t ) = 41, and n2(t ) = 192, where ri(t ) and ni(t ) are respectively
the cumulative reward and the number of draws of arm i. In blue:
The posterior distribution pθmax of the reward of the current best arm.
Vertical green and blue lines are the posterior mean rewards of the
suboptimal arm (denoted θmin) and the optimal arm (θmax). In green:
The posterior distribution pθmin of the current suboptimal arm. In
purple: The posterior distribution pmax of the maximum reward of all
arms. Vertical green and blue lines are the posterior mean rewards
of the suboptimal arm (denoted θmin) and the optimal arm (θmax)
(c) Zoomed plot of panel (b) in the region where the posterior distri-
bution of the maximal reward value transitions from being dominated
by pθmax>θmin to being dominated by pθmin>θmax . In purple: pmax. In light
blue: The probability pθmax>θmin that the optimal arm’s gain is superior
to the suboptimal arm. In light green: The probability pθmin>θmax that
the gain of the suboptimal arm is superior to that of the optimal arm.
The orange vertical line is the transition value θeq and the red vertical
line its approximation θ̃eq (see Supplemental Material, Secs. S1 B and
S2 B [35]).

reward of the worse arm, and DKL(μ2, μ
∗) =∫

log[p(x; μ2)/p(x; μ∗)]p(x; μ2)dx is the Kullback-Leibler
divergence of the reward distribution of the worse arm,
p(x; μ2), from that of the better one, p(x; μ∗).

Multiple strategies attain the Lai and Robbins bound
[Eq. (2)], notably, the εn-greedy strategy [10], which plays
the best current arm with probability 1 − εn and randomly
samples other arms with probability εn, with a time-varying
εn; the Upper Confidence Bound-2 (UCB-2) algorithm [16],
which relies on a tuned confidence index associated with
each arm to decide which arm to play; and Thompson sam-
pling (proportional betting), which relies on sampling the

action from the posterior distribution so that it maximizes the
expected reward. Importantly, methods such as the εn-greedy
and UCB-based algorithms require parameter tuning to reach
the Lai and Robbins bound, making them sensitive to uncer-
tainties and variations of the prior information used for tuning.

Information-maximization principle. Information maxi-
mization aims to maximize, in each step, the information gain
on a given quantity encapsulating the relevant information
about the system [2,32]. We briefly review the fundamen-
tals of the information-maximization strategy specifically
adapted to the bandit game, where it is called Infomax [32].
Contrary to classic bandit algorithms, Infomax relies on the
entropy to encompass the information carried by all arms in
a single functional, thus characterizing the global state of the
game. More precisely, an information-maximization strategy
that was found to be effective in Ref. [32], termed Info-p, aims
to optimize S, the entropy of the posterior distribution of the
value of the maximal reward pmax,

S = −
∫

�

pmax(θ ) ln pmax(θ )dθ, (3)

where � = [θinf , θsup] is the support of pmax (which depends
on the nature of the game), and

pmax(θ ) =
K∑

i=0

P (μi = θ )
∏
j �=i

P (μ j � θ ). (4)

The entropy S summarizes the information about the
state of the game and an information-maximization algorithm
greedily optimizes its gradient, i.e., selects the next arm ac-
cording to

argmin
i=1...K

〈S(t + 1) − S(t )|At+1 = i〉. (5)

By doing so, the algorithm seeks to maximize the expected
decrease in entropy, conditioned on the current knowledge
of the game. This strategy has been shown empirically to be
competitive with state-of-the-art algorithms and to attain the
Lai and Robbins bound [32].

Approximate information maximization. While Eq. (5) can
be numerically evaluated, it cannot be computed in closed
form for most bandit problems. This makes it computation-
ally demanding and makes it difficult to extend the strategy
to more complex bandit problems. To obtain an algorithm
that is both tractable and computationally efficient, a second
functional approximating the entropy thus has to be derived.

Hence, we devise a set of approximations of both pmax

and S to get a tractable algorithm. We develop our approach
on the two-armed bandit. We denote the arms according to
their current empirical mean rewards, respectively, the better
empirical one by imax (with expected reward θmax) and the
worse empirical one by imin (with expected reward θmin). Note
that θmax may be smaller than θmin due to the stochasticity of
the game.

Our approximate form of the entropy reads

S̃ = (1 − ctail )S̃body + S̃tail − (1 − ctail ) ln(1 − ctail ). (6)

It decomposes the entropy into three tractable terms corre-
sponding to approximations made on pmax. The first term,
S̃body, approximates the entropy of the main mass of pmax
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centered around its mode. The second term, S̃tail, captures the
entropy of the tail of pmax [corresponding to high rewards,
see Figs. 1(b) and 1(c)]. These approximate entropies are
weighted by factors depending on ctail, a corrective term that
compensates for an extension of the integral boundaries in
order to make the entropy analytically tractable (see Supple-
mental Material, S1 [35], for details).

More precisely, the tail term reads as

S̃tail = −
∫ θsup

θ̃eq

pθmin (θ ) ln pθmin (θ )dθ, (7)

where θ̃eq is an approximation of θeq, the value of θ where
the probability of having the maximum reward is identical
for both arms [see red and orange curves in Fig. 1(c)], and
pθmin (θ ) = P (μimin = θ ) is the posterior probability of the cur-
rent suboptimal arm having expected reward θ .

The approximate entropy of the main mode is split into two
terms:

S̃body = −
∫

�

pθmax>θmin (θ ) ln pθmax (θ )dθ

− Ac

∫
�

pθmin>θmax (θ )dθ, (8)

where pθmax (θ ) is the posterior probability at θ of the current
optimal arm, pθi>θ j (θ ) = P (μi = θ, μi � μ j ) is the posterior
probability for the expected reward θ of arm i to be larger
than θ j , and Ac = 1.258 89 is a fixed constant that comes
from approximating the logarithm by a rational function (see
Eq. (S6) in Supplemental Material, Sec. S1 A [35]). The first
term in Eq. (8) is the leading-order term of the mode of pmax,
dominated by the current optimal arm, whereas the second
term handles the corrections induced by the suboptimal arm
in the vicinity of θmax (see Supplemental Material, Sec. S1 A
[35], for details). Finally, the third, corrective term in Eq. (7)
is ctail = ∫ θsup

θ̃eq
pθmin (θ )dθ .

AIM consists in evaluating Eq. (6) for each arm in each
time step t and choosing the one that will maximize the
decrease of the approximate entropy, similar to Infomax but
with the exact entropy replaced by S̃(t + 1). Depending on
the reward distributions, and their associated �, the log depen-
dencies inside S̃body and S̃tail can be integrated analytically or
approximated by its long-time asymptote (see Supplemental
Material, Sec. S2 [35], for a detailed deviation of all terms). To
prevent any entrapment scenario due to finite-time-step eval-
uation, we also replace the gradient minimization of Eq. (6)
by the maximization of its absolute value (see Supplemental
Material, Sec. S3 [35], for details). Doing so and keeping the
dominant terms of S̃body and S̃tail, it leads to a robust principle
to provide optimal algorithms independently of the reward
distributions.

Numerical performance. We demonstrate the performance
of AIM on the paradigmatic Bernoulli bandits [10,36,37] and
on Gaussian bandits [38] with the unknown mean μi ∈ [0, 1]
and unit variance. Supplemental Material, Table S1 [35] lists
analytic expressions for the terms of S̃ [Eq. (6)] for each
problem.

Figure 2 compares the performance of the AIM algo-
rithm with other state-of-the-art algorithms on numerically

generated data (see Supplemental Material, Secs. S3 and S4
[35], for implementation of AIM and other classic bandit
strategies). For both Bernoulli and Gaussian bandits, AIM
empirically follows the Lai and Robins bound, with a regret
scaling as log(t ). Its long-time performance matches that of
exact information maximization (Infomax) and Thompson
sampling while relying on a deterministic analytical formula.
Additionally, AIM outperforms Thompson sampling at in-
termediate times for challenging parameter configurations,
similar to Infomax [Fig. 2(b)]. These observations highlight
the ability of our approximation to accurately capture the sig-
nificant contribution of both S and Infomax, thus maintaining
efficiency at all timescales. Specifically, we emphasize that
these terms must provide substantial information to facilitate
effective decision-making at short times when both arms are
evolving fast and exchanging ranks often.

Asymptotic performance. Empirical evidence indicates that
AIM and Infomax both attain the Lai and Robbins bound. For
Infomax, this is supported theoretically by long-time scaling
arguments derived in Ref. [32]. We apply a similar heuristic
development which shows that the dominant contributions of
the isolated terms of Eq. (6) correspond to those of Infomax
at large times, ensuring that AIM retains the same asymptotic
behavior as Infomax, i.e., that the logarithmic slope observed
in Fig. 2 will asymptotically follow the Lai and Robbins
optimal prefactor.

Assuming t 	 1 and Nmax 	 Nmin 	 1, i.e., the best arm
has been predominantly pulled, then the variation along Nmin

and Nmax = t − Nmin of the approximate entropy reads

∂ S̃

∂Nmin
= (1 − ctail )

∂ S̃body

∂Nmin
+ ∂ S̃tail

∂Nmin

+ [−S̃body + ln(1 − ctail ) + 1]
∂ctail

∂Nmin
. (9)

To leading order, the minimum of Eq. (9) is found at
Nmin ∼ ln(t )/DKL(μmin, μmax) for Bernoulli bandits, where
DKL(μmin, μmax) is the Kullback-Leibler divergence between
the reward distributions, thus recovering the Lai and Rob-
bins bound (see derivation in Supplemental Material, Sec. S5
[35]). Surprisingly, retaining only the asymptotically dom-
inant terms of S̃body and S̃tail is enough to obtain a regret
that is only slightly higher than that of Eq. (6) and Infomax
even at short times (see Supplemental Material, Fig. S1 [35]),
underlining their importance in these algorithms.

Note that our derivation is not entirely rigorous as it as-
sumes that, after a certain time, we can be sure that the
optimal arm has been predominantly pulled. We checked this
assumption by investigating the asymptotic behavior of high
cumulative regret events (Fig. 3), for which the subdominant
arm has been drawn a non-negligible fraction of time. These
events happen only for small differences between μmax and
μmin, which require exponentially long times to be distin-
guished (a behavior that is shared with Thompson sampling).
Finally, it also confirms that significant gaps between μmin and
μmax consistently lead to small Nmin, indicating the absence of
entrapment scenarios.

Fine-tuning and extension to K-armed bandits. Due to its
reliance on a closed-form expression, AIM is easy to extend
to more complex bandit games and it is furthermore possible
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(b)(a) (c)

(e)(d) (f)

FIG. 2. Temporal evolution of the regret for Bernoulli [panels (a)–(c)] and Gaussian [panels (d)–(f)] two-armed bandits. In blue, AIM; in
red, Thompson sampling; in yellow, Infomax; in gray, UCB-tuned; in purple, εn-greedy; and in light green, KL-UCB. Details of simulations
and the tuning required for some algorithms are provided in the Supplemental Material, Secs. S3 and S4 [35]. True parameters were drawn
uniformly in ]0,1[ for both bandits in panels (a) and (d), and parameters were set to μ1 = 0.7 and μ2 = 0.8 for panels (b) and (e) and to
μ1 = 0.1 and μ2 = 0.3 for panels (c) and (f).

to fine-tune its performance to specific settings (see Supple-
mental Material, S6 [35], for details). As an example, we
apply AIM to 50-armed bandits with Bernoulli rewards and
2-armed bandits with Gaussian reward distributions, which
are computationally challenging to tackle using Infomax, and

(b)(a)

FIG. 3. Regret distribution and rare events. (a) The probability
of obtaining a cumulative regret superior to R for both Thompson
and AIM playing Bernoulli games with uniform priors and N = 217

realizations). AIM shows a decay similar to that obtained by the
Thompson algorithm. (b) Fraction of the subdominant arm, is drawn
for high-regret events (0.1%) as function of the mean difference
μmax − μmin. In both panels (a) and (b), Thompson and AIM exhibit
the same behavior.

where a tuned version of AIM is able to outperform Thomp-
son sampling at short and intermediary times (Fig. 4).

Conclusion. This study presents a new approach, termed
approximate information maximization (AIM), designed to
efficiently balance exploration and exploitation in multiarmed
bandit problems. AIM employs an analytic approximation
of the entropy gradient to select the optimal arm. This
approach mirrors the performance of Infomax (see Supple-
mental Material, Sec. S4 [35], and Fig. 2), from which it is
derived, while offering improved computational speed (see

(b)(a)

FIG. 4. Mean regret for 50-armed Bernoulli (a) and two-armed
Gaussian (b) bandits with parameters drawn uniformly in ]0,1[. In
red Thompson sampling and in blue tuned AIM (see Supplemental
Material, Sec. S6 [35]).
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Supplemental Material, Sec. S3 E [35]). It also parallels
Thompson sampling in functionality, yet outperforms it in
terms of being deterministic and more easily managed.

Empirical testing demonstrated that AIM complies with the
Lai and Robbins bound and exhibits robustness to a broad
spectrum of priors. Furthermore, since it relies on an analytic
expression, AIM can easily be fine-tuned to optimize perfor-
mance in various scenarios, while still satisfying the Lai and
Robbins bounds.

Due to its reliance on a single, analytically tractable
functional expression, AIM is adaptable to different ban-
dit problems, particularly where other approaches may
face efficiency constraints. Interesting future research di-
rections include devising a rigorous proof of optimality,
applying and optimizing AIM to multiarmed problems

with finite horizons, many-armed bandits with insufficient
time to sample all arms, and its extension to Monte
Carlo path-planning schemes and inverse reinforcement
learning.
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