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We derive statistical-mechanical speed limits on dissipation from the classical, chaotic dynamics of many-
particle systems. In one, the rate of irreversible entropy production in the environment is the maximum speed of
a deterministic system out of equilibrium, S̄e/kB � 1/2�t , and its inverse is the minimum time to execute the
process, �t � kB/2S̄e. Starting with deterministic fluctuation theorems, we show there is a corresponding class
of speed limits for physical observables measuring dissipation rates. For example, in many-particle systems
interacting with a deterministic thermostat, there is a trade-off between the time to evolve between states and
the heat flux, Q̄�t � kBT/2. These bounds constrain the relationship between dissipation and time during
nonstationary processes, including transient excursions from steady states.
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Introduction. When a piece of macroscopic matter is set
in motion, it will irreversibly lose energy due to frictional
or viscous heat generation [1]. If the system undergoes these
dissipative transitions on finite timescales, it will expel en-
ergy as heat, wasting free energy and producing entropy. But,
how quickly does a, potentially finite-size, classical system
of particles incur these thermodynamic costs as it evolves
and interacts with its environment? Are there limits on the
speed at which these observables accumulate during finite-
time processes? Answering these questions is important to
both synthetic and biological systems. For example, the mi-
croscopic machinery of the cell includes nanoscale motors,
such as kinesin, that perform essential functions on finely
tuned timescales [2]. Given 1 s to power motion and haul
molecular cargo, kinesin will dissipate about 650kBT of en-
ergy to its environment [3], where kB is Boltzmann’s constant
and T is the temperature. One might then hypothesize that the
dissipation of energy and the production of entropy could con-
strain the time it takes for such systems to transition between
states [4,5].

Recently, there have been stochastic thermodynamic pre-
dictions of the speed of irreversible processes driven by
gradients in temperature, pressure, and concentration. These
thermodynamic speed limits [6–11] are giving new under-
standing of the trade-off between time and dissipation. In
some forms, these purely stochastic results are analogs of
quantum speed limits [12], which bound the speed at which
physical systems (or their observables) evolve between two
distinguishable states. While thermodynamic speed limits
on fluxes of energy and entropy are an emerging feature
of stochastic thermodynamics, another important feature is
fluctuation theorems. However, fluctuation theorems were
originally derived for mechanical systems out of equilibrium
[13] with the techniques of dynamical systems theory [14,15].
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Still open is the question of whether thermodynamic speed
limits on dissipation have counterparts that derive from the
physical dynamics of mechanical systems. That is, despite
progress in classical speed limits and the classical limit of
quantum speed limits [16–19], there are no speed limits on
dissipation that derive from atomistic dynamics and apply to
many observables.

In this Letter, we derive a classical speed limit with en-
tropy production, dissipative flux, energy dissipated as heat,
and transport coefficients for dissipative, continuous-time dy-
namical systems. We show the mean entropy production puts
a bound on the time for a classical many-body system to
transition between two nonequilibrium states as defined by
the integrated deterministic fluctuation theorem. This trade-
off between the time to evolve between two distinguishable
states and the entropy production predicts how much entropy
or energy will be dissipated by a physical process over a
finite period of time or how much time will it take for a
process to dissipate an amount of entropy or energy. Similar
to fluctuation theorems [20–22], this bound can be expressed
in terms of Lyapunov exponents, the fundamental quantities
characterizing deterministic chaos. These quantities have been
used to analyze rare trajectories [23], jamming [24], nonequi-
librium self-assembly [25], equilibrium and nonequilibrium
fluids [26–28], and critical phenomena [29]. The finite system
size, finite-time behaviors in these examples are subject to
speed limits on dissipation.

Dissipation from phase-space volume contraction. Equilib-
rium statistical physics has successful methods for counting
indistinguishable microscopic states for a given set of phys-
ical conditions [1]. There, the thermodynamic entropy has
long been a measure of the number of states, S = kB lnV
using phase-space volume as a surrogate for the raw count.
However, away from equilibrium, dissipative forces cause the
mechanical contraction of phase space [14,15]. To construct
measures of distinguishability between physical states along
deterministic trajectories away from equilibrium, we can take
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FIG. 1. (a) A typical trajectory � evolving in the n-dimensional
phase space of a dissipative system from an initial time t0 to
a final t . An infinitesimal volume surrounding the initial con-
dition contracts at a rate �̄ over the time interval �t = t − t0.
The contraction rate caused by dissipation satisfies the inequality
�t�̄ � (1 − η)/(1 + η) (see text for details). (b) Time evolution of
the contraction rate � at ε = 0.5 of a heat-conducting oscillator,
the 0532 model [30,31]. A nonzero value of ε imposes a temperature
gradient and the system relaxes to a nonequilibrium steady state. The
gray dashed lines mark time windows that follow the speed limit
�t�̄ � 1/2 for η = 1/3 [Eq. (2)]. The largest time window �t in
the time series is highlighted.

a complementary approach using the relationship between the
dissipation of energy and the contraction rate of the phase-
space volume V [14,15]. With this approach, we can derive
speed limits on dissipation in nonequilibrium processes by
measuring the number of distinct physical states visited by
a classical trajectory during a time �t = t − t0.

The rate of phase-space contraction is a theoretical link be-
tween dynamics and distinguishable states that are necessary
for speed limits on physical observables. Consider a d-
dimensional system of N classical particles at a point, x ∈ M,
in phase space M. As the system evolves under chosen phys-
ical conditions, the state traces a trajectory, � = {x(t ); t0 �
t � t f }, governed by the equations of motion ẋ = F[x(t )]
in an n = 2dN-dimensional phase space, M [Fig. 1(a)]. In-
finitesimal phase-space volumes δV surrounding the phase
point have an intrinsic rate at which they deform—the diver-
gence of the flow, � := δV̇/δV = ∇ · ẋ = ∑2dN

i ∂Fi/∂xi. The
dynamics are dissipative if the time-averaged � is negative in
the long-time limit [32]. The instantaneous contraction rate
� is readily calculated for biological and engineered dynam-
ical systems [33] as well as myriad (bio)molecular systems
simulated with molecular dynamics [34]. When these systems
interact with a deterministic thermostat [35], the phase-space
contraction rate gives the thermodynamic entropy production
rate and transport coefficients [14,15].

When exchanging energy with its surroundings, the de-
formation of phase-space volumes also determines the time
evolution of the probability density over phase space ρ(x, t ).
The density evolves according to Liouville’s equation dtρ =
∂tρ + x · ∇ρ = −ρ�. However, if the number of members of

the ensemble is constant, then the equation of motion becomes

dtδV = +�δV with the solution δV (t ) = δV (t0)e+ ∫ t
t0

�(t ′ )dt ′
.

As a trajectory evolves from an initial state [x(t0), δV (t0)] to a
final state [x(t ), δV (t )], the infinitesimal volumes are measure
of their distinguishability through the compression factor,


(t, t0) := e2
∫ t

t0
�[x(t ′ )]dt ′

. (1)

We use the square volumes because they are numerically
computable as the determinant of classical density matrices
[36,37]. While the rate � at given phase point does not gen-
erally have a definite sign, there are finite-time intervals �t =
t − t0 in which the net contraction

∫ t
t0

�(t ′)dt ′ is negative if
the system is dissipative.

Classical speed limit from phase-space contraction. Choos-
ing a value of the compression factor defines a criterion that
we can use for a speed limit on the contraction of phase space.
Say the dynamics over a time interval �t meet the condition

 ≡ η by contracting local volume,

∫ t
t0

�dt ′ < 0. Applying a
bilinear approximation [38] to Eq. (1) gives

�tη�̄ � 1 − η

1 + η
=: f (η) (�̄ > 0, 0 < η � 1), (2)

a trade-off between time and the time-average phase-space
contraction rate, �̄ = −�t−1

∫ t
t0

�dt [39]. This inequality ap-
plies to any dissipative, continuous-time dynamical system.
To illustrate, Fig. 1(b) shows � as a function of time for
a singly thermostatted oscillator for η = 1/3 with intervals
marking time windows that satisfy this speed limit.

This inequality has three immediate interpretations:
(1) Rearranging to �̄/ f (η) � �t−1

η , we see that the dissi-
pation rate �̄ is the maximum speed �t−1

η at which the system
can transition between the distinct initial and final states. It is
also the maximum number of distinguishable states the system
can pass through per unit time. That is, it sets a speed limit
on classical dynamical systems transitioning between any two
η-distinguishable states. Alternatively, if the dissipate rate �̄

is unknown, the time interval can be seen as a lower bound.
(2) This inequality is a classical analog of recent extensions

to the Margolus-Levitin speed limit on quantum dynamics
[40]. Quantum-mechanical systems with a finite average en-
ergy cannot evolve between two states distinguishable by
a fidelity ε in a time shorter than �t⊥ � hα(ε)/4〈E〉 [41],
where α is the fidelity factor [42,43]. Here, a classical dy-
namical system with a finite average dissipation rate �̄ cannot
evolve between two states distinguishable by η on a time
shorter than �tη � f (η)/�̄. If �t1/3 is time for a given tra-
jectory to reach the condition η = 1/3, then �t1/3 � 1/2�̄,
which is mathematically similar to the original Margolus-
Levitin bound.

(3) Lastly, in the form �̄�tη � f (η), the inequality sets a
finite lower bound on the accessible phase-space volume (or
the count of the distinct physical states) the system visits over
the time interval.

Regardless of the form we choose, there are limiting cases
of interest for the maximum speed set by this, and other mea-
sures of, dissipation. The bound saturates if the net contraction
rate is sufficiently small for higher powers of

∫
dt� (cubic

and beyond) to be negligible. This condition is a result of
using the Padé approximation, which ensures the power series
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of f (η) matches the power series of the exponential up to sec-
ond order: ex ≈ 2+x

2−x ≈ 1 + x + x2/2. Another limiting case is
when the system is not dissipative �̄ = 0. Over the course of
a trajectory, the minimum time would then diverge because
the states are indistinguishable, η → 1. However, at the other
extreme, if the phase-space contraction rate diverges or when
the two states are perfectly distinguishable, η → 0, then the
minimum time is zero. As confirmed by our numerical simu-
lations, we expect actual dissipative dynamics systems to fall
between these extremes where the trade-off between time and
phase-space contraction is significant.

This first speed limit on phase-space contraction is well
connected to existing results in nonequilibrium statistical
mechanics. As in quantum dynamics, the distinguishability
criterion 
 = η determines the numerical value for the min-
imum time or maximum speed. Physical motivation for the
criterion in Eq. (1) comes from the intuition that phase space
contracts when a system is dissipative but also from the
appearance of this criterion in deterministic fluctuation the-
orems. The compression factor 
 in Eq. (1) is the probability
that phase space contracts by an amount A relative to the
probability it expands by −A over a time interval �t up to
a factor of 2. According to the transient fluctuation theorem
[13,44]

p�t (�̄ = +A)

p�t (�̄ = −A)
= e+�tA =: +√

η, (3)

increasing the system size or the time interval �t suppresses
second law “violations” [45]. From this perspective, the speed
limit is the minimum time for the relative probability to
reach a value η. As the fluctuation theorem, the speed limit
applies to finite-size systems away from equilibrium. Recog-
nizing this direct connection to fluctuation theorems makes
it possible to derive a family of speed limits with physi-
cal observables, including the entropy production, heat, and
transport coefficients.

Speed limit from the entropy production rate. The first step
to deriving statistical mechanical speed limits is to instead
consider an ensemble of systems. Again, the probability den-
sity ρ(x, t ) of the ensemble evolves between two arbitrary
distributions ρ(x, t0) and ρ(x, t ) over a time interval �t =
t − t0 according to Liouville’s equation. At any moment of
time in this interval, the Gibbs entropy rate is the ensemble
average of the phase-space contraction rate [46–48]:

ṠG/kB = +
∫

dxρ(x, t )�(x, t ) = +〈�〉. (4)

This rate is negative for strongly chaotic and dissipative
dynamical systems with no vanishing Lyapunov exponents
[47,48], so a convention is to add an overall negative sign and
interpret this as the entropy production rate in the environment
[49].

Another fluctuation theorem applies to these statistical
ensembles of a system producing entropy away from equi-
librium. The integrated fluctuation theorem measures the
probability of second law violations of a small system in a
time interval �t [13]. However, as our first speed limit here
suggests, we can also use fluctuation theorems as a condition
for the statistical distinguishability of states and derive cor-
responding speed limits. Over a finite-time interval, a system

produces more entropy than it consumes by a factor P�t (�̄ <

0)/P�t (�̄ > 0) = 〈e−�t�̄〉�̄>0. The probabilities here are for
any negative (positive) values of �̄ in the time interval �t
across the phase space. Ensemble averaging Eq. (1),

〈η〉 := 〈
(t, t0)〉 = 〈e−2�t�̄〉�̄>0, (5)

the value of 〈η〉 defines a statistical distinguishability criterion
based upon how much more likely a set of trajectory segments
is to produce than consume entropy.

From the exponential in Eq. (5), Jensen’s inequality gives
〈η〉 � e−2�tSe/kB where Se/kB = −�t−1

η

∫
dt〈�〉 � 0 is the

total entropy produced in the environment. Applying the
bilinear approximation as before and defining the function
f (〈η〉) := (1 − 〈η〉)/(1 + 〈η〉), we get

�t〈η〉Se/kB � f (〈η〉), (6)

a trade-off between the Gibbs entropy rate and the time to
transition between states. This speed limit has three interpre-
tations like the speed limit in Eq. (2). It also has the advantage
that the ensemble average makes the bound independent of
the initial condition for the underlying deterministic dynam-
ics. The bound instead applies to an ensemble transitioning
between equilibrium or nonequilibrium states described by a
probability density. For deterministically thermostatted sys-
tems, the Gibbs entropy rate is the thermodynamic entropy
production rate [50,51], so this inequality is a trade-off be-
tween thermodynamic dissipation and time for any system
transitioning between two statistical states distinguishable by
〈η〉. There is a corresponding bound for intensive observables
[37].

Stepping back, these two speed limits are closely con-
nected and part of a much larger family of speed limits
involving observables. One immediate bound applies to mix-
ing dynamical systems: The rate �(t ) is the sum over all
instantaneous Lyapunov exponents, �(t ) = ∑n

i λi(t ), but we
can simply restrict the sum to positive exponents to derive a
speed limit set by the finite-time Kolmogorov-Sinai entropy
[25], another signature of deterministic chaos �tηhKS � 1.
However, looking at the many known fluctuation theorems
[13] suggests the approach here gives bounds on many physi-
cal quantities. These follow from recognizing Eqs. (2) and (6)
as two fundamental realizations of the dissipation function, �̄

and 〈�〉. Following the steps here for other expressions of the
dissipation function then leads directly to speed limits on other
observables [13], including the dissipative flux [37], heat rate,
and transport coefficients. From a given fluctuation theorem,
the minimum transition time (a quantity that is difficult to
predict a priori) can be predicted by a physically measur-
able quantity. To illustrate, we take a couple of important
examples: the energy dissipated as heat and the electrical
conductivity.

Speed limit from energy dissipated as heat. Another im-
mediate physical observable subject to a speed limit is the
energy exchanged as heat between a many-particle sys-
tem and its environment. For physical systems interacting
with deterministic, time-reversible thermostats (e.g., Gaus-
sian, Nosé-Hoover), the phase-space contraction rate and the
Gibbs entropy rate are a link between the properties of micro-
scopic dynamics [50,52] and nonequilibrium states [34]. Not
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only is the (negative) Gibbs entropy rate the thermodynamic
entropy production rate [30,32,52–54], it is also directly re-
lated to the energy is dissipated as heat at a mean rate Q̇,
Ṡe/kB = ṠG/kB = Q̇/kBT [55]. Using this identity, Eq. (6)
becomes

�tηQ̄ � kBT, (7)

an energy-time tradeoff with the temperature setting a lower
bound on the minimum time for the system to exchange an
amount of energy as heat with its environment, Q̄/kBT =
−�t−1

η

∫ 〈�〉dt . A higher heat exchange rate relative to the
typical energy fluctuations, kBT , will lower the minimum
transition time between two statistical states.

Speed limit from transport coefficients. As another example,
Eq. (6) also extends to transport coefficients. For systems
interacting with Gaussian and Nosé-Hoover thermostats, the
electrical conductivity, diffusion, and viscosity are functions
of 〈�〉 [49,56]. Consider the Lorentz gas in which charged
particles (neglecting Coulomb interactions) move in a two-
dimensional array of fixed hard disk scatterers. Particles are
also driven by an external electric field E and thermostatted
by a reservoir at temperature T [57]. The electrical conduc-
tivity is σ (t ) = T/|E|2〈�(t )〉. From Eq. (6), the electric field
and temperature set the lower bound: �tησ (t ) � T/2|E|2 for
η = 1/3. Intuitively, stronger electric fields or higher con-
ductivity can expedite the transition between states, while
higher temperatures will delay the transition. Similar intuition
comes from the simpler case of the harmonic oscillator with
friction coefficient κ and mass m: For η = 1/3, the speed
limit �tηκ/m � 1/2 suggests that decreasing the friction or
increasing the mass will lower the minimum the time to dissi-
pate a given amount of energy.

Numerical simulations of a thermally conducting oscilla-
tor. As a numerical test case, we analyze the dynamics of
a one-dimensional oscillator interacting with a Nosé-Hoover
thermostat [31,37]. The position and momentum (q, p) of the
oscillator are thermostatted at temperature T by the linear
friction force −ζ p. For any nonzero with friction coeffi-
cient ζ , the phase-space contraction rate is �(t ) = −ζ (α +
3βp2/T ). A negative (positive) � indicates heat lost to
(gained from) the thermostat. To simulate the “0532 model,”
we choose (α, β ) = (0.05, 0.32), which is ergodic with a
Gibbsian phase-space distribution [30] at thermal equilibrium.
More importantly here, adding a local temperature gradient
with a profile T = 1 + ε tanh(q) and parameter 0 < ε < 1
drives the system away from equilibrium. To compute the
speed limit from the entropy production, we chose three rep-
resentative values of ε ∈ {0.1, 0.3, 0.5}.

Figure 2 shows the transition time and the lower bound
〈�〉. These data are averaged over 105 initial conditions
(q0, p0, 0.0) randomly chosen in the interval [−1.5, 1.5] on
the ζ = 0 plane for 50 equally spaced values of η between 0
and 1. They show that as the ensemble relaxes to the nonequi-
librium steady-state attractor, the time intervals in which
trajectories first satisfy the η threshold are lower bounded by
f (η)/S̄e. Increasing the nonequilibrium drive from ε = 0.1 to
0.5 increases the entropy produced and decreases the transi-
tion time.

FIG. 2. Increasing the entropy rate suppresses the transition time
in a thermally conducting oscillator. (a) The time elapsed for the
net dissipation as measured by 〈
〉 to reach the threshold 0 <

η < 1 from numerical simulations of the 0532 model, (α, β ) =
(0.05, 0.32). Data are for three representative values of the temper-
ature gradient parameter ε ∈ {0.1, 0.3, 0.5} (solid blue, green, and
pink lines). The minimum time for the ensemble to reach those η

thresholds (dashed lines) set by the entropy produced in the environ-
ment f (〈η〉)kB/S̄e with f (〈η〉) = (1 − 〈η〉)/(1 + 〈η〉). Averages are
over 105 initial conditions (q0, p0, ξ0 = 0) randomly chosen from the
uniform distribution in the interval {−1.5, 1.5} for each value of η.
(b) In the ζ = 0 phase plane 106 initial conditions show dissipative
structures: The time tη to reach η = 1/3 is longer for trajectories
initiated from points on logarithmic spirals emanating from the fixed
point at (0,0). An orbit of the harmonic oscillator is shown for
comparison (white circle).

Across the (q, p) phase space, the speed limit resolves
structures that are dissipative on a particular timescale. For
η = 1/3, the ζ = 0 plane is shown in the second panel of
Fig. 2. In this case, this speed limit is �t S̄e � 1

2 . For im-
proved resolution, we randomly sample 106 initial points and
color them according to their �t at which the corresponding
trajectories take to attain the η = 1/3. Those regions on the
ζ = 0 plane with higher values of �tη are correlated with the
smaller values of �̄, satisfying our speed limit on dissipation
in Eq. (2) in each case. These phase points dissipating less
appear as logarithmic spirals approaching the fixed point of
the system at the origin. These structures show that there are
some regions of phase space that are slower and others that
are faster to transition between states, up to but not exceeding
the maximum speed set by phase-space contraction rate.

The speed limits on dissipation here are statistical and
mechanical, applying to many physical observables, and
quantifying the natural tension between dissipation and the
time to produce it during irreversible processes. The re-
sults bridge the deterministic, potentially chaotic, dynamics
of physical systems, avoiding any hypotheses about chaos
and instead making measures of chaos explicit through the
contraction of phase space. These bounds are a quantitative
statement of how the production of entropy, expulsion of
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energy as heat, or transport of matter will decrease the min-
imum time to evolve between two distinguishable physical
states.
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