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Effective action for dissipative and nonholonomic systems
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We show that the action of a dynamical system can be supplemented by an effective action for its environment
to reproduce arbitrary coordinate dependent ohmic dissipation and gyroscopic forces. The action is a gener-
alization of the harmonic bath model and describes a set of massless interacting scalar fields in an auxiliary
space coupled to the original system at the boundary. A certain limit of the model implements nonholonomic
constraints. In the case of dynamics with nonlinearly realized symmetries the effective action takes the form of
a two-dimensional nonlinear σ model. It provides a basis for application of path integral methods to general
dissipative and nonholonomic systems.
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Introduction. Dissipation is ubiquitous in nature. The
standard way to account for it in the classical theory of dy-
namical systems is by adding nonconservative forces Fi to the
Euler-Lagrange equations of motion,

d

dt

∂L

∂ q̇i
− ∂L

∂qi
= Fi, (1)

where L(q, q̇) is the system Lagrangian and qi, q̇i are the gen-
eralized coordinates and velocities, respectively. An important
type of dissipation is ohmic dissipation when the extra forces
are linear in velocities,

Fi = −�i j (q) q̇ j ≡ − ∂F

∂ q̇i
. (2)

The dissipative coefficients �i j (q) form a positive-definite
symmetric matrix and are in general coordinate dependent.
In the last equality we have conventionally written the
force as the derivative of the Rayleigh function F (q, q̇) =
(1/2)�i j (q) q̇iq̇ j .

Fundamentally, the existence of dissipation is due to the
interaction of the system (referred to as central system below)
with its environment, also called reservoir or bath. In many
applications the microscopic nature of the reservoir is not
important and it can be modeled as a collection of infinitely
many harmonic oscillators [1]. The action of the harmonic
bath coupled to the central system then provides an effective
action, from which Eq. (1) can be derived by means of the
variational principle. Yet more importantly, the effective ac-
tion is key for the application of the path integral methods
used to study intrinsically quantum phenomena, such as tun-
neling [2,3], and other aspects of open systems in and out of
thermal equilibrium [4–6].

However, as we discuss below, the harmonic bath model
fails in the case when dissipation coefficients �i j (q) have
general dependence on the system coordinates. The purpose
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of this Letter is to provide a reservoir model for this case.
As a by-product we also obtain the description of arbitrary
gyroscopic forces. Before describing the model, let us discuss
two broad classes of situations where the dependence of �i j

on q is essential.
Dynamics on cosets. The first class are systems whose

configuration space represents a group manifold or, more gen-
erally, a coset space, and whose dynamics enjoy nonlinearly
realized symmetries. Many physically relevant systems can be
cast in this form, from dynamics of a rigid body to hydrody-
namics [7,8]. They appear in particle physics and condensed
matter as a consequence of spontaneous symmetry breaking
[9,10]. Development of an effective action for such systems in
dissipative environment, besides conceptual interest, is mo-
tivated by numerous potential applications, for example to
Brownian motion of stiff polymers [11], as well as micro- and
nanoparticles of various shapes [12–15].

Following the standard coset construction [9,10,16], we
consider a Lie group G and its subgroup H. The generators
of G are chosen in such a way that the first A of them span
the algebra of H; we denote them by Ha, 1 � a � A. The rest
of the G generators are called broken and will be denoted by
Ĝi, 1 � i � I . The coset G/H representing the configuration
space of the system can be identified with the group elements
of the form1

ĝ(q) = eqiĜi . (3)

The action of a group element g on the coordinates q �→ q̃ is
given by the right multiplication,

g · ĝ(q) = ĝ(q̃) · h, g ∈ G, h ∈ H. (4)

Next, one constructs the Cartan form,

ĝ−1dĝ = �i
j (q)dq j Ĝi + �a

j (q)dq j Ha (5)

and extracts from it the covariant velocities

Dt q
i = �i

j (q) q̇ j . (6)

1We assume summation over repeated indices.
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Unlike the ordinary velocities q̇i, the covariant velocities
transform linearly under (4). They form a linear representation
of the subgroup H.

If the dynamics of the system are to respect the symmetry
(4), its Lagrangian and Rayleigh function must be invariants
constructed from the covariant velocities.2 Thus we have

F = 1
2γi jDt q

iDt q
j = 1

2γi j�
i
k (q)� j

l (q) q̇k q̇l , (7)

where γi j is a constant invariant tensor in the relevant rep-
resentation of H. In the simplest case when H is empty (G
is fully broken) γi j is arbitrary, provided it is symmetric and
positive. For a general non-Abelian coset the coefficients of
the Cartan form satisfy

∂�k
i

∂q j
− ∂�k

j

∂qi
�= 0, (8)

so their dependence on coordinates cannot be avoided by any
choice of variables, implying the coordinate dependence of
the dissipative coefficients �kl = γi j�

i
k (q)� j

l (q).
Nonholonomic systems. The second class are systems with

constraints on coordinates and velocities,3

cα
i (q) q̇i = 0, α = 1, . . . n < I, (9)

such that they cannot be integrated into constraints only on
coordinates. In other words, Eq. (9) is not equivalent to a set
of constraints of the form ϕ̇α (q) = 0. Clearly, this requires

∂cα
i

∂q j
− ∂cα

j

∂qi
�= 0. (10)

These systems are called nonholonomic and typical exam-
ples include rolling of a disk or a ball on a hard surface.
Their classical dynamics is well developed and is summarized
in excellent textbooks; see, e.g., Refs. [20,21]. Quantiza-
tion, however, remains an open problem. It was addressed in
[22–24] and presents a growing interest due to development
of molecular machines [25–27].

Typically, the equations of motion for nonholonomic
systems are derived from a modified variational principle
restricted to admissible variations δqi satisfying the con-
straints cα

i δqi = 0. This leads to the appearance of reaction
forces on the right-hand side (RHS) of the Euler-Lagrange
equations (1),

Fi = λαcα
i (q), (11)

where λα (t ) are Lagrange multipliers.4 Due to the constraints
(9), the reaction forces do not produce any work, Fiq̇i = 0,
so nonholonomic systems are not truly dissipative. However,
they are closely related through the following construction
[20,21]. Consider a dissipative system with the Rayleigh
function

F = 1
2γ cα

i (q)cα
j (q) q̇iq̇ j (12)

2Up to possible Wess-Zumino-Witten terms [17–19].
3We only consider constraints linear in velocities.
4Note that adding the constraints (9) with Lagrange multipliers

into the Lagrangian, instead of the equations of motion, would not
reproduce the correct nonholonomic dynamics. Instead, one would
obtain a so-called vakonomic system [21].

and take the limit γ → +∞. The friction associated with
the linear combinations of velocities cα

j q̇ j becomes very
strong and the corresponding combinations quickly die
out rendering the constraints (9). On the other hand,
the products γ cα

i q̇i remain finite and become indepen-
dent variables—the Lagrange multipliers of Eq. (11). Thus
the nonholonomic dynamics can be viewed as the limit
of infinitely strong viscous friction along the constrained
directions.

Reservoir model. Our starting point is the model used in
[28] to study environment-induced decoherence. It represents
the reservoir as a free massless scalar field ξ (t, z) in one-
dimensional space (bulk) coupled to the central system at a
single point z = 0 (boundary) and is equivalent to the more
common independent-oscillator model [3]. Its straightforward
generalization for a central system with several degrees of
freedom requires equal number of fields and leads to the
following action:

S =
∫

z=0
dt

(
L(q, q̇) − β

j
i qiξ̇ j

) +
∫

z>0
dt dz

1

2
∂μξi∂

μξi,

(13)

where β
j
i are constant couplings; in the last term we sum

over indices μ = t, z with the Lorentzian metric ημν =
diag(1,−1). Importantly, the coordinate z here is not a phys-
ical dimension, but is introduced merely to parametrize the
internal dissipative degrees of freedom. By taking variation,
one derives the dissipative forces, as well as the equations for
the fields,

Fi = −β
j
i ξ̇ j |, ∂μ∂μξi = 0, ∂zξi| = −β i

j q̇
j, (14)

where the vertical bar means fields evaluated at z = 0.
The dissipative dynamics is obtained by imposing outgoing
boundary conditions on the bulk fields which singles out the
solutions of the form ξi(t, z) = ξ̄i(t − z). This implies ∂zξi =
−∂tξi and combining the first and third equations in (14) we
obtain the forces (2) with �i j = βk

i βk
j . Note that coupling qi

to ξ̇i, rather than the fields themselves, is essential for getting
the response local in time.

The above construction fails for general coordinate depen-
dent dissipation. As long as we want to preserve the harmonic
nature of the bath, the only option is to generalize its coupling
to the central system, β

j
i qiξ̇ j �→ β j (q)ξ̇ j , with some arbi-

trary functions β i(q). Repeating the above derivation we then
obtain the dissipative coefficients �i j = (∂βk/∂qi )(∂βk/∂q j )
which, however, do not have the form needed for coset or
nonholonomic systems due to the nonintegrability properties
(8) and (10).

This failure can be also understood from the symmetry
perspective. The system-reservoir coupling in (13) changes
by a total time derivative under the shifts of the coordinates
qi(t ) �→ qi(t ) + ai. This property ensures that the dissipative
force is invariant under the coordinate shifts, as it should be
for the case of constant �i j . In the case of a general non-
Abelian coset, however, we do not have at our disposal any
functions β i(q) invariant or changing by a constant under
the group transformations and hence we cannot construct any
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system-reservoir coupling that would preserve the symmetry
of the problem.5

To resolve the issue, we apply a duality transformation to
the action (13). Performing a change of variables ξ̃i = β

j
i ξ j

and integrating in a set of vectors χμ i, it can be rewritten as

S =
∫

z=0
dt (L(q, q̇) − qi ˙̃ξi )

+
∫

z>0
dt dz

(
χμ i∂μξ̃i − �i j

2
χμ iχ j

μ

)
. (15)

We now integrate out ξ̃i, which gives two equations,

∂μχμ i = 0, χ z i| = q̇i. (16)

The first one implies that χμ i are expressed through gradients
of scalar functions,

χμ i = −εμν∂νχ
i, (17)

where εμν is the two-dimensional Levi-Civita symbol, εtz =
1. The second equation then reduces to χ̇ i| = q̇i. Using the
fact that the fields χ i are defined up to a constant, we can
remove any offset between them and qi on the boundary and
obtain

χ i| = qi. (18)

Substituting (17) back into (15) we arrive at the action

S =
∫

dt L(q, q̇) +
∫

z>0
dt dz

1

2
�i j∂μχ i∂μχ j, (19)

with the boundary conditions (18). For a single degree of
freedom q this action first appeared in [29] and was used in
[30] for the derivation of the quantum Langevin equation.
More recently, it was extended to describe linear response in
dissipative media [31].

So far, we have assumed the dissipative coefficients �i j

to be constant. However, the action (19) admits a natural
generalization. Relation (18) suggests thinking of the fields χ i

as extensions of the original system coordinates into the bulk.
Then, to describe coordinate dependent dissipation, we simply
need to promote the coefficients in (19) to the functions of χ ,

�i j �→ �i j (χ ). (20)

Note that this makes the effective reservoir fields self-
interacting. It is a necessary price to pay for modeling
coordinate dependent friction.

This is not yet the whole story. We can add to the reservoir
action a time-reversal breaking term∫

z>0
dt dz

1

2
ϒi j (χ )εμν∂μχ i∂νχ

j, (21)

with antisymmetric coefficients ϒi j (χ ). If ϒi j are constant,
this term is a total derivative and reduces to the boundary
term

∫
dt ϒi jqiq̇ j of the Wess-Zumino-Witten type [17–19].

However, for the general field dependent coefficients such
reduction is impossible.

5Integrating by parts the interaction term in (13) and replacing q̇i

with the covariant derivative Dt qi does not help. We then have ξi,
instead of ξ̇i in the coupling, which leads to forces Fi with nonlocal
memory of the past motion of the system.

Combining all the above ingredients, we write down the
action of our reservoir model:

S =
∫

dt L(q, q̇) +
∫

z>0
dt dz

1

2
(�i j (χ )∂μχ i∂μχ j

+ ϒi j (χ )εμν∂μχ i∂νχ
j ). (22)

Let us verify that it reproduces the desired equations. Taking
its variation and accounting for the relation (18) we obtain in
the bulk and on the boundary

∂μ(�i j∂
μχ j + ϒi jε

μν∂νχ
j )

− 1

2

∂� jk

∂χ i
∂μχ j∂μχ k − 1

2

∂ϒ jk

∂χ i
εμν∂μχ j∂νχ

k = 0, (23)

Fi = (�i j∂zχ
j + ϒi j χ̇

j )|. (24)

Though the bulk equation (23) looks complicated, it still
admits purely outgoing solutions χ i(t, z) = χ̄ i(t − z) with ar-
bitrary functions χ̄ i. The conditions (18) then fix χ̄ i(t ) = qi(t )
and Eq. (24) reduces to

Fi = −�i j (q) q̇ j + ϒi j (q) q̇ j . (25)

The first term gives the sought-after dissipative forces (2),
whereas the second term describes arbitrary gyroscopic forces
that arise if the environment breaks time-reversal symmetry,
e.g., by magnetization or rotation. The effective reservoir ac-
tion (22) represents our main result. It covers a much broader
class of systems than the original harmonic bath (13).

Nonholonomic limit. To describe a nonholonomic system,
we replace �i j �→ �i j + γ cα

i cα
j and send γ to infinity. The re-

sulting action can be obtained in a closed form by integrating
in a set of auxiliary vectors λμ

α (t, z). Omitting for simplicity
the time-reversal breaking term, we write

Snh =
∫

dt L(q, q̇) +
∫

z>0
dt dz

(
1

2
�i j (χ )∂μχ i∂μχ j

− λμ
α cα

i (χ )∂μχ i − 1

2γ
λμ

αλμβ

)
. (26)

In the limit γ → ∞ the last term disappears and the fields
λμ

α become Lagrange multipliers enforcing the constraints
cα

i (χ )∂μχ i = 0. Since χ i coincide with qi on the boundary,
this implies the nonholonomic constraints (9). The remaining
equations also come out right. Varying (26) with respect to
χ i and substituting the outgoing solution into the boundary
equation, we obtain the force

Fi = −�i j (q) q̇ j + cα
i (q) λz

α

∣∣. (27)

The last term gives precisely the reaction forces along the
constrained directions (11), with λz

α| playing the role of the
Lagrange multipliers from the standard approach. The first
term describes friction along the unconstrained directions.
Note that in our approach it cannot be set to zero without
making the bulk action degenerate.

Example. The model takes a particularly simple form for
motion on cosets:

Scoset =
∫

dt L(Dt q)

+
∫

z>0
dt dz

1

2

(
γi jη

μν + υi jε
μν

)
Dμχ iDνχ

j, (28)

L052103-3



BESHARAT, RADKOVSKI, AND SIBIRYAKOV PHYSICAL REVIEW E 109, L052103 (2024)

φ

Y

X

FIG. 1. Oblong particle on a plane.

where Dμχ i ≡ �i
j (χ )∂μχ j are covariant derivatives of the

fields χ i and γi j , υi j are constants. One recognizes in the bulk
term the action of a two-dimensional nonlinear σ model [32].
It is the most general local action that can be written using
the first derivatives of the fields χ i and invariant under the
group G.

Let us illustrate this construction in the case of an oblong
particle moving on a two-dimensional plane in a viscous
medium [11–13]. Its position is described by the center-of-
mass coordinates X , Y and the orientation angle φ; see Fig. 1.
The friction coefficients are different in the directions along
and perpendicular to the particle’s main axis. The configu-
ration space coincides with the group of isometries of the
Euclidean plane ISO(2) which has two generators of trans-
lations PX , PY and a rotation generator J . The commutation
relations are

[PX , PY ] = 0, [PX , J] = −PY , [PY , J] = PX . (29)

All generators are broken. We parametrize the group
elements as6.

g(X,Y, φ) = eXPX +Y PY eφJ . (30)

From the Cartan form we get the covariant derivatives:

Dt X = Ẋ cos φ + Ẏ sin φ, (31)

DtY = −Ẋ sin φ + Ẏ cos φ, Dtφ = φ̇. (32)

The Lagrangian coincides with the kinetic energy of the par-
ticle and is ISO(2) invariant,

L = m

2
(Ẋ 2 + Ẏ 2) + I

2
φ̇2 = m

2
[(Dt X )2 + (DtY )2]

+ I
2

(Dtφ)2, (33)

where m, I are the particle mass and moment of inertia.
If the viscous medium is homogeneous and isotropic, the

effective reservoir action must also enjoy ISO(2) symmetry.
To implement it, we introduce the fields �(t, z), �(t, z), and
�(t, z), such that at z = 0 they coincide with X (t ), Y (t ), and
φ(t ), respectively. We recall that the coordinate z is not a
physical dimension. Rather, it parametrizes the internal de-
grees of freedom of the particle and medium responsible for

6This parametrization slightly differs from Eq. (3) and makes the
calculations simpler.

dissipation. The effective bath action then reads

Sbath =
∫

z>0
dt dz

1

2
(γ‖Dμ�Dμ� + γ⊥Dμ�Dμ�

+ γφDμ�Dμ�), (34)

where

Dμ� = cos �∂μ� + sin �∂μ�, (35)

Dμ� = − sin �∂μ� + cos �∂μ�, Dμ� = ∂μ�. (36)

We observe that even in this relatively simple case the bath
action is nonlinear if γ⊥ �= γ‖. In the limit γ⊥ → +∞ we
obtain a particle that is constrained to move along its major
axis. This is the simplest nonholonomic system known as
Chaplygin sleigh.

Discussion. We have presented a reservoir model (22) for
systems with general coordinate dependent ohmic dissipa-
tion and gyroscopic forces. In geometric terms, it can be
viewed as a semi-infinite string moving on a curved target
space. The coordinate along the string labels the contin-
uum of internal reservoir degrees of freedom. In a certain
limit, the model reproduces nonholonomic constraints. If
dynamics obey nonlinearly realized symmetries, the reser-
voir takes the form of a two-dimensional nonlinear σ

model.
The model has a vast range of potential applications. It

provides a basis for development of path integral methods
and quantization7 in a broad class of dissipative and non-
holonomic systems. One possible direction is derivation of
classical and quantum Langevin equations for state-dependent
diffusion [33] and Brownian motion of extended impurities
[11–15], including systematic treatment of the multiplicative
and non-Gaussian noise. Another interesting direction is gen-
eralization of the model to systems with an infinite number
of degrees of freedom. Here promising arenas for applications
are dissipative hydrodynamics [34] and open effective field
theories [35].

An important question is to what extent the model (22) is
universal beyond the classical equations. Does it capture the
relevant properties of any ohmic environment? The unique
structure of the model for coset dynamics suggests that, at
least in this case, it is indeed universal in the sense of ef-
fective theory. Namely, we conjecture that the correlators of
the qi variables obtained from the action (28) reproduce the
most general long-time behavior of correlators in dissipative
systems with given nonlinear symmetries. We leave the explo-
ration of this conjecture for the future. An interesting related
work is construction of the effective Schwinger-Keldysh func-
tional for cosets [36].

One of the assumptions of our model is locality in
the auxiliary dimension z. This property is reminiscent of
holography [37] and it is tempting to speculate that it arises as
a consequence of the large number of bath degrees of freedom
[38]. Let us note that we have not discussed the metric in
the internal (t, z) space-time. At the classical level, it drops
out due to the classical Weyl invariance of the action (22). In

7Note in this connection that the σ model in 2D is renormalizable.
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quantum theory, however, it may become relevant due to the
conformal anomaly.
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