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Nonuniversal aging during phase separation with long-range interaction
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Issues concerning the kinetics of phase transitions are not well established for the cases where the order param-
eter remains conserved with time, particularly when the interatomic interactions are long-range in nature. Here
we present results on structure, growth, and aging from Monte Carlo simulations of the two-dimensional
long-range Ising model. In our computer simulations, random initial configurations, for 50 : 50 compositions of
up and down spins, mimicking high-temperature equilibrium states, have been quenched to temperatures inside
the coexistence curve. Our analyses of the simulation data, for such a protocol, show interesting dependence of
the aging exponent, λ, on σ , the parameter, within the Hamiltonian, that controls the range of interaction. These
nonuniversal values of λ are compared with a theoretical result for lower bounds. For this purpose, we extracted
information on relevant aspects of structural properties during the evolution. To estimate λ, as is necessary,
we also calculated the average domain size and analyzed its time dependence to obtain the growth exponent α

which also is nonuniversal. The trends in the values of λ and α, as well as an anomaly in structure, suggest that
a crossover from the long-range to the short-range variety occurs at σ � 1. The location of this boundary and
the nonuniversality provide a picture that is surprisingly different from that of the corresponding static critical
phenomena. Furthermore, our results suggest an important scaling law combining α and λ.
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In the literature of phase transitions, certain impor-
tant questions are by concerning universality in far-from-
equilibrium dynamics [1]. An objective there [1] is to
understand relaxation within a system following its quench
from a homogeneous region to an ordered or a phase-
separated region of a phase diagram. During this process,
interesting patterns, consisting of domains rich or poor in
specific components, form, and their average size � grows
with time (t) as [1] � ∼ tα . Alongside estimating this, another
fundamentally important but more challenging task is to quan-
tify the scaling behavior of relaxations starting from different
ages, following the perturbation [2]. Such aging phenom-
ena is often studied via the autocorrelation function [2–12]
Cag(t, tw ) = 〈ψ (�r, t )ψ (�r, tw )〉 − 〈ψ (�r, t )〉〈ψ (�r, tw )〉. Here ψ

is a space (�r) and time-dependent order parameter, with tw
(� t) representing the waiting time, also referred to as the age
of the system. The scaling decay of Cag, to be detailed later, as
a function of � is quantified by an exponent λ. The values of
α and λ take part in characterizing universality in kinetics of
phase transitions [1,2,7,10].

In static critical phenomena, alongside a few other details,
the range of the interaction decides classes of universality
[13]. It is expected, though there will be two classes, above
and below a certain cutoff for the range of interaction, in each
of these the critical exponents will have values independent of
further “micro” variations of the interaction range. Investiga-
tions of such features are of much fundamental and practical
importance for nonequilibrium dynamics as well [12,14–19].
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A question arises if, within the same model framework, the
above-mentioned universality picture remains unchanged, i.e.,
whether the interaction-range boundary between the two dy-
namic classes is the same as in the static case, and unique
sets of exponents define growth and aging phenomena on
the two sides, irrespective of the distance from the boundary.
However, unlike the case of critical phenomena, corre-
sponding progress for evolution dynamics is limited, though
important.

Even for the simple Ising model (IM), there exist serious
computational challenges for the long-range (LRIM) vari-
ety [12,16–20], particularly for the case of the conserved
order-parameter. Only two computational studies [16,21] in-
vestigated this case, reporting results only on α. Here, our
primary focus is aging on which we present results on λ, for
the conserved LRIM, covering a wide variation in the inter-
action range. It appears that λ has an interesting dependence
on the latter. We also revisit the issue of growth and present
computational results on such a nonuniversal feature in α from
direct estimation. The overall picture is strikingly different
from the corresponding static case, in terms of universality as
well as shifting of the above-mentioned boundary. The values
of λ are discussed against a theoretical bound [4] to facilitate
which we analyze the structural properties that also, interest-
ingly, exhibit a similar anomaly. Furthermore, we observe an
important scaling law combining these two exponents.

The IM Hamiltonian can be written in the general form
[1,7,14,15] H = −(1/2)�i� j �=iJi jSiS j , with Ji j being the
strength of the interaction between two spins Si and S j (=
±1), sitting at the lattice points i and j. For Ji j > 0, one
expects mostly parallel alignment of the spins at low-enough
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FIG. 1. (a) Evolution snapshots, starting from a random initial
configuration, at different times, are presented for L = 256. (b) Plots
of the autocorrelation function Cag(t, tw ) versus �/�w , for several
tw . The inset contains the actual data. Results in the main frame
are scaled by a pre-factor, after discarding the jumps, such that Cag

smoothly approaches 1, as �/�w → 1, for most of the tw values. The
solid line represents a power law. These results are for σ = 0.6.

temperatures. For standard purposes [1], one considers Ji j = J
and terminates the interaction at the nearest neighbor (NN)
distance. For defining the LRIM, a power-law variation of the
strength, as a function of r, the intersite distance, is considered
[14,18]: Ji j = J/rd+σ , with d being the spatial dimension and
σ a constant. In the static critical phenomena, the value of σ ,
which separates the short-range and long-range universality
classes, is close to 2 [13].

For conserved order-parameter dynamics the total num-
bers of +1 (or particles of type A) and −1 (or particles of
type B) spins remain constant throughout the evolution. To
ensure this, Kawasaki spin-exchange is used in our Monte
Carlo (MC) simulations [22]. In this process, two (nearest)
neighboring sites are randomly chosen, and in a trial move the
corresponding spin states are exchanged that is accepted with
certain probability following the Metropolis criterion [22]. For
this purpose, the energy change needs to be calculated. With
the Hamiltonian and the coupling term mentioned above, this
calculation is demanding [19]. To minimize the computational
cost, a generalized [23] Ewald summation [23,24] technique
is used. We performed the calculations with (in-house) par-
allel codes, written with OPENMP and MPI, for even faster
outputs. Spins are considered on periodic square lattices of
size L × L. For each σ , random initial configurations with
equal concentrations of up and down spins are quenched to
a temperature (T ) that is 0.6 times the corresponding critical
temperature [23]. At a finite temperature there exists noise in
the structure. This was removed via a majority spin rule [10]
for the calculation of length, which was obtained from the
domain-size distribution [10]. All results are presented after
averaging over a large number of initial configurations. We
consider L = 256, 512, and 1024 with statistics over 175,100,
and 8 initial configurations. Unless otherwise mentioned,
we have L = 256. Time in our simulations is measured in
units of MC steps (MCS), with one MCS being equivalent
to L2 trials.

In Fig. 1(a) we show evolution snapshots for σ = 0.6 from
three different times. The locations of A particles are marked
in red. In Fig. 1(b) we show a few plots of the autocorrelation
function. The decay of Cag is typically slower for an older
system than a younger one, which reflects aging with passing
time. This is a violation of the time-translation invariance and
implies that in an “away from steady-state” situation, there is
no scaling collapse of data for Cag when results for different tw
are plotted versus t − tw. This is unlike the steady-state situa-
tion. However, collapse is interestingly observed [2] when the
data are plotted versus x = �/�w, where �w is the value of � at
t = tw. For x → ∞, one then discusses the scaling behavior
[2] Cag(t, tw ) ∼ x−λ. In Fig. 1(b) we show Cag with the varia-
tion of x. The original results are presented in the inset. The
early period data, including the jumps, have a connection
with the equilibration of the domain magnetization [7]. In the
main frame the results are presented by discarding the jumps,
keeping the data having a connection mainly with the growth
of domains. We rescaled the ordinate after removing the points
associated with the jumps. This way Cag appears to approach
unity, as x → 1, in a continuous fashion, for several of the
plots. This transformation does not alter the outcomes of the
analyses below. It, in fact, brings better visual clarity over the
relevant range from which it becomes easier to recognize the
quality of collapse. A nice collapse of data for different tw
values is observed, despite certain difficulties associated with
slow growth and delay in scaling due to settling time for the
domain magnetization with the conserved order-parameter. It
appears that, for the considered time range, we are reason-
ably away from any discernible finite-size effects [8–10]. In
the finite-size affected situation data for different tw should
deviate from the master (collapsed) curve. The solid line in
Fig. 1(b) represents a power-law with λ = 2.75. For large
values of x, the simulation data are reasonably consistent with
this line. However, to derive more accurate information, below
we carry out certain advanced analyses.

We calculate an instantaneous exponent [2,8–10,25,26]:
λi = −d ln Cag(t, tw )/d ln x. In Fig. 2(a) we present λi versus
tw/t for two values of σ . These show linear trends. The contin-
uous lines are fits of the simulation data sets to the form λi =
λ + atw/t , with a being a constant. These provide λ � 2.86
and λ � 3.15, implying that the aging exponents are nonuni-
versal, having a dependence on the range of interaction. In
Fig. 2(b), we show a plot of λ as a function of σ . We will
reconfirm such dependence later by analyzing the data from
systems with different L via multiple methods. We will also
present results on the NN case to identify a crossover from
the long- to short-range regime. To make the conclusion on
crossover more accurate, we will study structure and growth
as well.

We recall here certain lower bounds on λ, provided by
Yeung, Rao, and Desai (YRD) [4]: λ � (d + β )/2. The
derivation of this required integration of the equal-time struc-
ture factor S(k, tw ) over k. It was noted that contribution
only from small k was important at long times, for which
S(k, tw ) ∼ kβ was assumed [27]. Since this power law is ex-
pected to be valid only for k → 0, it is important to check the
validity of the bound, particularly when λ exhibits a nontriv-
ial σ dependence. For conserved dynamics in d = 2, β = 4
[27]. Thus, λ should be greater than 3, which is clearly not
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FIG. 2. (a) The instantaneous exponent λi is plotted versus tw/t .
Results from two σ values are shown. The solid lines are linear fits
to the data sets. Since λi is a noisy quantity, running averaging was
carried out for data smoothening. (b) The plot of λ, obtained from
the fits in (a), versus σ . These were estimated by considering tw
values belonging to the scaling regime. For tw/t closer to zero, there
is the possibility of detectable finite-size effects. On the other hand,
it becomes necessary to discard data very close to unity to avoid the
time regime related to the stabilization of domain magnetization.

the case for the lower σ values. However, before drawing a
conclusion on the violation of the YRD bounds, we take a
look at the structural properties in Fig. 3. In Fig. 3(a), we
show the structure factors from L = 256 and 512 for σ = 0.6.
While the data for different system sizes agree with each
other, the set from the larger system appears more useful
with respect to the identification of the small k behavior.
Before discussing β, however, we take a look at the large k
behavior. In this limit, due to scattering from the interfaces,

FIG. 3. (a) Structure factors, S(k, t ), at tw = 20 000, are plotted
versus k for systems of different sizes with σ = 0.6. The solid lines
represent power laws. (b) Instantaneous exponent Xi, for L = 256,
is plotted versus k, for σ = 0.6. The upper horizontal line measures
a maximum, corresponding to a knee, marked by a square in (a),
and the lower one estimates the Porod exponent. (c) The differences
between the maxima and the Porod exponent are plotted versus (1 −
σ ). (d) Xi, for σ = 0.6 and 0.95, with L = 512, are plotted versus k.
The dashed lines indicate the locations of the small k maxima. The
structure factors are taken from the scaling regimes of tw .

FIG. 4. (a) Log-log plots of �(t ) versus time, for σ = 0.6 and
0.95. (b) The inverse of the instantaneous exponents, αi, for σ = 0.6,
versus 1/t , for different L. The solid line is a guide to the eyes,
showing possible convergence of the data sets in the t → ∞ limit.
We discard the noisy data at very late times (that may as well contain
minor finite-size effects). This helps for better visualization of the
convergences. (c) Same as part (b), but here we show results for
σ = 0.95 and L = 256. For the calculation of αi (also for Xi, λi, and
λ′

i), original data are used to interpolate in equal abscissa intervals
in log scales. (d) Plots of α as a function of σ . Results from both
simulations (Sim) and theory (Th) are included. (e) Plot of λ′(= αλ),
versus σ , by accepting the theoretical values for α. For σ > 1, we
take λ = 3.33 that will be estimated from the simulations of the NN
Ising model later for an arbitrary choice σ = 1.02.

one expects a Porod law [1], which, for the present case,
should be S(k, t ) ∼ k−3. Interestingly, for σ = 0.6, this be-
havior appears in two places, separated by a knee (see the
bending between two power-law lines). This is absent in the
short-range case. The appearance of this limits the observation
of the Porod law continuously over a large range, despite the
absence of finite-size effects. In Fig. 3(b), we show the instan-
taneous exponents Xi = d ln S(k, t )/d ln k as a function of k
for σ = 0.6. (It is a better practice to calculate such exponents
instead of estimating a power-law exponent from a log-log
plot.) The knee results in a maximum in Xi, at an intermediate
k, before the final Porod behavior appears as a lower value
close to −3. (Note that at nonzero T the interfaces are less
sharp and so the exponents usually are somewhat less than 3.)
We estimate 	, the deviation of the maximum from the Porod
exponent. In Fig. 3(c) 	 is plotted versus (1 − σ ). The data
hint the disappearance of the knee as σ → 1. This reflects the
crossover discussed in the context of aging. Returning to the
small k behavior, in Fig. 3(d) we show Xi for two different
values of σ . Even if we consider the maxima in this figure as
the true values of β, no violation of the YRD bound can be
ascertained.

Previous estimates [9,28] of λ for nonhydrodynamic short-
range interactions in d = 2 fall in the range [3.3,3.6]. We will
revisit this case, with better statistics, later in this work. The
objective will be to verify if a convergence to the short-range
case for λ is in agreement with the corresponding crossovers
for structure and growth. A prediction for the latter states [14]:
α = 1/(2 + σ ), for σ < 1 and α = 1/3, for σ > 1. A recent
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FIG. 5. Cag × (t/tw )λ
′

is plotted versus t/tw for σ = 0.6 and the
NN model with L = 512. The constant prefactors A and B are intro-
duced for visual convenience by facilitating better utilization of space
inside the graph. Inset shows instantaneous exponent λ′

i, versus tw/t
for σ = 0.6 and multiple values of L. The solid line is a guide to the
eyes.

computational study [16] showed consistency with this pre-
diction. Nevertheless, we present the below simulation results
on independent estimates of α. Note that no such predictions
exist for λ. For this exponent, the existing predictions are only
for the nearest-neighbor case with nonconserved dynamics
[2,3]. For λ, not only are the theoretical calculations, but also
the computer simulations and their analyses are challenging.
This is more so for the long-range interaction, particularly for
the conserved dynamics. Nevertheless, for a careful conclu-
sion we will present results from larger systems and analyze
our data using different methods.

In Fig. 4(a), we show log-log plots of � versus t for σ = 0.6
and 0.95. The growth, after early transients, appears stronger
for the smaller value of σ . In Fig. 4(b) we show the in-
stantaneous exponent for � viz. αi (= d ln �/d ln t), with the
variation of t for σ = 0.6. To ascertain the absence of any
influence of finite-size effects in our conclusions we show
results from three system sizes. Each data set shows conver-
gence to the same asymptotic value. In Fig. 4(c), we show
similar data for σ = 0.95. In this case, we expect even weaker
finite-size effects. Thus, we include data only for L = 256.
These outcomes imply higher α for smaller σ . Corresponding
plots are shown in Fig. 4(d). An interesting dependence can
be recognized. There the theoretical values are also marked.
Good agreement exists. In Fig. 4(e) we show λ′, the product

of α and λ, by accepting the theoretical values for α. It appears
that αλ is independent of σ , the constant value equaling � 1.1.

To reconfirm this conclusion, we analyze our aging data
in different ways in Fig. 5 by using even larger systems.
In the main frame we present Cag(t, tw ) × (t/tw )λ

′
, with

λ′ = 1.1, for σ = 0.6 and the NN model to show that at
large enough t/tw the ordinate is a constant, implying αλ �
1.1. We also calculate λ′

i = −d ln Cag/d ln(t/tw ) and identify
its convergence when t/tw → ∞ for σ = 0.6 in the inset.
There we show data from larger system sizes, including
L = 1024. The convergence is toward λ′ � 1.1. These, com-
bined with the corresponding outcomes for structure and
growth, suggest that the above-mentioned crossover occurs at
σ = 1. Note that this implies a short-range value of λ = 3.33
that is used in Fig. 4(e).

In conclusion, for the long-range Ising model [14], we
presented results on aging and related phenomena, obtained
via Monte Carlo simulations [22] in space dimensions two, for
several values of the interaction-range parameter σ . It appears
that with the increase of σ , the aging exponent λ increases.
We compared the values of λ with the lower bounds predicted
in Ref. [4]. The bounds are quite closely satisfied by all the
obtained values. Our results for the structure and growth law
are also consistent with the picture of the nonuniversality in
aging. The boundary between the long- and short-range cases
appears to be located around σ = 1. These are interesting
deviations from the case of static critical phenomena, in terms
of nonuniversality as well as the shifting of the boundary. The
findings are important additions to the current developments
in phase transitions [29,30], inviting further theoretical and
confirmatory experimental studies on growth as well as aging.
Interestingly, we observe that αλ remains a constant. This
suggests that aging is more prominent in a quicker growing
system. It will be important to carry out similar studies in
different dimensions. Even if the growth part turns out to be
trivial, we expect, guided by the lower bounds, λ to exhibit
interesting dependence. An analogous investigation should be
carried out for the nonconserved dynamics also. For a more
global picture, different models, e.g., the q-state Potts model
with long-range interaction, will prove useful. Long-range
interaction in the presence of hydrodynamics should also be
considered.
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