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Extreme value statistics of jump processes
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We investigate extreme value statistics (EVS) of general discrete time and continuous space symmetric jump
processes. We first show that for unbounded jump processes, the semi-infinite propagator G0(x, n), defined as
the probability for a particle issued from zero to be at position x after n steps whilst staying positive, is the key
ingredient needed to derive a variety of joint distributions of extremes and times at which they are reached. Along
with exact expressions, we extract universal asymptotic behaviors of such quantities. For bounded, semi-infinite
jump processes killed upon first crossing of zero, we introduce the strip probability μ0,x (n), defined as the
probability that a particle issued from zero remains positive and reaches its maximum x on its nth step exactly.
We show that μ0,x (n) is the essential building block to address EVS of semi-infinite jump processes, and obtain
exact expressions and universal asymptotic behaviors of various joint distributions.
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Introduction. In a broad sense, extreme value problems fo-
cus on the extrema of a set of random variables (X1, . . . , Xn).
Determining the statistics of such extrema is of high practi-
cal interest to understand numerous physical systems driven
by rare but extreme events. As an illustration, seismic risk
evaluation [1], portfolio management [2,3], or understand-
ing herd behavior [4] are but a few examples of phenomena
for which quantifying extreme value statistics (EVS) is key.
While EVS of sets of independent random variables have
been studied early on [5,6], leading to the renowned Gumbel-
Frechet-Weibull universality classes for the distribution of
the maximum of n random variables, recent works have
also focused on EVS of correlated random variables gen-
erated by single-particle trajectories, and more specifically,
of continuous stochastic processes. Initiated by Paul Levy’s
[7,8] derivation of the distribution of the running maximum
M(t ) of a one dimensional Brownian particle P(M(t ) �
M ) = erf(M/

√
2t ), and the distribution of the time tm at

which the running maximum is reached (also known as the
arc-sine law)

P(tm = u|t ) = 1

π
√

u(t − u)
, (1)

a number of important results related to the EVS of one-
dimensional Brownian dynamics have followed. In particular,
joint distributions of extrema and times at which they are
reached have been extensively studied for unbounded Brow-
nian motions and Brownian bridges [9–11], as well as
Brownian motions killed upon first passage to zero [12,13].

Jump processes, which are discrete time and continuous
space stochastic processes, constitute an alternative model
to the continuous description of single particle dynamics.
At each discrete time step n, the particle performs a jump
of length � drawn from a distribution p(�), whose Fourier
transform will be denoted p̃(k) = ∫ ∞

−∞ eik� p(�)d� [14]. Such
processes are involved in various contexts: they constitute

paradigmatic models of transport in scattering media [15,16],
and of self-propelled particles, living or artificial [17–21].

A striking example is given by the experimentally mea-
sured transmission probability of photons through 3D slabs
[15,16]. This has been shown to be equivalent to the split-
ting probability π0,x(0) that a jump process originated from
zero crosses x before zero [22], which is a two-sided EVS
observable. In turn, a further characterization of photon states
upon exiting slab systems, such as phase distribution, requires
more complex two-sided EVS observables, such as the joint
distribution σ (x, n f |0) of the maximum x and first passage
time n f through zero for a particle starting from zero, to be
derived below.

Most importantly, jump processes are in fact needed to
describe experimental or computational data of dynamic
processes. Indeed, experimental time series are inherently dis-
crete because sampling times are finite in any measurement
protocol. As shown below, continuous stochastic models fail
to capture such discretization effects, which can have im-
portant consequences that only jump processes can account
for—typically the joint distribution σ evaluated with standard
methods for continuous processes starting from zero is identi-
cally zero and thus useless.

For symmetric jump processes considered hereafter, gen-
eral EVS results are scarce, and primarily focused on two
types of observables. First, the distributions of the time nm

at which the maximum is reached [23,24] and of successive
record-breaking times [25] have been shown to be indepen-
dent of p(�), and computed exactly. Second, the asymptotic
distribution of the running maximum Mn has been studied in
the scaling limit and can be found in Darling [26] (see the
SM [27] for details). Note, however, that the specific behavior
of Mn stemming from the discrete nature of jump processes
has only been characterized at the level of the the expected
value of Mn, which has been investigated for processes with∫

�p(�)d� < ∞. In particular, the leading order large n behav-
ior of E(Mn) has been shown [28–30] to only depend on the
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TABLE I. EVS observables for general unbounded and semi-
infinite jump processes. The variables x, nm, x f , and nf respectively
denote the maximum, the time at which the maximum is reached,
the final position of the process and the first passage time across
zero. Our framework allows for the computation of novel exact and
asymptotic expressions for all distributions labeled with �–explicit
expressions are given in Table I of the SM. Entries labeled with

√
are already given in the literature.

Unbounded jump processes Semi-infinite jump processes

μ(x|n) [25,38]
√

μ0(x|x0 = 0) �
ρ(nm|n) [25]

√
ρ3(x, nm|x0 = 0) �

ρ1(x, nm|n) � ρ4(x, nm, nf |x0 = 0) �
ρ2(x, nm, x f |n) � σ (x, nf |x0 = 0) �

tails of p(�), equivalently described by the small k expansion
of p̃(k),

p̃(k) =
k→0

1 − (aμ|k|)μ + o(|k|μ). (2)

Here, the Levy index μ ∈]0, 2] describes the large � behavior
of p(�), and aμ is the characteristic length scale of the jump
process. Importantly, when μ < 2, the jump process is dubbed
heavy tailed, and the jump distribution decays algebraically:
p(�) ∝ �−(1+μ).

General outline. In the following, we develop a general
framework to systematically analyze EVS of arbitrary sym-
metric jump processes originating from zero. We show that
computing joint distributions of EVS observables reduces to
the evaluation of two key quantities: the semi-infinite prop-
agator G0(x, n), defined as the probability that the particle
remains positive and reaches x on its nth step, and the strip
probability μ0,x(n), defined as the probability that the particle
remains positive and reaches its maximum x = x on its nth
step exactly. The main result of this Letter is the derivation of
an exact expression of μ0,x(n), and the analysis of its large x
and n limit for general jump processes. In turn, we obtain ex-
act expressions for a variety of new joint distributions of EVS
observables, from which we uncover universal asymptotic
behaviors. These joint distributions, summarized in Table I,
span both unbounded jump processes with a deterministic
number of steps n [Fig. 1(a)], and bounded, semi-infinite jump

(a) (b)

FIG. 1. (a) Sample trajectory contributing to the distribution ρ1

of the maximum x and time nm at which it is reached for an un-
bounded n-step long process. The weight of the solid (resp. dashed)
portion is given by G0(x, nm ) [resp. q(0, n − nm )]. (b) Sample trajec-
tory contributing to the distribution ρ3 of the maximum x and time at
which it is reached nm for a semi-infinite process. The weight of the
solid (resp. dashed) portion is given by μ0,x (nm ) [resp. π0,x (0)].

processes killed upon the first crossing of zero [Fig. 1(b)], for
which the discrete nature of the dynamics plays a crucial role.
While the main text focuses exclusively on jump processes
with continuous p(�) originating from zero, our framework is
easily extended to nonzero initial conditions, as well as lattice
random walks (see the SM).

EVS of unbounded jump processes. In this section, we focus
on general n-step long unbounded jump processes issued from
zero. By means of introduction, we consider the distribution
μ(x|n) of the running maximum, i.e., the maximum value x
reached up to the nth step. To highlight the significant role
of the semi-infinite propagator in EVS computations, we first
recall a few important known results Eqs. (3)–(5) and (7)].
Defining the survival probability q(x0, n) that a particle issued
from x0 remains positive during its first n steps, it is easily
seen that [25]

μ(x|n) = d

dx
q(x, n). (3)

In turn, the survival probability is given by q(x0, n) =∫ ∞
0 G(x, n|x0)dx, where the semi-infinite propagator

G(x, n|x0), defined as the probability that the n-step long
trajectory issued from x0 stays positive and is at position x
after n steps, is known [25,31], and reads in Laplace and
generating function space:

∞∑
n=0

ξ n

[∫ ∞

0

∫ ∞

0
e−s1x+s2x0 G(x, n|x0)dxdx0

]

= G̃0(s1, ξ )G̃0(s2, ξ )

s1 + s2
. (4)

Here G̃0(s, ξ ) = ∑∞
n=0 ξ n[

∫ ∞
0 e−sxG0(x, n)dx] is the generat-

ing function of the Laplace transform of the semi-infinite
propagator G0(x, n) ≡ G(x, n|0) of a particle issued from
x0 = 0, and is given in terms of p̃(k) only by the Pollazcek-
Spitzer formula [32,33]

G̃0(s, ξ ) = exp

[
− s

2π

∫ ∞

−∞

ln [1 − ξ p̃(k)]

s2 + k2
dk

]
. (5)

While Eq. (3) is exact, it is clear from Eq. (5) that explicit
expressions for the distribution of the running maximum can
only be obtained for specific jump distributions. For instance,
in the case of the exponential jump process p(�) = 2−1e−|�|,
the semi infinite propagator can be found in [34], from which
we explicitly derive the generating function of μ(x, n):

∞∑
n=0

ξ nμ(x|n) = (1 − ξ − √
1 − ξ )e−x

√
1−ξ

ξ − 1
. (6)

We emphasize that for jump processes for which the semi-
infinite propagator cannot be obtained explicitly, Eqs. (3) and
(5) still allow for the asymptotic analysis of μ(x|n), which
depends only on the Levy index μ and length scale aμ. Defin-
ing nx ≡ (x/aμ)μ as the typical number of steps needed to
cover a distance x, we first consider the large n and x scaling
limit with τ ≡ n/nx fixed. In this limit, jump processes are
known to converge to Brownian motion [35] with D = a2

2
when μ = 2, and symmetric α-stable processes [36] when
μ < 2. In turn, the limit distribution of the running maximum
is given by Darling’s result [26] (see the SM for explicit
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expressions). In the alternative limit regime 1 � n � nx, the
behavior of μ(x|n) for processes with μ = 2 depends on the
details of p(�). However, for heavy-tailed processes, the dis-
tribution of Mn becomes universal, and is readily obtained by
extracting the leading order behavior of G0(x, n) from Eq. (5)
(see the SM), yielding

μ(x|n) ∼
1�n�nx

μn

π
sin

(πμ

2

)
	(μ)

[aμ

x

]μ 1

x
. (7)

Importantly, the linear dependence of μ(x|n) admits a single
big jump physical interpretation [37]: the particle has exactly
n trials to perform a very large jump bringing it close to x.
Of note, the algebraic behavior (7) can also be recovered by
analyzing the asymptotic behavior of the maximum distribu-
tion of α-stable processes [38]. The semi-infinite propagator
is thus an essential tool to derive exact and asymptotic ex-
pressions of μ(x|n). More generally, we claim that it is the
necessary and sufficient building block to analyze arbitrary
joint space and time EVS distributions, which we illustrate by
computing two important quantities.

We first determine the classical joint distribution
ρ1(x, nm|n) of the maximum x and time nm at which it is
reached, which, so far, has primarily been derived exactly for
continuous processes. By splitting the Markovian trajectory
at nm [see Fig. 1(a)], and identifying the probabilistic weights
of the first and second independent parts, the joint distribution
is given by

ρ1(x, nm|n) = G0(x, nm)q(0, n − nm). (8)

Crucially, considering a trajectory snippet backwards does not
change its probability, which allows us to assign the semi-
infinite propagator weight to the first part of the trajectory.
When μ = 2, the asymptotic behavior of ρ1(x, nm|n) is sim-
ply given by the corresponding Brownian result obtained in
[39]. When μ < 2, no α-stable limit result exists; in turn, we
analyze the large x, nm, and n limit of Eq. (8), and uncover
emerging universal behavior of ρ1(x, nm|n) which depends
only on aμ and μ:

ρ1(x, nm|n) ∼
nx/n
1
n/nm
1

1

π

√
nm

n − nm

2μ

π
sin

(πμ

2

)
	(μ)

[aμ

x

]μ 1

x
.

(9)
In fact, our framework permits a more detailed characteriza-
tion of space and time statistics, as we show by providing the
refined multivariate distribution ρ2(x, nm, x f |n) of the maxi-
mum x time nm at which it is reached, and the last position x f

of the particle in terms of G0(x, n) only:

ρ2(x, nm, x f |n) = G0(x, nm)G0(x − x f , n − nm). (10)

The asymptotic behavior of ρ2(x, nm, x f |n) can be readily
obtained for any μ from this general expression as is shown
in the SM. Finally, we have shown that studying EVS of un-
bounded jump processes reduces to the evaluation of a single
essential quantity: the semi-infinite propagator G0(x, n). In
the following, we extend these results to the case of bounded,
semi-infinite jump processes.

EVS of semi-infinite jump processes. We consider jump
processes killed upon crossing zero for the first time, and here-
after choose x0 = 0, although all our results are easily adapted

to nonzero initial conditions (see the SM). Note that EVS
are properly defined for semi-infinite jump processes starting
from zero, in striking contrast to corresponding EVS of con-
tinuous processes killed upon first passage to zero, which, by
definition, vanish as x0 → 0. Following the unbounded case,
we first compute the distribution μ0(x|0) of the maximum
M0 reached before crossing zero. Recalling that π0,x(0) is the
splitting probability that the walker crosses x strictly before
zero, it is clearly seen that the cumulative distribution of M0

satisfies
∫ x

0 μ0(u|0)du = 1 − π0,x(0), yielding

μ0(x|0) = − d

dx
π0,x(0), (11)

valid for general jump processes. As was recently shown in
[22], the splitting probability can only be computed explicitly
for a handful of jump distributions; however, in the large x
limit, π0,x(0) takes a universal asymptotic form which we
readily exploit to obtain the large x behavior of μ0(x|0):

μ0(x|0) ∼
x→∞

μ2μ−2

√
π

	

(
1 + μ

2

)[aμ

x

] μ

2 1

x
. (12)

Of note, the asymptotic decay is much slower than for fixed-
length unbounded jump processes (7). Indeed, the survival
probability q(0, n) is decaying slowly enough to allow for
particles to reach farther maxima before the first crossing of
zero.

We now investigate joint space and time distributions. It is
clear that being a solely geometrical quantity π0,x(0) is not
sufficient to compute such joint distributions. In fact, in this
case of bounded trajectories, G0(x, n) does not suffice to build
EVS distributions. To proceed further, we introduce the strip
probability μ0,x(n), defined as the probability that the particle
starting from zero stays positive and reaches its maximum
x on its nth step exactly (thereby crossing the strip [0, x]),
and show that μ0,x(n) allows for the systematic derivation of
joint distributions. Computing the exact expression of the strip
probability requires two auxiliary quantities: (i) the joint dis-
tribution σ (x, n f |0) of the maximum x and first passage time
n f through zero, and (ii) the rightward exit time probability
(RETP) F0,x(n|x0), defined as the probability that the particle
issued from x0 crosses x before zero on its nth step exactly,
which has been studied in [40] (see the SM for a summary of
results). First, by partitioning trajectories over the time k at
which the maximum is reached, σ is re-expressed in terms of
μ0,x(n) and F0,x(n|0) only:

σ (x, n|0) =
n−1∑
k=1

μ0,x(k)F0,x(n − k|0). (13)

Next, by now partitioning over the rightmost point reached
before crossing zero, we rewrite F0,x(n|0) = ∫ x

0 σ (u, n|0)du
where F0,x(n|x0) = F0,x (n|x − x0) by symmetry. Finally, we
derive the exact expression of the generating function of the
strip probability:

∞∑
n=1

ξ nμ0,x(n) ≡ μ̃0,x(ξ ) =
d
dx F̃0,x(ξ |0)

F̃0,x(ξ |0)
. (14)

Computing F̃0,x (ξ |x0) is thus sufficient to obtain explicit ex-
pressions of μ0,x(n). As an illustration, in the specific case of
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the exponential jump process we obtain

μ̃0,x(ξ ) = sech(γ
√

1 − ξx)γ (1 − ξ )ξ

(2 − ξ )
√

1 − ξ tanh(γ
√

1 − ξx) + 2(1 − ξ )
,

(15)

and specific n values of the strip probability are obtained by
taking derivatives with respect to ξ : μ0,x(n) = [n!]−1μ̃

(n)
0,x(0).

For general jump processes for which the RETP cannot be
obtained explicitly, we analyze the large x and n behavior of
μ0,x(n) and uncover emergent universal behavior.

In the μ = 2 case and in the scaling limit τ = n/nx fixed,
no overshoot occurs as the particle crosses x for the first time.
As a result, the events of crossing x and reaching x on the
nth step become statistically equivalent, such that μ0,x(n) ∼
a−1

2 F0,x (n|0), where the proportionality constant is fixed by
using the exact exponential distribution result (15). In turn,
the asymptotic behavior of the strip probability is given by

μ0,x(n) ∼
τ fixed

2
[a2

x

]2 1

x
π2

∞∑
k=1

k2(−1)k+1e−k2π2τ . (16)

For heavy-tailed jump processes, overshoots occur even in the
limit x → ∞, such that the identification of the strip probabil-
ity and the RETP is no longer valid. However, we show in the
SM that the strip probability still displays a strikingly simple
universal asymptotic behavior:

μ0,x(n) ∼
1�n�nx

μ

π
	(μ) sin

(πμ

2

)[aμ

x

]μ 1

x
. (17)

Remarkably, μ0,x(n) becomes independent of n, in stark
contrast with its unbounded counterpart G0(x, n). Note also
that, surprisingly, μ0,x(n) ∼ p(x). We now show that distri-
butions of EVS observables for semi-infinite jump processes
can be systematically obtained from the strip probability, and
exploit the asymptotic results (16) and (17) to derive explicit
universal formulas.

As a first illustration, we determine the joint distribu-
tion ρ3(x, nm|0) of the maximum and time at which it is
reached. Paralleling the unbounded result (8), we decompose
the Markovian trajectory into two independent parts around
nm [see Fig. 1(b)], and identify their respective probabilistic
weights to obtain

ρ3(x, nm|0) = μ0,x(nm)π0,x(0). (18)

Making use of the asymptotic behavior of the strip proba-
bility given above, we derive large x and n expressions of ρ3.
For μ = 2, the joint distribution reads

ρ3(x, nm|0) ∼
τ fixed

2
[a2

x

]3 1

x
π2

∞∑
k=1

k2(−1)k+1e−k2π2τ , (19)

while in the heavy-tailed case one has

ρ3(x, n|0) ∼
1�n�nx

2μ−1 μ 	
( 1+μ

2

)
	(μ) sin

(
πμ

2

)
π

3
2

[aμ

x

] 3μ

2 1

x
.

(20)

Importantly, the n independence of the strip probability
has drastic effects on ρ3; indeed, conditioned on the value
x of the maximum, the time at which it is reached becomes
equiprobable for values of n � nx.

As a second illustration, we obtain, thanks to this formal-
ism, the joint distribution ρ4(x, nm, n f |0) of the maximum x,
time of maximum nm, and first passage time n f across zero,
which is given by

ρ4(x, n, n f |0) = μ0,x(n)F0,x(n f − n). (21)

Finally, its asymptotic behavior is readily obtained from that
of the strip probability, and we provide universal formulas
in the SM, along with the analysis of the joint distribution
σ (x, n f |0) of the maximum and first passage time across
zero.

Conclusion. We have shown that for general symmetric
jump processes, the derivation of joint space and time distri-
butions of EVS observables reduces to the determination of
a single key quantity, which only depends on the geometrical
constraints imposed on the trajectory. For unbounded jump
processes, we identified the sufficient building block to be
the semi-infinite propagator G0(x, n) and made use of its
μ-dependent limit behavior to draw a comprehensive picture
of large space and time EVS asymptotics. In the case of the
semi-infinite jump processes killed upon the first crossing of
zero, G0(x, n) is ill fitted to investigate EVS observables. As
a replacement, we introduced the strip probability μ0,x(n),
provided exact and asymptotic expressions valid for general
symmetric jump distribution p(�), and systematically derived
joint EVS distributions summarized in Table I. We emphasize
that all distributions can be explicitly computed for any n
and x values, as soon as G0(x, n) and μ0,x(n) are known, as
is the case for the exponential jump process p(�) = γ

2 e−γ |�|.
Importantly, we stress that the asymptotic results depend only
on the length scale aμ and Levy index μ. These parameters
can be extracted from empirical time series, as in the case
of Levy-like photonic transmission [15] or the well-known
run and tumble motion of E. Coli [41]; in turn, our results
offer explicit predictions for potential direct experimental
comparisons.
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