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In this Letter, we introduce an inline model for stimulated Raman scattering (SRS), which runs on our radiation
hydrodynamics code TROLL. This model accounts for nonlinear kinetic effects and for the SRS feedback on the
plasma hydrodynamics. We dubbed it PIEM because it is a fully “PredIctivE Model,” because no free parameter
is to be adjusted a posteriori in order to match the experimental results. PIEM predictions are compared against
experimental measurements performed at the Ligne d’Intégration Laser. From these comparisons, we discuss the
PIEM ability to correctly catch the impact of nonlinear kinetic effects on SRS.
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Introduction. An effective modeling of nonlinear kinetic
effects, able to address large-scale systems, has been a long-
standing issue relevant to many fields of physics. These
include laser-plasma interactions, and in particular stimu-
lated Raman scattering (SRS) [1], which we focus on in this
Letter. SRS is a serious threat for laser fusion, as clearly
demonstrated by the first experiments at the National Ignition
Facility (NIF) [2]. This was one motivation to introduce a new
design, with a low gas fill and shorter pulse duration, which
successfully led to ignition [3]. However, there is still no way
to make predictive simulations as regards laser-plasma inter-
action on such facilities as the NIF, or the Laser Mégajoule,
that would help introduce new and maybe more effective
designs.

In order to accurately predict Raman reflectivity, one would
usually need a code that correctly estimates nonlinear kinetic
effects. However, only a rad-hydro code can address the space
scales and timescales relevant to inertial confinement fusion
(ICF) experiments. This calls for an inline model (i.e., which
runs directly on a rad-hydro code), able to derive Raman
reflectivity by accounting for nonlinear kinetic effects. Yet,
we are only aware of very few published inline models for
SRS. Stark et al. derived in Ref. [4] a semiempirical model
based on a parameter study with two-dimensional particle-in-
cell simulations, in essentially uniform plasmas. This model
was designed to run on a rad-hydro code but has not yet
been implemented in such a code. In Ref. [5], Colaïtis et al.
introduced a scaling law in the rad-hydro code CHIC in order
to estimate the temperature of energetic electrons produced
by SRS. In Ref. [6], Strozzi et al. introduced a linear kinetic
modeling of SRS in the rad-hydro code LASNEX. However,
this was a post hoc model which required experimental data.

In this Letter, we introduce a predictive model (dubbed
PIEM) which predicts the SRS reflected power and wave-
lengths without needing any input from experimental
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measurements. It has been implemented in our rad-hydro
code TROLL [7] and allows for the SRS feedback on the
plasma hydrodynamics. It is derived from a rigorous theory
[8–10] after several simplifying assumptions and, as shown
in Fig. 3, its predictions compare well with experimental
measurements. The latter measurements were not obtained
from one shot experiment but were successfully reproduced in
two experimental campaigns led two years apart, as discussed
in Fig. 1.

In these experiments, relevant for fusion, nonlinear kinetic
effects are clearly at play. Moreover, nonlinear wave couplings
are mostly limited to SRS, which considerably reduces the un-
certainties related to the modeling of laser-plasma interaction.
Nevertheless, we cannot guarantee that such effects as laser
filamentation does not have an impact on Raman reflectivity
nor that the electron and ion temperatures and densities are
perfectly estimated by TROLL. Although an in-depth study
of these issues is way beyond the scope of our work, we
do discuss them in this Letter based on the results shown
in Figs. 2 and 4. This will greatly help clarifying PIEM’s
ability to correctly model SRS for the experiment at the Ligne
d’Intégration Laser considered in this Letter.

PIEM. PIEM works as a nonlinear gain model along rays
with curvilinear abscissa, s. The main difference with pre-
viously published gain models [11,12] lies in the account
of nonlinear kinetic effects, in Eq. (3), in order to derive
the electron plasma wave (EPW) amplitude. More precisely,
PIEM equations for SRS are
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FIG. 1. (a) Incident laser power used in the 2011 campaign (red solid line) and in the 2013 campaign (black dashed line). (b) SRS reflected
power measured in the 2011 campaign (red solid line) and in the 2013 campaign (black dashed line). The reflectivity decreases later in the
2011 campaign due to a later decrease of the incident power.

where −e is the electron charge and m its mass, and where
the subscripts l,b,p are respectively for the laser, backscattered,
and plasma waves. For each wave, we use ω to denote the
frequency, k for the wave number, and E for the amplitude.
In Eqs. (1)–(3), vgl,b = |kl,b|c2/ωl,b, where c is the speed of
light in vacuum. ζl = ∫ s

0 e−νl /vgl dx and ζb = ∫ smax

s e−νb/vgb dx,
where νl,b are the rates of power absorption due to inverse
bremsstrahlung. They are derived by accounting for the so-
called Langdon effect, as described in Ref. [13]. Moreover,
s = 0, respectively s = smax, is the coordinate when the ray
has entered, respectively exited, the plasma. In Eq. (3), El0
would be the laser wave amplitude absent of SRS and damp-
ing. Then, the electric field amplitudes, El and Eb, for the
laser and backscattered waves are related to Al and Ab by
El = √

ζlωlAlEl0 , Eb = √
ζbωbvgb/vgl AbEl0 . We also intro-

duce Eb f as the amplitude of the fluctuations at frequencies

close to ωb, which seed SRS. It is related to Ab f by Eb f =√
ζbωbvgb/vgl Ab f El0 . We did not try to make an accurate esti-

mate for Eb f and we simply assumed Eb f = ηEl0 .
The results shown in this Letter correspond to η = 10−5 but

we varied η from 10−7 to 10−3 without finding any significant
change in the reflectivity. This is because the reflectivity is
strongly limited by nonlinear saturation mechanisms, such
as pump depletion, wave breaking [9], and Langmuir decay
instability (LDI) [14]. Note that, in the simulation results ob-
tained with our three-dimensional (3D) envelope code BRAMA

[15], we also obtained a good agreement with the experimen-
tal measurements when η = 10−5. Moreover, when the SRS
reflectivity was more than about 1%, we also found that it was
essentially independent of our choice for η. A more accurate
modeling of the noise level might be necessary to predict very
small reflectivities, significantly less than 1%. However, this is

FIG. 2. SRS-reflected spectrum (a) as measured experimentally and (b) as predicted by PIEM in arbitrary units. In both figures, the black
stars and the horizontal lines indicate, respectively, the wavelengths at maximum and the widths of the experimental spectrum. The PIEM
spectrum in (a) was designed so as to assume time-independent maxima, which is in contrast with the experimental spectrum in (b).
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FIG. 3. SRS reflected power as measured experimentally (blue
curve with pluses), as predicted by PIEM (red solid line), and by a
linear model (green dashed-dotted line). The black dashed line is the
incident laser power divided by 5.

beyond the scope of our work because PIEM does not aim to
estimate very accurately SRS reflectivity when it is negligible.

Except for the use of the variables Al and Ab, Eqs. (1)
and (2) for the electromagnetic waves are essentially the
same as those used in Refs. [11,12]. A2

b is proportional to
the number of photons created by Raman backscattering, so
that Ab(s = smax) = 0, and A2

l is proportional to the number
of laser photons and is normalized so that Al (s = 0) = 1.
Then, Eqs. (1) and (2) simply express how the number of
laser and backscattered photons vary along a ray. In particular,
when there is no absorption nor spontaneous emission, i.e.,
when ζl = ζs = 1 and when Ab f = 0, these equations lead
to (A2

l − A2
b) = const. This simply expresses the fact that the

destruction of laser photons by SRS leads to the creation of
the same number of backscattered photons.

In Eq. (3), νp = (1 − YNL)νL, where νL is the Landau
damping rate [16]. As for YNL, it is the fraction of electrons

FIG. 4. Transmitted power as derived numerically (red solid line)
and as measured experimentally (blue solid line with pluses).

which respond nonlinearly to the EPW. It is derived by using
the result, shown in Ref. [17], that an electron responds non-
linearly to the EPW once it has nearly completed one trapped
orbit in the wave trough. Then, as shown in Ref. [8], in a
three-dimensional geometry and for a Maxwellian plasma,

YNL = 1 − exp
( − ω2

Bl2
⊥/50v2

th

)
, (4)

where vth is the electron thermal speed, ωB = √
2ekp|Ep|/m is

the so-called bounce frequency, and l⊥ is a typical transverse
gradient length for Ep. An exact expression for YNL would
require an exact estimate of l⊥. However, it cannot be very
different from the choice made in this Letter, l⊥ = λl f#, where
λl is the laser wavelength and f# the overall aperture of the
focusing system. Now, ω2

B varies very quickly with the laser
intensity so that a little change in l⊥ would entail a very small
change in the threshold intensities leading to YNL ≈ 1, and
would have an insignificant impact on our results. Hence, no
fine tuning is necessary for l⊥, which is not to be considered
as a free parameter of our model.

In Eq. (3),

δω = (1 + χ )/∂ωχ, (5)

where χ (k, ω) may be viewed as a nonlinear electron suscep-
tibility, derived in Refs. [8,17]. It reads

χ = (1 − YNL)χlin + YNLχa, (6)

where χlin is the linear electron susceptibility whose expres-
sion may be found in Ref. [18], and where χa is the adiabatic
nonlinear susceptibility whose expression may be found in
Refs. [9,10,17]. Then, in Eq. (3), �p = ekp/mωlωb∂ωχ , and

γ =
√

γ 2
0 + ν2

p − νp, (7)

where γ0 = kpvosc/
√

2ωb∂ωχlin with vosc = eEl0/mωl . Equa-
tion (7) for γ is an estimate of the EPW growth rate which
proved to yield very accurate results, in Ref. [10] as regards
the nonlinear EPW growth, and in Ref. [19] as regards the
derivation of the EPW nonlinear frequency shift. If we had
used γ = E−1

p (∂t + vgp∂x )Ep, with vgp = −∂kχ/∂ωχ , Eq. (3)
would just have been the envelope equation,

∂ωχ [∂t + vgp∂s + νp]Ep − i(1 + χ )Ep = �p∂ωχElE
tot
b . (8)

Equation (8) has been derived in Ref. [17] and its accuracy has
been directly tested against Vlasov simulations in Ref. [20]. It
has also been used in our envelope code BRAMA [21], whose
accuracy has been tested in Ref. [22] against Vlasov simu-
lations, and in Ref. [15] against the experimental results of
Ref. [23]. Using Eq. (7) for γ instead of solving the envelope
equation (8) makes PIEM an effective gain model.

In Eqs. (5) and (8), we use χ (k = kl − kb, ω = ωl − ωb).
Then, the term −iδω in the denominator of the right-hand
side of Eq. (3) accounts for SRS detuning due to the plasma
inhomogeneity and to the nonlinear frequency shift. They may
either compensate and even lead to autoresonance [24] or add
up and saturate SRS. Moreover, when solving Eq. (3), we
account for saturation due to LDI and wave breaking. To do
so, we enforce the condition Ep < Emax, where Emax is the
minimum between the limit imposed by LDI, as derived in
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Ref. [14], and that imposed by wave breaking, as derived in
Ref. [10].

As regards the amplitude, El0 , for the laser electric field
absent of SRS, we cannot rely on the estimate Elg of our
rad-hydro code, because it stems from geometrical optics. In
order to account for optical smoothing used in ICF [25], which
leads to a speckle pattern, we use E2

l0
(s) = αliss(s)E2

lg
(s),

where αliss(s) ≡ ∑
i αi(s − σi ). Here, αi is a bell-shaped func-

tion whose total width at half maximum is of the order of
the longitudinal size, l‖, of a speckle. We chose αi(s) =
α0i sin2

c[π (s/l‖)], where α0i is an exponential random variable.
Moreover, we impose the averaged value of αliss to be unity
along each ray. As for the σi’s, there are separated by 2l‖ and
are time independent, so that we do not account for smoothing
by spectral dispersion (SSD). This would impose too small
time steps in our rad-hydro simulation, while SRS usually
grows too quickly to be directly sensitive to SSD. As regards
l‖, we chose l‖ = 7λl f 2

# but we could have used a slightly
different value. However, a small change in l‖ would entail,
at most, a very small shift in the intensity dependence of
the reflectivity. Hence, l‖ is not to be considered as a free
parameter of our model.

Along each ray, Eqs. (1)–(3) are solved for one single value
of ωb. It is derived every Nw∗

b
time steps as the frequency

yielding the largest Raman reflectivity. The chosen value for
ωb fulfills the three-wave resonance conditions at a given
abscissa, s∗. Then, at s∗, we generate a backscattered wave
that carries a number of photons, Nb, derived from the reso-
lution of Eq. (2). This wave propagates along its own ray and
deposits its energy in the plasma by inverse bremsstrahlung.
Moreover, at s = s∗, the laser wave is depleted by Nb pho-
tons. Hence, we allow for the SRS feedback on the plasma
hydrodynamics.

When solving Eqs. (1) and (2), we assume that the ray
trajectories are identical for the laser and backscattered waves,
which is clearly valid when the plasma is nearly uniform.
When the plasma is inhomogeneous, SRS is only effective
within the narrow space region where the resonance condi-
tions kl − kb = kp and ωl − ωb = ωp are fulfilled. Within this
region the laser and backscattered ray trajectories are nearly
the same. Finally, note that Eqs. (1) and (2) are only valid
when the wave amplitudes do not explicitly depend on time.
Hence, we miss the distinction between a convective and an
absolute linear instability [26,27]. However, in this Letter, we
address the nonlinear regime of SRS and we mainly want to
estimate the maximum amplitude reached by the backscat-
tered wave, which follows from the limits imposed on the
EPW amplitude by nonlinear saturation mechanisms.

Numerical resolution. Equation (3) for Ep is solved by
bisection [28], with 0 � Ep � Emax, where Emax is the min-
imum between the limit imposed by LDI [14] or by wave
breaking [10]. In order to significantly speed up PIEM, we
derive δω from stored values obtained for a large range of
electron densities and temperatures, and of EPW amplitudes.
Eqs. (1) and (2) are solved by making use of a fourth-order
Runge-Kutta method [28], with the space step δs ≈ 5 µm.
These equations are solved from s = 0 to s = smax for a given
value of Ab(0). Now, the value of Ab(0) that yields our esti-
mate for the reflected power is found by bisection. Knowing
that 0 � Ab(0) � √

ωb/ωlζb(0) we solve Eqs. (1)–(3) until

we find, using the bisection method, the value Ab(0) that
yields Ab(smax) ≈ 0. As for the plasma hydrodynamics, it was
computed by making use of a two-dimensional axisymmetric
TROLL simulation. The time step used for the simulation was
δt = 0.5 ps. Moreover, we used Nw∗

b
= 15 which let us esti-

mate ωb every 7.5 ps, which is much less than the time needed
for the electron density and temperature to vary significantly
(we also tried Nw∗

b
= 10 and found essentially the same re-

sults). Note that, because PIEM calculates SRS along rays, its
performance should not be very sensitive to dimensionality. In
our simulation, we used 332 = 1089 rays.

Comparisons against experimental results. In this Letter,
we do not simply compare PIEM against one experimental
measurement, but we carefully discuss PIEM’s ability to make
accurate predictions for one experimental configuration rele-
vant to laser fusion. It corresponds to the experiments detailed
in Ref. [29], performed in two similar campaigns at the Ligne
d’Intégration Laser (LIL) in 2011 and 2013, and leading to
very similar reflectivities as shown in Fig. 1. The laser system
of the LIL facility consisted of four square beamlets, put
together into a quad, with a total energy close to 15.7 kJ. The
temporal pulse shape, illustrated in Figs. 1(a) and 3, consisted
of two plateaus, of about 3 ns each. The power in the first
plateau was close to 1 TW (with a space-averaged intensity
close to 2 × 1014W/cm2), and the power in the second plateau
was about 4–4.5 TW (which corresponds to a space-averaged
intensity of about 8–9 × 1014W/cm2). The quad was optically
smoothed with kinoform phase plates and the pilot incorpo-
rated two phase modulators, one at 2 GHz and one at 14 GHz.
The quad was sent into a cylindrical hohlraum, 4 mm long
and 1.4 mm diameter, filled with 1 atm neo-pentane gas. The
hohlraum was closed by two thin polymide windows which
exploded under the action of the quad. Hence, this was an
open configuration.

Let us first compare the wavelengths of the reflected
light as measured experimentally against those predicted by
PIEM. There are very similar between t = 1ns and t ≈ 3.75ns
and between t ≈ 5ns and t = 6.5ns, except that the PIEM
spectrum is thinner because, in PIEM, we only retain one
wavelength per ray. At t ≈ 3.75ns, there are two maxima in
the experimental and numerical spectra, which indicates that
SRS is generated in plasma regions with different electron
densities. Actually, when the laser quad enters the hohlraum,
the plasma is first expelled from the propagation axis, and
bounces against the hohlraum wall before coming back to-
wards the axis when t ≈ 3.75ns. Hence, there is plasma
mixing, which TROLL does not simulate very accurately. This
may be one reason for the discrepancies in the spectra between
4 and 5 ns.

As regards the SRS reflected power, Fig. 3 shows that
PIEM predictions are in good agreement with the experimen-
tal measurements between t = 3ns and t = 6ns, except when
t ≈ 4.5ns. As may be seen in Fig. 2, the agreement between
the experimental and numerical spectra is worst precisely
at t ≈ 4.5ns. More generally, between t = 3ns and t = 6ns,
there is a close correlation between the agreement on the
reflectivity and the agreement on the spectra. This seems
to indicate that, within this time interval, PIEM accuracy is
mainly limited by TROLL’s ability to correctly simulate the
plasma hydrodynamics.
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FIG. 5. Time evolution of kpλD (black dashed line) and of νL/ωpe

(green solid line) as calculated by PIEM.

Now, when t < 3ns, PIEM predictions for the SRS reflec-
tivity strongly underestimate the experimental data. Figure 4
also shows that, before 3–4ns, our numerical predictions for
the transmitted power strongly overestimate the experimental
measurements. This overestimate is very unlikely to be related
to stimulated Raman scattering since the SRS reflectivity is
very low when t � 3ns. Moreover, in Fig. 4, we account
for the difference between the numerical and experimental
values of the reflectivity in order to estimate the transmission.
Namely, we plot T = TPIEM + RPIEM − Rexpt, where TPIEM and
RPIEM are, respectively, the transmitted and reflected powers
as predicted by PIEM, and Rexpt is the SRS reflected power
as measured experimentally. The discrepancies illustrated in
Fig. 4 would rather indicate that, before 3–4ns, some physical
effects, different from SRS, are not correctly modeled in our
rad-hydro simulation. This may be the heat flux, leading to
a poor estimate of the plasma temperatures and of the ab-
sorption of the incident laser energy. This may also be laser
filamentation, which may prevent the beams from exiting the
hohlraum and which we do not account for in our TROLL

simulation. Consequently, it is difficult to draw any conclusion
on PIEM accuracy from the comparisons against the experi-
mental results before 3 ns.

In Fig. 3 we also plot the predictions for the SRS reflec-
tivity as derived from the linear model described in Ref. [11],
which has been recently implemented in TROLL. This model
systematically underestimates both the PIEM predictions and
the experimental measurements, except when t ≈ 4ns. Now,
from the spectrum of Fig. 2(b), we know the electron density
ne where SRS mainly grows. Moreover, in our simulation, we

know where most of the backscattered rays come from, which
allows us to derive the electron temperature Te. From ne and
Te we can derive the value of kpλD (λD = vth/ωpe being the
Debye length) and of the Landau damping rate νL for the EPW
resulting from SRS.

As may be seen in Fig. 5, νL assumes a marked minimum
when t ≈ 4ns. It is several times smaller than γ0, so that
its nonlinear decrease has a very moderate impact on SRS.
This is in contrast with the situation at earlier and later times
when νL assumes much larger values, respectively, because
the density is smaller or because the temperature is larger.
Actually, as shown in Fig. 3, νL grows so quickly after t ≈ 4ns
that the linear reflectivity globally decreases although the laser
power raises. This is in contrast with PIEM’s prediction for the
reflectivity, which globally increases after t ≈ 4ns, in agree-
ment with the experimental results. This shows PIEM’s ability
to correctly account for the nonlinear reduction of the EPW
damping rate, and more generally for the impact of nonlinear
kinetic effects on SRS. Comparisons against linear results are
clear evidence of kinetic inflation [30] and of PIEM’s ability
to allow for it.

Conclusion. In this Letter, we introduced the PIEM model,
able to correctly predict the SRS reflected power measured on
LIL experiments when nonlinear kinetic effects were clearly
at play. This does not mean that we are able to make predictive
ICF simulations for all possible situations. We do not claim
that PIEM is perfect and complete. In the near future, we
want to extend our theory for EPWs to ion waves in order to
derive a nonlinear kinetic modeling for stimulated Brillouin
scattering and crossed beam energy transfer that would be
included in PIEM, in addition to SRS. We also want to allow
for the production of hot electrons by SRS after the EPW
breaks up. So far, since we do not have a theory for the
distribution of such electrons, we do not account for the de-
position of their energy in the plasma. Several issues, related
to laser beam propagation, plasma hydrodynamics, or laser
power absorption, may also need to be more accurately ac-
counted for in TROLL. More comparisons against experimental
measurements, possibly from other groups using data from
other facilities, would be useful, and this is one motivation
to have this work published. We do believe that PIEM opens
the path to predictive simulations by successfully addressing
one important issue, long thought as a particularly difficult
one. It lets a radiation hydrodynamics code correctly estimate
nonlinear kinetic effects.
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