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Shear flow of non-Brownian rod-sphere mixtures near jamming
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We use the discrete element method, taking particle contact and hydrodynamic lubrication into account, to
unveil the shear rheology of suspensions of frictionless non-Brownian rods in the dense packing fraction regime.
We find that, analogously to the random close packing volume fraction, the shear-driven jamming point of this
system varies in a nonmonotonic fashion as a function of the rod aspect ratio. The latter strongly influences how
the addition of rodlike particles affects the rheological response of a suspension of frictionless non-Brownian
spheres to an external shear flow. At fixed values of the total (rods plus spheres) packing fraction, the viscosity
of the suspension is reduced by the addition of “short”(� 2) rods but is instead increased by the addition of
“long”(� 2) rods. A mechanistic interpretation is provided in terms of packing and excluded-volume arguments.
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Suspensions of non-Brownian, micron-sized, particles dis-
persed in Newtonian fluid are ubiquitous in nature and have
widespread industrial applications, especially in the dense
regime where solid and fluid are mixed in similar propor-
tions [1–4]. The application of a shear deformation leads to
a (shear-driven) jamming transition upon increasing the solid
packing fraction φ toward a so-called jamming point φJ [5,6].
While a dense non-Brownian suspension can flow under an
external shear stress for φ < φJ, the viscosity η of the sus-
pension increases dramatically when φ → φJ, and the system
consequently develops a solidlike behavior with a finite yield
stress at φ � φJ. Although the mechanism underlying this
flow arrest is not yet understood, the jamming transition is
commonly believed to crucially influence the shear rheology
of non-Brownian suspensions in the dense regime (i.e., below
but not too far from φJ) of packing fraction [2,7,8].

When the particles are frictionless and spherical, the vis-
cosity η of the suspension exhibits a power law divergence
η(φ) ≈ (φJ − φ)−β, where β is a scaling parameter much
discussed in the literature [8] and reported to be β ≈ 2 in
shear flow experiments [9], while φJ coincides with the ran-
dom close packing (RCP) volume fraction, φRCP ≈ 0.64, of a
collection of hard spheres [6]. The value of φRCP for a generic
ensemble of hard particles is defined as the highest packing
fraction for a “disordered” arrangement of those particles [10].
Since nonsheared systems in the liquid phase for φ < φRCP

reach mechanical rigidity at φRCP, the latter quantity is of-
ten referred to as the jamming point [11,12]. Nevertheless,
by contrast with φJ, φRCP for a given system is measured
by means of an isotropic compression rather than a shear
deformation. To highlight this difference, some authors have
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recently referred to the transitions occurring at φJ and φRCP

as shear-driven jamming and compression-driven jamming,
respectively [13,14].

An increasing number of numerical and experimental stud-
ies have recently investigated how φRCP of Brownian and
non-Brownian suspensions is influenced by the nonspheri-
cal shape of the dispersed particles [15–19]. How this latter
property affects the shear-driven jamming point φJ and the
related shear rheology in the region φ < φJ has remained,
instead, poorly understood. Even less attention has been
devoted to exploring how the shear rheology varies when
particles with different shapes are dispersed within the same
suspension.

To fill this gap, we consider a mixture of spheres and rods
under simple shear flow. Rods are modeled as spherocylin-
ders: axially symmetric cylinders of length L and diameter
D, capped by hemispheres also of diameter D (see Fig. 1).
We compute how the viscosity η of the mixture varies as
a function of both the aspect ratio (AR) L/D of the rods
and the relative concentration x of the spheres. We employ
a recently introduced numerical method [20], which is based
on an analogy between dense non-Brownian suspensions and
dry granular matter. This analogy exploits the fact that, by
contrast with dilute regimes where long-range hydrodynamic
interactions dominate, particle contact interactions and ran-
dom packing dominate the dynamics in the dense regime near
jamming [2].

Unlike spheres, rods behave differently when subjected
to isotropic compression or to shear. While in the former
case they show no long-range orientational order upon jam-
ming, in the latter case they do show orientational ordering
as a result of torques induced by the shear flow. This shear-
induced orientational ordering has been widely demonstrated
both in simulations [21–23] and in experiments [21,22,24].
Comparatively little attention has been devoted to understand-
ing the implications of this ordering on the shear-induced
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FIG. 1. Randomly packed rod-sphere mixture. The spheres have
diameter D, while the rods (spherocylinders formed by glued
spheres) have aspect ratio L/D = 4. Packing fraction is φ = 0.6.

jamming point φJ. In simulations of bidisperse mixtures of
two-dimensional spherocylinders, Refs. [13,14] have found a
monotonic increase of φJ with the AR.

Here we show that, analogously to the random close pack-
ing volume fraction φRCP, the shear-driven jamming point φJ

of a suspension of spherocylinders also varies nonmonotoni-
cally as a function of the AR L/D. Furthermore, we show that
the addition of rods strongly affects the rheological response
of a suspension of frictionless non-Brownian spheres to an
external shear stress. The situation where spheres are added to
rods is also studied.

Our simulations employ a well-established code imple-
mented in LAMMPS [25]. We simulate the trajectories of
mixtures of NS spheres and NR rods in a periodic cubic
box of side LB. Rods (spherocylinders) consist of linear as-
semblies of spheres (diameter: D, density: ρ, and stiffness: kn)
of varying length L. To ensure bulk conditions, we implement
LB � D and LB � L. Spheres follow Newtonian dynamics,
subject to forces and torques arising due to Stokes drag, hy-
drodynamic lubrication, and repulsive contact. Drag forces
are computed relative to a background streaming fluid flow
(viscosity η f ) so that a linear velocity profile u∞ = (γ̇ y, 0, 0)
is established with shear rate γ̇ . The lubrication forces are
computed according to Ref. [26], and they are truncated at
0.001(D/2) to prevent divergence. Contacts are modeled as
stiff linear springs with repulsive force set by the sphere-
sphere overlap and stiffness. We indicate the stress tensor by
�. Full details of the forces and torques are given by Cheal
and Ness [20].

For spheres, we sum the force at each timestep and
update the acceleration according to the velocity-Verlet al-
gorithm. For rods, we sum the forces over all constituent
spheres then distribute the resultant force uniformly to each
sphere. This ensures that rods act as rigid bodies with no
relative translation or rotation between constituent spheres.
Further details are given in Ref. [27]. We set ργ̇ (D/2)2/η f <

10−2 and γ̇
√

ρ(D/2)3/kn < 10−4 to ensure, respectively,
inertia-free and hard sphere conditions. The total packing
fraction is φ = φS + φR, where φS = (4/3)π (D/2)3ρ and
φR = (4/3)π (D/2)3ρR + π (D/2)2ρL. Moreover, x ≡ φS/φ

is the relative component of spheres in the mixture, and

φR/φ = 1 − x. To simulate simple shear we use a triclinic
periodic box with a tilt length LB

xy that is incrementally in-
creased linearly in time as LB

xy(t ) = LB
xy(t0) + LB

y γ̇ t, giving a
deformation equivalent to that obtained using Lees-Edwards
conditions. The viscosity of the mixture is η = �xy/(γ̇ η f ),
where �xy is the xy component of � and ηf is the viscosity of
the hosting fluid. We thus compute the viscosity η of mixtures
of spheres and rods, for several combinations of the total
(spheres plus rods) particle packing fraction φ ≡ φS + φR, the
relative concentration of the spheres x (≡ φS/φ), and the AR
of the rods L/D.

We start from the case x = 0, corresponding to a monodis-
perse ensemble of rods (for which φS = 0 and φ ≡ φR,

respectively). In Fig. 2(a), we plot the dimensionless viscosity
η/ηf at fixed φ = 0.412 and L/D = 4 as a function of the
shear strain γ̇ t for several values of the shear rate γ̇ . As it
can be observed, our results do not depend on the chosen
value of γ̇ . Figure 2(b) shows that after a start up transient in
which the viscosity increases with strain, a plateau is reached.
At this plateau, orientational order (negligible for short ARs)
has developed in the system. This is shown in Fig. 2(c)
where the nematic scalar order parameter S is plotted as a
function of γ̇ t . To compute the shear-induced orientational or-
der we diagonalize the tensor Qαβ = 1

NR

∑NR
i=1 ( 3

2 ui
αui

β − δαβ

2 ),
where α, β = x, y, z. In this definition, ui is a unit vector along
the long axis of particle i, and the sum is considered over all
the NR rods in the mixture. The scalar nematic order parameter
S is defined as the largest eigenvalue of Q.

In all cases the viscosity is measured at a value of
strain γ̇ t sufficiently large for the plateau of Fig. 2(b) to
be reached. For several values of L/D ∈ [0, 4], we plot the
viscosity η of this system as a function of φ, with symbols
in Fig. 3(a). In all cases, we express η rescaled by η f . In
the figure, black points represent the limiting case L/D = 0,

which corresponds to a monodisperse suspension of non-
Brownian frictionless spheres. The black points in Fig. 3(a)
can be fitted to the widely used Krieger-Dougherty (KD)
relation

η/η f = α(1 − φ/φJ)−β, (1)

with fitting parameters α = 1, β = 1.6, and φJ = 0.644, re-
spectively. Moreover we show that, besides the case L/D = 0,

all the numerical data plotted in Fig. 3(a) can be fitted to the
KD relation (1), once the values of β and φJ are properly fitted.
All the fitted curves are plotted with full lines in Figs. 3(a) and
3(b). The values of β and φJ are plotted as a function of L/D
in Figs. 3(c) and 3(d), respectively. Analogously to φRCP, we
find φJ to vary nonmonotonically as a function of L/D, with a
maximum reached at L/D = 0.75.

After having explored the case x = 0, corresponding (for
L/D > 0) to the absence of spheres in the system, we consider
a more complex situation in which both rods and spheres
are present in the sample so that x �= 0. As for the case of
monodisperse rods, for rod-sphere mixtures it is convenient to
use a collection of frictionless spheres as a reference state.
The latter situation can be obtained in two distinct ways:
either (i) choosing the value of spheres concentration x = 1
independently of the AR of the rods, or (ii) fixing L/D = 0
independently of the spheres concentration x. In both cases,
the dependence of the viscosity η on φ is given by the black
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FIG. 2. (a) Dimensionless viscosity η/ηf of a suspension of pure (no spheres in the mixture) spherocylinders, fixed aspect ratio L/D = 4
and packing fraction φ = 0.412 as a function of the shear strain γ̇ t for several values of the shear rate γ̇ . (b) After a start up regime in which
the viscosity increases with strain, a plateau is reached. At this plateau, orientational order (negligible for short ARs) has been developed as
proved by a plot of the nematic scalar order parameter S as a function of γ̇ t , (c). The shear rate is measured in simulation units.

curve depicted in Fig. 3(a). To explore other nontrivial situa-
tions, while keeping the L/D of the rods fixed, we compute
the viscosity η of the mixture as a function of φ, for several
values of x ∈ [0, 1]. We repeat this protocol for (almost) the
same values of AR considered in Fig. 3(a), for L/D ∈]1, 5].
The results can be already guessed from Fig. 3(a). Each curve
plotted in this figure, indeed, represents the case x = 0 at fixed
L/D. The black curve, instead, represents the case x = 1 for
any value of L/D. It follows that all the “colored” curves
must collapse on the black one by increasing the relative
concentration x of the spheres in the mixture.

Thus, by adding rods to spheres, two contrasting behaviors
are observed, depending on L/D. While addition of short
rods (L/D < 2) results in a decrease of the viscosity at fixed
φ, addition of long rods (L/D � 2) results in an increase.
This scenario is depicted in Fig. 3(b), illustratively for the
case of rods with L/D = 0.5 (red points) and L/D = 4
(blue points), respectively. Full lines represent fits to the KD

relation (1) whose parameters are reported in Figs. 3(e) and
3(f), respectively.

This result can be interpreted in terms of the average
number of contacts per particle, z, required for a rod-sphere
mixture to be mechanically stable. The average contact num-
bers for the various species computed from the simulations are
shown in Fig. 4, as a function of the concentration of spheres
x, for two ARs.

Again it is instructive to start from pure rods, x = 0. As
it is known [17,28], the average critical contact number zJ

in a monodisperse system of jammed rods increases from
the value z = 6 at L/D = 0 until a value zJ ≈ 10 is reached
at approximately L/D = 0.5 and then remains constant upon
further increment of L/D. As argued in [17], the way zJ varies
as a function of L/D provides an explanation for the non-
monotonic variation [shown in Fig. 3(c)] of φJ on L/D, which
is confirmed here for jamming under shear flow. More specif-
ically, the number of degrees of freedom per particle in the

FIG. 3. Shear viscosity η/η f of a rod-sphere mixture as a function of the total (rods plus spheres) particle concentration φ for several
values of the rod aspect ratio L/D at fixed concentration of spheres x=0 (a), and for several values of x at fixed L/D = 0.5 (red points) and
L/D = 4 (blue points) (b). All data can be fitted to the KD relation [Eq. (1)]. The φJ and β coefficients of the curves in (a) are plotted in (c) and
(d), respectively. The φJ and β coefficients of the curves in (b), i.e., at fixed L/D = 0.5 (red) and L/D = 4 (blue), are plotted in (e) and (f),
respectively.
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FIG. 4. Mean contact numbers (z) in a rod-sphere mixture at the
shear-driven jamming point φJ, versus the concentration x of spheres
in the mixture. The number of rods in contact with each rod is zRR,

the number of rods in contact with each sphere is zRS, the number of
spheres in contact with each rod is zSR, and the number of spheres
in contact with each sphere is zSS. Left: the rods have aspect ratio
L/D = 4. Right: the rods have aspect ratio L/D = 0.36.

system increases with L/D as rotational degrees of freedom
add to the translational ones when rods replace spheres [29].
The increase in the number of degrees of freedom per particle
results in an increase of the overall number of particle con-
tacts zJ required to mechanically stabilize the packing as L/D
increases. In turn, an increase of zJ at the onset of mechanical
stability is associated with an increase of the corresponding
φJ [28,30]. After a certain threshold (L/D ≈ 0.5) is reached,
the number of degrees of freedom does not depend on L/D
anymore, then zJ remains constant after the value z = 10 has
been reached. In this situation, the subsequent decrease of φJ

for markedly aspherical particles in orientationally disordered
packings is explained by strong excluded-volume effects à la
Onsager [28,31]. This argument explains the nonmonotonic
trend of φJ of rod-sphere mixtures vs L/D also in the presence
of shear flow.

A quantitative explanation of the dependence of the vis-
cosity η of the system on L/D follows from φJ being the
point at which η diverges [from Eq. (1) and as numerically
shown in the above]. In particular, in the first regime where
φJ increases with increasing L/D, the viscosity decreases
because the viscosity is always lower when φJ is larger, cfr.
also Eq. (1). Conversely, when φJ decreases with increasing
L/D (excluded-volume effects à la Onsager), for the reasons
explained above, then the viscosity increases with further

increasing L/D. However, rather than at L/D = 0.5, we find
the maximum value of φJ to be located at L/D = 0.75.

To summarize, for a system of pure rods there are two
different mechanisms which determine the location of the
jamming point φJ as a function of the L/D. For short rods,
excluded-volume effects à la Onsager are not dominant, and
the increase of φJ as a function of L/D is caused by the
increase of z due to the emergence of additional rotational
degrees of freedom. Excluded-volume effects à la Onsager
instead dominate in orientationally disordered packings of
long rods [28], from which a decrease of φJ in the region
L/D � 0.75 arises. The trend of φJ then determines the trend
of the viscosity versus L/D, which will be opposite, i.e.,
anticorrelated, to that of φJ, according to Eq. (1).

This scenario can be generalized to the case of a rod-sphere
mixture. In this case, four contact numbers exist, see Fig. 4.
When spheres are added to a system of randomly jammed
long rods, they mainly act as to fill the large voids between
the rods. As a consequence, the jamming point φJ, at which
the viscosity diverges, increases upon increasing the fraction
of spheres, and the viscosity decreases. By contrast, when
spheres are added to a system of randomly jammed short
rods, they mainly act as to reduce the number of degrees of
freedoms in the system by effectively “killing” the rotational
degrees of freedom. As a consequence, the jamming point φJ

decreases with the addition of spheres, in this regime, and the
viscosity increases.

In summary, we unveiled the shear rheology of a binary
mixture of spheres and rods (spherocylinders) numerically.
Our main finding is that the effect of adding rods on the
viscosity of the mixture strongly depends, in a nonmono-
tonic fashion, on the rod aspect ratio. Adding rods to spheres
reduces the viscosity of the suspension as long as the rods
have L/D < 2, with a minimum value of the viscosity at
L/D = 0.75. When rods with L/D � 2 are added, instead, the
viscosity dramatically increases. Our findings pave the way
for the rational control of viscosity for energy-saving purposes
in the chemical and pharmaceutical industry.
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