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Evidence of scale-free clusters of vegetation in tropical rainforests
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Tropical rainforests exhibit a rich repertoire of spatial patterns emerging from the intricate relationship
between the microscopic interaction between species. In particular, the distribution of vegetation clusters can
shed much light on the underlying process that regulates the ecosystem. Analyzing the distribution of vegetation
clusters at different resolution scales, we show the first robust evidence of scale-invariant clusters of vegetation,
suggesting the coexistence of multiple intertwined scales in the collective dynamics of tropical rainforests. We
use field data and computational simulations to confirm our hypothesis, proposing a predictor that could be
particularly interesting to monitor the ecological resilience of the world’s “green lungs.”
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Introduction. A tantalizing hypothesis states that some
biological systems may operate in the vicinity of a phase tran-
sition, fostering many functional advantages and optimizing
the ability to react collectively [1]. In light of such criti-
cality hypothesis, there have been significant developments
in understanding many real examples of inanimate natural
phenomena as, for instance, sandpiles [2], earthquakes [3], or
forest fires [4]. Subsequently, the advent of high-throughput
technologies has led to found empirical evidence in living
matter from bacterial communities [5] to the human heart [6],
networks of living neurons [7], cluster of ants colonies [8], or
gene expression [9] (see [1] for further examples).

All these systems share the presence of power-law dis-
tributed events, considered the hallmark of operating at (or
close to) a second-order phase transition [10]. For instance,
neuronal avalanches, i.e., cascades of activations clustered in
time, have been crucial to scrutinize the emergent dynami-
cal behavior in neural populations [11]. However, unlike the
von Neumann neighborhood in discrete systems, clustering
statistics in continuous embeddings [12], either temporal or
spatial, rely on nearest-neighbor distance assumptions with an
intrinsic degree of freedom: there is no unique way to define
clusters in the system. The time-bin issue in determining neu-
ronal avalanches is an example of this [1,13].

Vegetation patterns are ubiquitous in arid and semiarid
ecosystems [14]. There, different large-scale patterns exhibit
unambiguous spatial scales (e.g., Namibian fairy circles [15]),
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leading to long-lasting active debates and theoretical ap-
proaches [14,16—18]. On the contrary, deciphering collective
phenomena in large-scale saturated complex ecological sys-
tems such as rainforests, particularly the ecological patterns
they show, represents a fundamental open problem in theo-
retical ecology [19-21]. Only a few studies have evidenced
scale-free patterns, such as the low canopy gaps (after recent
recolonizations) of Barro Colorado Island (BCI) [22] or differ-
ent arid landscapes of the Kalahari, due to interacting effects
of global resource constraints [23]. Regarding semiarid envi-
ronments, recent theoretical insights have demonstrated how
environmental temporal variability can promote the emer-
gence of vegetation patches with broadly distributed cluster
sizes [24]. Otherwise, cluster-based approaches have allowed,
e.g., to identify the scales of spatial aggregation and the
corresponding tree clusters in Malaysian tree species [25].
However, how to cluster actual multivariate point patterns
(beyond naive Newmann clustering tentatives) or, at least,
how to extract their characteristic spatial scales, especially in
saturated environments, is still an important issue to be solved.

Inferring properties of spatial point processes have been
revealed to be essential for testing spatially related ecologi-
cal theories and hypotheses [26]. In particular, their analysis
aims to explain the nature of underlying processes generat-
ing them, and identify the scale at which they operate [27].
However, different pieces must still be put back together in
tropical forests: From dry deciduous forests to evergreen wet
forests, empirical evidence suggests that most species are
more aggregated than random [28], while anomalous den-
sity fluctuations, a fingerprint of long correlations, emerge
in the spatial distribution of different tropical species [29].
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FIG. 1. Sketch of the clustering process of a fixed number of
points for different interaction distances. The upper insets illustrate
the clusters at criticality for different homogeneous and inhomoge-
neous Poisson point processes (see [12] for further examples).

Based on the dependence of species richness on the sampling
area, different works suggested the possibility that specific
ecosystems are in a state of incipient criticality [30-32], even
in the absence of power laws: the missing link to state that
ecosystems can be placed in the vicinity of a critical point.

Through continuum clustering techniques [12], here, we
present evidence of scale-free vegetation clusters in empirical
data of BCI, which sheds much light on their spatial aggre-
gation properties and correlation scales. We compare current
data with different simulated emergent spatial point processes,
showing the wide variety of scales that play a crucial role in
natural rainforests and uncovering emergent critical dynamics
hitherto unknown.

The most common way to characterize the aggregation
properties of a fixed number of points, N, distributed in
a continuous embedding space, relies on usual continuum
percolation techniques [12,25,33]. Hence, based on some pre-
defined distance r, two individual points will belong to the
same cluster if their Euclidean distance is less than or equal to
r [34,35]. As illustrated in Fig. 1, a percolating cluster exists if
a path can be drawn connecting all points with edges of length
smaller than r. Let us remark that the mean nearest-neighbor
distance (MNN), defined as the nearest neighbor mean point-
to-point Euclidean distance, makes it possible to study a point
process independently of the area where it takes place and
study it only depending on the system size [12,25]. Thus, we
normalize the control parameter by the interparticle distance
of the point process, i.e., defining # = r/MNN and producing
a nondimensional version of the distance parameter, which
allows us to interpret cluster analysis in the language of statis-
tical mechanics and percolation phase transitions.

The fraction of points belonging to the largest cluster,
P /N, acts as the order parameter of the system, while
the distance 7 acts as the control parameter, showing a
percolation phase transition at some critical value 7.. Addi-
tionally, it is possible to compute the susceptibility as y (7) =
g S2P(S, 7/ ¢ SP(S, 7), where the sum runs over all the
possible sizes S of the clusters (given a radius 7) in the
system, P(S, 7') being the cluster size probability distribution,
and discarding Py if it exists (as usual). Let us highlight that

P(S, 7) is expected to follow a power law distribution only at
the critical point, P(S, 7.) ~ S~7, where the Fisher exponent
T is linked to the intrinsic properties of the spatial point
process [12] (e.g., in 2D, T = 2.05 for isotropic percolation
and T = 2.5 + 0.1 for gradient percolation [12,36]).

Barro colorado island (BCI). The BCI database comprises
sufficiently high-resolution data with eight censuses (every
five years from the 1980s) of more than 4 -10° trees and
shrubs with diameter at breast height greater than 0.01 m,
belonging to about 300 species in 50 ha (1000 x 500 m?),
and providing position and species for each plant [37]. From
these data, we can resolve vegetation clusters of conspecific
and heterospecific plants. Our primary goal is to provide a
comprehensive overview, at the ecosystem level, of the intrin-
sic qualitative properties of the vegetation pattern by closely
examining its aggregating properties.

Note that systems characterized by short-range correlation
lengths (i.e., the absence of critical fluctuations) will be re-
flected in a standard percolation phase transition, where the
properties of the underlying point process are determined by
the Fisher exponent t [12]. Let us emphasize that, e.g., critical
systems lack a well-defined scale, so multiple broadly di-
verse scales are expected to make contributions of comparable
importance, with microscopic, mesoscopic, and macroscopic
scales all alike. Thus, a natural series of questions arises: Is
it possible to extract information about characteristic spatial
scales, in the case they emerge, at the ecosystem level? Do dif-
ferent functional scales live together in complex rainforests?
Can we extract some information about the dynamical regime
of these complex systems?

We examine the aggregation properties of two important
cases: the community and single species levels. At the com-
munity level, we observe a percolation phase transition at
approximately 7. ~ 2.4 £ 0.1, as depicted in Fig. 2(a). At the
critical point, different species aggregate, showing a power-
law distribution of cluster sizes with an exponent of around
T ~ 2.0 £0.1. This suggests the existence of a characteristic
correlation length and reflects a short-range correlated distri-
bution of points in a 2D space [12]. This result fully agrees
with previous evidence of an explicit correlation length £ and
analyses derived from the pair correlation function [29].

On the other hand, when we analyze the most abundant
species (which has been shown to quantify the collective
behavior of the entire system in agent-based models [38]), we
observe an absolute lack of characteristic scales. In particular,
there is a broad region where multiple resolution scales hier-
archically percolate, as shown in Fig. 2(b). As a consequence,
the distribution of clusters in the system is expected to follow
an intrinsic power law for a wide range of 7 values. We will
later analyze whether this region is only a finite-size effect or
if we can explain it from a statistical physics perspective. We
can consider the system inherently stationary for the specific
analyzed period at the community and most abundant species
levels. Thus, we have performed the average over the eight
censuses in Fig. 2 for better quality data. However, analyzing
species showing significant expansion or contraction is still
of great interest. Additional results for these specific cases,
and other species, can be found in the Supplemental Material
[39]. We will later discuss the physical meaning and biological
plausibility of this dynamic state.
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FIG. 2. Barro Colorado Island. P, as a function of the distance
parameter 7 for (a) the community level and (c) the most abun-
dant species: Hybanthus prunifolius. The solid green line shows
the average phase transition over the eight censuses from 1985 to
2005, while the dashed gray lines represent individual censuses. The
colored dots represent the position where the cluster size distribu-
tions are shown. Lower inset: Averaged system susceptibility. Upper
inset: Spatial cluster distribution at xm.. H. prunifolius exhibits
a nontrivial region with high susceptibility, ranging into 7 € (2, 4).
(b)—(d) Cluster size distribution averaged over all censuses for dif-
ferent values of 7 (see legend). The community level shows a usual
percolation transition with 7 >~ 2.0 £ 0.1 (dashed lines are guides
to the eye indicating this exponent). A broad (critical) region with
variable exponents exists for the most abundant species. The vertical
lines represent the total system size (i.e., the number of individuals)
for each specific case.

Spatial explicit neutral model (SENM). As a matter of
comparison, we analyze here the SENM [40-42], a nonequi-
librium stochastic population model that captures the main
features of ecological landscapes, allowing to generate non-
trivial spatial patterns at the single-species level [29] (see also
the Supplemental Material [39] for a thorough explanation
of the SENM). Since we aim to observe robust collective
phenomena, a SENM looks to be the suitable model to tackle
our questions on real data, comparing them with synthetic
point distributions. In the SENM, the magnitude of seed
dispersal in all nodes is represented by the dispersal kernel
K. The immigration rate v, i.e., the probability of having
a new species at each timestep on each lattice point, is a
parameter of species competition. Both parameters, K and v,
rule the phases and phase diagram of the system [38]. The
rich phase diagram of SNEMs—characterized by the perco-
lation properties of the most abundant species—includes a
short-range correlated region with random point patterns for
high values of K, separated by a scale-invariant (or critical)
region for short-range dispersal kernels and moderate values
of v and, finally, a bistable (monodominant) phase for low
values of K and v. In particular, the scale-invariant region
exhibits finite-size scaling effects, with critical exponents be-
longing to the isotropic percolation universality class and
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FIG. 3. SENM. P, for the most abundant species as a func-
tion of the distance parameter, 7, for (a) the random regime (v =
5-107% K =25,L =2°) and (c) the scale-invariant regime (v =
5.107%, K =5, L =2°). The solid green line shows the average
phase transition over the 10° independent realizations, while the
dashed gray lines stand for the individual ones. The colored dots
represent the position where the cluster size distributions are shown.
Lower inset: Averaged system susceptibility over 10? realizations for
L =12°21° and 2'" (black, red, and blue lines, respectively). Note
that x diverges as the system size increases. For each lattice side
we change v to maintain fixed vL?, selecting it for L = 2°. Upper
inset: Spatial cluster distribution at xm,x. The scale-invariant regime
exhibits a nontrivial extended region with divergent susceptibility.
(b) and (d) P(S) averaged over 10? realizations for different values
of 7 (see legend). The random regime exhibits a usual percolation
phase transition, with t ~ 2.0 £ 0.1 (black dashed line), whereas
the scale-invariant regime shows an intermediate region with variable
exponents. Now, the dashed lines are guides for the eye for t ~ 2.0
and t ~ 2.5, respectively.

ranging from 2D to mean-field behavior. For more details, we
refer the reader to the original work [38].

We analyze the two cases of particular interest for the most
abundant species: (i) random and (ii) scale-invariant regions
in the parameter space [38]. We therefore consider multiple
independent realizations of the model in a square lattice of
size L = 512, exploiting the SENM duality with coalescing
random walks [29,38,41-44].

As can be seen, Fig. 3(a) shows the case of a large-scale
dispersal kernel, leading to the emergence of short-range
correlated (random) spatial patterns. We scrutinize the perco-
lation transition of the most abundant species that displays a
usual 2D phase transition at 7 >~ 2.39 4+ 0.01 as expected for
a Poisson point process [12]. Figure 3(b) shows the Fisher
exponent T 2~ 2.0 & 0.1 at the critical point, a sign of a single
correlation length, &, for the global point process. However,
the analysis of the scale-invariant phase in SENMs reveals a
more complex situation. This theoretical scenario is analyzed
in Fig. 3(c), where the underlying percolation phase transi-
tion exhibits a lack of characteristic scales and heterogeneous
long-range spatial correlations (resulting in an effective hier-
archical phase transition). Moreover, the careful analysis of
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P(S) for the most abundant species keeps track of a broad
power-law regime with variable 7, as shown in Fig. 3(d).

One crucial question is how to scale the system size to
maintain the intrinsic properties of the SENM for analyzing
the scale-invariant region. Recent studies have shown that the
phase transition for the most abundant species results in a
bonafide data collapse under the scaling relation vL? [38].
Thus, to ensure that the scaling of the most abundant species
is consistent with the size of the system, we keep this specific
value fixed while adjusting v proportional to the increase in
the size of the system. We refer to the Supplemental Material
[39] for a more detailed analysis based on different values of
V.

In Figs. 3(a) and 3(c), the insets display the averaged sus-
ceptibility for systems of different sizes, with side L. Note that
the scale-invariant region is characterized by divergent sus-
ceptibility when increasing the size of the system for a wide
range of values of 7. From another angle, this fact confirms
that this phase lacks a characteristic scale and qualitatively
closely resembles the previous results obtained in the BCI, as
illustrated in Fig. 2(b). Most notably, it suggests that BCI may
have evolved to operate at the edge of a second-order phase
transition.

Scale-invariant properties of BCI. To verify our hypoth-
esis, we conducted additional tests to explore the potential
critical behavior of the system. Specifically, we implemented
different measures to capture the spatial scaling behavior of
the point process [45,46]. These are based on the mean con-
ditional density: that is, the number of point plants seen by
another plant located at point x within a distance ¢ from it,
ne(x). We thus compute this quantity adapting the Hanisch
method to avoid system boundary effects [29,47]: that is,
excluding from the statistics of the neighbors those plants that
are more distant from plant i than the closest border of the

system. On the one hand, we first study the conditional mass

2 —_ 2 . . o, .
variance, o2(£) = W, which in a (critical) fractal

set must remain almost constant across all different scales
(since relative fluctuations are approximately constant at all
scales, due to the scale-invariance properties of the system).
Note that, as it is shown in Fig. 4(a), the almost constant
value of o2(£)—the Poisson case scales as 02(£) o £~2 in this
particular case—can be considered a hallmark of self-similar
fluctuations.

On the other hand, we measure the correlation dimen-
sion, D, of the fractal set, being, C(£) = ﬁ Zf\]:(f) ;’\;((’2)),
where N.(£) is now the number of valid centers up to
scale ¢. In particular, C(¢) scales as C(¢£) o ¢P. Fig-
ure 4(b) shows the local slopes for the community level
and H. prunifolius. We emphasize that the mean frac-
tal dimension we found for H. prunifolius, D = 1.86 &+
0.04 is fully compatible with the fractal dimension
of 2D percolation clusters, D = Z—é, at the (continuum)
percolation threshold, i.e., with the isotropic percolation uni-
versality class.

An essential consequence of the o(£) analysis involves
characterizing fluctuation-driven species at short timescales.
We point out that 02(€y) =~ 1 defines the scale, £, beyond
which the average density becomes well defined [45]. We then

propose the fluctuability index, F = Mf\‘} ~» which is a measure
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FIG. 4. Fractal nature of BCL (a) Mass variance, o2(£), with
different radius ¢ for H. prunifolius (blue line). Note the almost
constant value, a sign of incipient criticality in the system. For
the sake of comparison, the red line shows the Poisson case, with
the same number of points and whose theoretical value scales as
o2(£) oc £72 (black dashed line). (b) Local slope for C(£) (see inset)
at the community level (orange line) and for H. prunifolius (blue
line). We obtain D = 1.98 £ 0.01 for the community level and D =
1.86 £ 0.04 for H. prunifolius. Gray dashed lines show the MNN
distance for H. prunifolius in both figures. All curves have been
averaged for the eighth available censuses (the shaded region shows
a sigma confidence level).

to assess to what extent the correlations are dominated by
fluctuations: the higher the index, the higher the effect of
fluctuations at the individual species dynamics [see Fig. 5(a)],
potentially leading, at the single-species level, to catastrophic
events or dramatic expansions over short time periods. To
check the predictive relevance of this instant measure, we
compare it with the rate of change for the ith species, defined
asR; = W where N; is the number of steams at every
census for the ith species [see Fig. 5(b)]. Note that F' can be a
great predictor, that is, it facilitates anticipating and preventing
catastrophic shifts at the single species level.

Outlook. The hypothesis that some biological systems can
extract significant functional benefits from operating in the
vicinity of a critical point has recently thoroughly allowed
the understanding of many real examples of natural phe-
nomena and living matter [1]. Setting close to criticality
represents a simple strategy to balance the robustness (order)
and flexibility (disorder) needed to derive functionality. Dif-
ferent works have recently shed light on multiple empirical
examples spanning a wide range of biological systems taking
advantage of operating close to critical dynamics from neural

—C.longi folium
—P.cordulatum =
—C.insignis OO’
S 0
—50
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123456 78 2 3 45 6 7 8
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FIG. 5. Species fluctuations. (a) Fluctuability index versus cen-
sus number for different selected species in BCI (see legend).
(b) Rate of change versus census number for the same selected
species.
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dynamics [11], to bacteria [5], macrophage dynamic [9], or
bird flocking [48].

Here, we have shown that a saturated ecological environ-
ment such as BCI seems to be close to criticality, showing
scale-free clusters of vegetation as evidenced by the spatial
aggregating properties of the most abundant species. In partic-
ular, we have used existing approaches based on SENM—that
have recently been demonstrated to exhibit critical percolat-
ing regions [38]—to check the robustness of our results: we
show the qualitative similarity between these two particular
cases. This also strengthens recent theoretical frameworks that
connect the two-point correlation function to the distribution
of species abundance and the relationship between species
and area of a system at criticality [49]. Furthermore, the
most abundant species H.Prunifolius presents evidence of
a dimension D =~ 1.86 £ 0.04—in complete agreement with
previous analyses performed in low-canopy gaps [22]—fully
compatible with the expected value D ~ 1.89 for percolating
clusters in 2D.

Being aware that biological systems are finite, they cannot
exhibit true criticality in the narrow sense of statistical physics
[1], but incipient scale-invariant features within the experi-
mentally accessible ranges, as illustrated by mass fluctuations.
In light of our findings, we hypothesize that the very particular
distribution of vegetation patterns in saturated environments,
such as the BCI one, can potentially benefit from being placed
in the vicinity of a percolation critical point. Therefore, the
most abundant species can potentially maintain high specific
spatial correlations (i.e., clustering, maximizing the surface-
to-bulk ratio) while, at the same time, they can explore a large
proportion of the available space (as expected for large-scale
dispersal kernels leading to short-range correlated distribu-
tions of points [38]). This maximizes the interaction with
other species for nutrients, etc.

We have examined a specific model that considers a
fixed dispersal kernel and only allows for the local ex-
tinction of particular species. However, our results confirm
that local dispersal kernels can be a fundamental ingredient
when considering spatial neutral dynamics [38]. Also, SENM
models usually describe homogeneous saturated ecosystems,
where population extinction was inevitable even with different

dispersal kernels in cases of inbreeding depression or extreme
environmental variability. Therefore, it is essential to develop
more realistic perspectives integrating the intricate multiscale
spatial structure and temporal variability of ecological ecosys-
tems to better understand their overall stability [50]. On the
one hand, further work is still needed in incorporating, for
instance, bet-hedging strategies, which are known to facilitate
the viability of populations for more extended periods of time
[51], or including possible global extinction events (that is,
the possibility to reach an absorbing state after which the veg-
etation cannot recover [24,52]). On the other hand, it is also
essential to integrate principles of metapopulation dynamics,
a core concept in theoretical ecology, which is already known
to be crucial in mitigating the effect of local extinctions as it
promotes migration from other sources [53,54]. For example,
the pioneering work by Hanski and Ovaskainen demonstrated
how survivability can depend on the specific fragmentation
of a landscape from phenomenological metapopulation mod-
els [53]. In this respect, recent results have evidenced the
relevance of modular structures and interconnected hubs to
display an optimal metapopulation capacity, showing that iso-
lation can harm survivability. At the same time, sparsity, in
general, can drastically reduce species’ persistence [55].

Let us pinpoint that we have not explored potential self-
organization mechanisms to operate in the vicinity of such
a critical point without resorting to parameter fine tuning.
Dispersal mechanisms, niche and adaptive effects, and the
possibility of including diverse interacting patches or ecosys-
tems will be analyzed in future work. Also, our results serve
as the basis for monitoring highly fluctuating species, and
open the door to further analysis, which can help predict
and eventually prevent catastrophic shifts in these ecosystems
by providing macroscopic evidence that criticality can be a
symptom of a healthy and resilient ecosystem.
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