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Thermodynamic bounds on the asymmetry of cross-correlations
with dynamical activity and entropy production
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Entropy production and dynamical activity are two complementary aspects in nonequilibrium physics. The
asymmetry of cross-correlation, serving as a distinctive feature of nonequilibrium, also finds widespread utility.
In this Letter, we establish two thermodynamic bounds on the normalized asymmetry of cross-correlation in
terms of dynamical activity and entropy production rate. These bounds demonstrate broad applicability and offer
experimental testability.
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Introduction. Entropy production plays a pivotal role in
nonequilibrium thermodynamics and statistical mechanics,
serving as a fundamental quantity of interest [1]. The quest to
establish connections between entropy production and mea-
surable parameters has been a central focus in this field.
Any manifestation of nonequilibrium should be connected
with entropy production or dissipation. For instance, main-
taining instantaneous equilibrium necessitates infinitely slow
driving, implying that entropy production accompanies any
finite-time process. This has led to the notion of thermody-
namic geometry [2–5] and speed limits in terms of entropy
production [6–11]. In equilibrium, currents vanish, so non-
vanishing currents are also a signature of nonequilibrium,
leading to the existence of bounds on entropy production
in terms of nonvanishing currents normalized by its vari-
ance, known as thermodynamic uncertainty relations [12–14].
Additionally, equilibrium conditions give rise to the princi-
ple of microscopic reversibility, implying the symmetry of
cross-correlations. Consequently, corresponding asymmetry
also serves as a distinguishing feature of nonequilibrium
steady states [15], and is presumably associated with entropy
production [16].

Recent interest has resurfaced regarding this asymmetry of
cross-correlations. Ohga et al. have reported a fundamental
inequality that explores the relationship between the normal-
ized asymmetry of cross-correlation and the thermodynamic
forces driving the system out of equilibrium [17]. To illustrate
their theory, the authors proved that the number of coher-
ent biochemical oscillations is equivalent to the normalized
asymmetry of cross-correlation between certain observables,
confirming the conjecture that the coherence of biochemical
oscillations is bounded by the driving force [18]. Building
upon another conjecture stating that the average entropy pro-
duction per oscillation is bounded from below by the number
of coherent oscillations if at least one oscillation is visible
[19], their result also reveals a connection between asym-
metry of cross-correlation and entropy production. Following
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their idea, Shiraishi found that the normalized asymmetry is
bounded from above by the entropy production per character-
istic maximum oscillation time [20]. Extensions to finite-time
domain for classical [21] and quantum systems have been
made [22].

On the other hand, the dynamical activity [23–27] is a cru-
cial but less explored component in nonequilibrium physics.
Its significance only emerges beyond linear order around
equilibrium, and has recently been highlighted in studies
on out-of-equilibrium fluctuation-response relations [24,28],
classical speed limits [6–8], thermodynamic (kinetic) uncer-
tainty relations [29–32], inference of entropy production with
lacking data [33,34], power-efficiency trade-off in heat en-
gines [35], upper bound on entropy production [36], and
the thermodynamic correlation inequality [37]. In essence,
the dynamical activity quantifies the frequency of transitions,
exhibiting a time-symmetric characteristic. In contrast, the
entropy production is time antisymmetric, changing its sign
upon time reversal, thereby inverting the fluxes. Hence, these
two quantities naturally emerge as complementary facets. De-
spite its importance, the connection between the dynamical
activity and entropy production remains elusive. Complemen-
tary to previous studies [17,20–22], this Letter establishes
two thermodynamic bounds on the normalized asymmetry of
cross-correlations in terms of dynamical activity and entropy
production rate [Eqs. (8) and (9)]. We prove the first bound
for unicyclic systems and the second bound for general cases,
and present the condition for saturation. We also provide
numerical evidence to support the validity of the first bound
for arbitrary network topology. All the quantities involved are
measurable, making the inequalities experimentally testable.

Setup. Consider a stochastic Markov jump process with
finite N states. The dynamics of the probability distri-
bution p = [p1, p2, . . . , pN ]T is described by the master
equation [38]

dpm

dt
=

∑
n

Wmn pn, (1)

where pm is the probability of state m, Wmn(m �= n) is the
time-independent transition rate from state n to m, and the
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rate of leaving state m is Wmm = −∑
n( �=m) Wnm. Thermody-

namic consistency is assumed, i.e., whenever Wmn �= 0, Wnm

is nonzero too. Physically, this assumption means that the
transition between two states is either forbidden or bidirec-
tional. We also assume that the system is in a nonequilibrium
steady state pss satisfying W pss = 0. After defining the one-
way flux Tmn = Wmn pss

n , the probability current Jmn and local
activity (also called traffic) Amn can be defined in terms of
Tmn(m �= n), respectively, as

Jmn ≡ Tmn − Tnm,

Amn ≡ Tmn + Tnm. (2)

For later use, we also define a quantity γ that characterizes the
scale separation of local activities, given by

γ ≡ max Tmn

min Tmn
, for Tmn > 0. (3)

According to stochastic thermodynamics [32,39–41], the dy-
namical activity A and the entropy production rate σ can be
expressed as

A =
∑
m �=n

Tmn =
∑
m>n

Amn,

σ =
∑
m �=n

Tmn ln
Tmn

Tnm
. (4)

The two-time correlation between observables a and b at
time lag τ is

Cτ
ba ≡ 〈b(t + τ )a(t )〉, (5)

where 〈·〉 denotes average over trials, and the central quan-
tity is the normalized asymmetry of cross-correlation χab

defined as

χab ≡ αab√
DaDb

≡
(
∂τCτ

ba − ∂τCτ
ab

)
/2√

∂τCτ
aa∂τCτ

ba

. (6)

The numerator αab, i.e., the slope of cross-correlation asym-
metry at τ = 0 (also called stationary fluctuation oscillation in
Ref. [20]), vanishes in equilibrium, so a nonzero asymmetry
implies nonequilibrium. The slopes of autocorrelations, Daa

and Dbb, are a measure of diffusion [17]. Explicitly, the slopes
of cross-correlation asymmetry and average autocorrelation
can be expressed as

αab = 1

2

∑
m,n

(anbm − ambn)Tmn =
∑
m<n

�mnJmn,

Da + Db

2
= 1

4

∑
m,n

[(am − an)2 + (bm − bn)2]Tmn

= 1

4

∑
m<n

L2
mnAmn, (7)

with �mn = (anbm − ambn)/2 and Lmn =√
(am − an)2 + (bm − bn)2. Both �mn and Lmn have geometric

meaning: �mn is the oriented area of the triangle with m, n,
and the origin, and Lmn the edge between m and n. With all
these relevant quantities, we present our main result below.

FIG. 1. (a)–(c) Three topologies of networks with four states.
(d) Scatter plot of |χab| vs the first bound. All data points lie below
the diagonal, which validates the bound.

Main result. Our main results are two thermodynamic
bounds that connect the normalized asymmetry of cross-
correlations χab, dynamical activity A, and entropy produc-
tion rate σ for a Markov jump process with N states, given by

|χab| � γ

tan(π/N )

√
σ

2A (8)

and

|χab| �
√

N ∗γ
2π tan(π/N )

√
σ

A , (9)

where N ∗ is the number of nonzero local activities. The
derivation of Eq. (8) for unicyclic networks and Eq. (9)
for general cases is deferred to the end of the Letter. We
conjecture that Eq. (8) is valid for arbitrary networks, and
present numerical evidence in Fig. 1(d), with a total of 106

data points and three distinct topologies as in Figs. 1(a)–
1(c). Each data point is generated as follows: We choose a
topology randomly from the three topologies, draw nonzero
transition rates Wmn from the uniform distribution, calculate
the diagonals of the transition rate matrix, and randomly
sample each of the observables am and bm(m = 1, . . . ,N )
from the interval [−1, 1]. Subsequently, we calculate the
bound and |χab| using Eqs. (3)–(7). The three topologies
are explicitly considered because it is inherently impossi-
ble to obtain non-fully-connected networks [Figs. 1(b) and
1(c)] through random sampling, but they are qualitatively
different from each other. This is because the bound is dis-
continuous at Wmn = 0, arising from the presence of γ . For
example, assume that Tmn are finite for any mn �= 13 and
31, and all pss

m are finite as well. If W13 = W31 = 0, then
γ = max Tmn/ minmn �=13,31 Tmn. However, if W13 � 1 and W31

is finite, then γ = max Tmn/T13, which can be arbitrarily large.
The scatter plot clearly validates the first bound for four-state
networks, and networks with a different number of states show
qualitatively similar results.

It can be seen from the derivation that bound (8) saturates
in unicyclic networks when the transition rates are uniform,
the observables form a regular polygon, and the system is
close to equilibrium. This saturation condition is similar to
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that of the thermodynamic uncertainty relation [12]. In con-
trast, bound (9) is saturated in unicyclic networks when the
transition rates are uniform, the observables form a regular
polygon, and the number of states N approaches infinity.
For unicyclic networks with uniform transition rates, we have
N ∗ = N and γ = 1, and it can be proved that the first bound
is tighter. As N → ∞, the two bounds are asymptotically
equivalent. Otherwise, either bound can be tighter depending
on the parameters.

Several remarks are in order regarding the implications of
our findings. Inequality (8) reveals a thermodynamic bound on
the normalized cross-correlation asymmetry, hinging upon the
dynamical activity and entropy production rate—specifically,
the square root of their quotient. This structure is natural,
as will be discussed later. The cross-correlation asymmetry
has emerged as a versatile tool widely employed to investi-
gate an array of phenomena spanning directed interactions,
nonequilibrium oscillations, nonreciprocal motion, and so on,
as summarized in Ref. [17]. Our result is applicable as long
as the dynamics can be modeled by a Markov jump process,
irrespective of the underlying network topology. This in-
cludes chemical reactions, biochemical systems, and quantum
transport, among others. All the quantities constituting the
bound are experimentally measurable, rendering our findings
amenable to empirical validation. Correlations can be quanti-
fied through techniques such as fluorescence cross-correlation
spectroscopy [42,43]. As for the right-hand side of the in-
equalities, the quantities γ and A can be obtained by counting
jumps in a sufficiently long trajectory, and σ can be measured
through the energetics of the environment. Therefore, this
far-from-equilibrium relation is in principle experimentally
testable.

Connection and comparison with previous works. We be-
gin by comparing our findings with the seminal work of
Ohga et al. [17]. Both studies impose an upper bound on
the normalized asymmetry of cross-correlation, while a cru-
cial distinction emerges: the bound established in Ref. [17]
relies on the employment of the maximum cycle affinity as a
thermodynamic quantity, while our bound focuses on the en-
tropy production rate. The bounds presented in Refs. [20,22]
incorporate the entropy production rate as a key factor, too.
However, a notable distinction between our result and theirs
lies in the observable dependency of their bounds, while our
derived bound is independent of any specific observables. This
distinction, akin to the approach employed in Ref. [17], arises
from the consideration of the normalized asymmetry, in which
the normalization factor in the denominator already encapsu-
lates the information of observables. In contrast, the bounds
proposed in Refs. [20,22] pertain directly to the asymmetry
itself, rendering them inherently observable dependent.

Regarding the dynamical activity and entropy production
rate, both of them are greater than the pseudo entropy pro-
duction rate [32]. The reciprocal of the relative fluctuation
can be proved to be less than the pseudo entropy production
[32,44], so the thermodynamic uncertainty relation and the
kinetic uncertainty relation follow immediately. This shows
the “duality” between the activity and entropy production rate,
but not the relation between them. The product of A and σ

appear in several studies. For example, in the classical speed
limit [6], W2 � 2Āστ , where W is the Wasserstein distance

between the initial and final probability distributions, Ā the
time-averaged activity, and τ the evolution time duration. By
contrast, the quotient of σ over A appears in this study, which
arises naturally from two perspectives. From a dimensional
analysis standpoint, χab is dimensionless, while σ has the
dimension of rates. The dynamical activity A quantifies the
inherent timescale of the system with the dimension of rates
too, so it seems intuitive to employ A as the denominator.
Furthermore, the numerator of the left-hand side, representing
the asymmetry of cross-correlation, exhibits time antisymme-
try, while the denominator, corresponding to the geometric
average of autocorrelation, displays time symmetry. As dis-
cussed earlier, the entropy production (dynamical activity)
also exhibits (anti)symmetry with respect to time. By selecting
the dynamical activity as the denominator, the structure of the
normalized asymmetry is preserved.

As proved in Ref. [17], the ratio between the real and
imaginary components of the eigenvalue pertaining to the
transition rate matrix can be regarded as a specific instance of
the normalized asymmetry of cross-correlation. Thus, the two
bounds also provide insight into the spectra of transition rate
matrix from a thermodynamic standpoint, in line with ongoing
research along this direction [18,19,45–47]. They could also
contribute to the final resolution of the Oberreiter-Seifert-
Barato conjecture [19] as the two bounds directly incorporate
the entropy production (in comparison to Ref. [17]) and are
observable independent (in comparison to Ref. [20]).

Example 1. As the first example, we consider the standard
model of biochemical signal transduction as in Ref. [17].
The system comprises an upstream receptor and a down-
stream protein. The upstream receptor undergoes stochastic
switching between “OFF” and “ON” states, corresponding to
the observable a = 0, 1. Similarly, the downstream protein
stochastically switches between inactive and active states, cor-
responding to the observable b = 0, 1. The dynamics of this
system is modeled by a four-state unicyclic Markov network
[c.f. Fig. 1(c)], whose transition rate matrix is given by⎛
⎜⎜⎜⎜⎝

−k+,OFF
b − k+

a k−
b 0 k−

a

k+,OFF
b −k−

b − k+
a k−

a 0

0 k+
a −k−

a − k−
b k+,ON

b

k+
a 0 k−

b −k−
a − k+,ON

b

⎞
⎟⎟⎟⎟⎠.

(10)

According to stochastic thermodynamics [40], the cycle affin-
ity is given by F = ln(k+,OFF

b /k+,ON
b ).

We validate the bounds with Figs. 2(a) and 2(b). Each curve
in the figure is obtained as follows: k+

a , k−
a , k+,OFF

b , and k−
b

are sampled randomly from the uniform distribution, and the
ratio of |χab| to the bound is plotted versus the affinity F
by varying k+,ON

b . This procedure is then repeated for 103

times. From Figs. 2(a) and 2(b), it can be seen that the two
bounds are validated, and the first bound seems to be relatively
tighter. Cusps can be observed in nearly every curve. Their
presence is not a result of the discretization process used for
plotting. These cusps actually emerge due to the influence of
the term γ in the bounds: approaching a cusp point, a distinct
combination of maxAmn and minAmn takes over and alters
the overall trend. This is similar to how free energy changes
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FIG. 2. (a)–(d) Ratio between |χab| and the bound as a function
of the cycle affinity F (or k+). The left (right) column corresponds
to Example 1 (2), and the upper (lower) row corresponds to the first
(second) bound. (e) Schematic of the model in Example 2, where
three states are grouped into a cell.

at a first-order phase transition. By following the trend in one
curve, it seems that without this mechanism, some ratios tend
to surpass unity.

Example 2. As an illustrative example of multicyclic net-
works, we examine a network simplified from a model of
molecular motors [48]. The corresponding schematic is de-
picted in Fig. 2(e). In this network, three internal states are
grouped into a “cell,” and the transitions occurring between
adjacent cells signify either a forward or a backward step
taken by the motor. We consider a ring structure consisting of
four such cells. For simplicity, we assume that the transition
rates occurring both within the cell and between neighboring
cells are uniform, as shown in the figure. Following a similar
approach as in Example 1, we generate each curve shown in
Figs. 2(c) and 2(d) by sampling from the uniform distribution
and subsequently fixing the values of w+, w−, and k−. The
quantity |χab| is calculated as |λ′′/λ′|, where λ′ (λ′′) is the real
(imaginary) part of the eigenvalue (with the largest nonzero
real part) of the transition matrix W [17]. The plotted quantity
corresponds to the ratio of |χab| to its bound, with k+ being
systematically varied. This entire procedure is repeated a total
of 103 times. The validity of the two bounds is demonstrated in
Figs. 2(c) and 2(d), where behaviors similar to those observed
in Example 1 are evident. As expected, the bound cannot be
saturated for multicyclic networks.

Derivation. For unicyclic networks (1 → 2 → · · · →
N → 1), the steady-state currents are uniform, i.e.,
Ji,i+1 ≡ J . Following the line of reasoning in Ref. [17],

it can be assumed that a and b are scaled to satisfy
DaDb = (Da + Db)2/4. With this assumption, and employing
Eqs. (2)–(7), we arrive at

Aα2
ab

(Da + Db)2/4
= 16

∑
i Ai,i+1

(∑
j � j, j+1

)2J 2

(
∑

i Ai,i+1L2
i,i+1)2

� 16γ 2

(∑
i

J 2

Ai,i+1

)(∑
i �i,i+1

)2

(∑
i L2

i,i+1

)2

� γ 2σ

2 tan2(π/N )
, (11)

which is equivalent to Eq. (8). Note that for this case
γ = maxAi,i+1/ minAi,i+1 as defined in Eq. (3). In the
derivation of the first inequality, we used the inequality∑

xi( ∑
xiyi

)2 �
∑

[(max x)2/xi](
min x

∑
yi

)2 �
(max x

min x

)2
∑

x−1
i( ∑
yi

)2 , (12)

where xi, yi > 0. The equality holds if the local activities are
uniform, i.e., A12 = A23 = · · · = AN 1. A sufficient condition
for this is uniform transition rates, i.e., W12 = W23 = · · · =
WN 1 and W21 = W32 = · · · = W1N . The term 2

∑
i J 2/Ai,i+1

can be identified as the pseudo entropy production rate
[6,32,44], which is always equal to or less than the actual en-
tropy production rate. They coincide when both vanish. With
the pseudo entropy production rate, to obtain the last inequal-
ity, we first used the Cauchy-Schwarz inequality

∑
i L2

i,i+1 �
(
∑

i Li,i+1)2/N , followed by the isoperimetric inequality

(
4N tan

π

N
)∣∣∣∣ ∑

i

�i,i+1

∣∣∣∣ �
(∑

i

Li,i+1

)2

. (13)

The equalities in Cauchy-Schwarz and isoperimetric
inequality hold simultaneously if and only if the points
(ai, bi ) form a regular polygon.

For bound (9), we begin with Eq. (S31) in Ref. [17]:

|χba| �
4

∑
c∈C∗ Jc

(∑
e∈c Le

)2
[4n′

c tan (π/n′
c)]−1∑

c∈C∗ Jc
(∑

e∈c Le
)2

[nc tanh (Fc/2nc)]−1
. (14)

Here, C∗ is the set of cycles with nonzero net asymmetry
generated by the uniform cycle decomposition [49]. Given a
cycle c, nc is the number of states, n′

c is the number of times
the joint value (a, b) changes throughout the duration of the
cycle, Jc is the cycle current, and Fc is the cycle affinity. For
more details of n′

c, nc, and C∗, please refer to Ref. [17]. Since
[4n′

c tan(π/n′
c)]−1 is a monotonically increasing function of

n′
c (n′

c > 2) and [nc tanh(Fc/2nc)]−1 a decreasing function of
nc (nc > 0), we have

|χba| �
4

∑
c∈C∗ Jc

(∑
e∈c Le

)2
[N tanh (Fc/2N )]∑

c∈C∗ Jc
(∑

e∈c Le
)2

[4N tan (π/N )]

�
∑

c∈C∗ σc
(∑

e∈c Le
)2

2π
∑

c∈C∗ Jc
(∑

e∈c Le
)2 , (15)

where we have used n′
c � nc � N , N tanh(Fc/2N )/

[4N tan(π/N )] � Fc/8π , and σc = FcJc. The equality

L042101-4



THERMODYNAMIC BOUNDS ON THE ASYMMETRY OF … PHYSICAL REVIEW E 109, L042101 (2024)

holds for unicyclic systems when the observables form a
regular polygon in the large N limit.

On the other hand, one can use Eq. (S10) in Ref. [17] and
the fact that C∗ is a restricted set to bound the normalized
asymmetry by

|χba| �
4

∑
c∈C∗ Jc

∣∣∑
e∈c �e

∣∣∑
c∈C∗

∑
e∈c AeL2

e

. (16)

Furthermore, we obtain

|χba| �
4

∑
c∈C∗ Jc

(∑
e∈c Le

)2
[4n′

c tan (π/n′
c)]−1

minAmn
∑

c∈C∗
∑

e∈c L2
e

�
∑

c∈C∗ Jc
(∑

e∈c Le
)2

tan(π/N ) minAmn
∑

c∈C∗
(∑

e∈c Le
)2 , (17)

where we have used the isoperimetric inequality, the mono-
tonicity of [4n′

c tan(π/n′
c)]−1, and Cauchy-Schwarz inequality

again. The equality holds for unicyclic systems when the
observables form a regular polygon.

Multiplying these two bounds on |χab| [Eqs. (15) and (17)]
and employing A � N ∗ maxAmn results in

χ2
ba �

∑
c∈C∗ σc

(∑
e∈c Le

)2

2π tan(π/N ) minAmn
∑

c∈C∗
(∑

e∈c Le
)2

� N ∗γ
2π tan(π/N )

σ

A , (18)

which is equivalent to Eq. (9). Here, N ∗ is the number
of nonzero Amn. By definition Amn = Anm, so each pair is
counted as one. For unicyclic networks, N ∗ = N .

Discussion. In summary, we report two thermodynamic
bounds [Eqs. (8) and (9)] on the normalized asymmetry
of cross-correlation in terms of the dynamical activity and
entropy production. Identifying a simpler expression that
directly relates these three quantities seems to be a chal-
lenge. This bound exhibits broad applicability, regardless of
the underlying network topology, and offers experimental
testability. We also anticipate that this bound will provide
valuable insights in addressing the conjecture proposed by
Oberreiter et al. [19]. Rigorously establishing the validity
of Eq. (8) for arbitrary network topologies does not appear
to be straightforward, but to this end, the utilization of uni-
form cycle decomposition may serve as a crucial technique
[17,49]. In view of the Langevin equation being regarded as
the continuous-space limit of the master equation, we an-
ticipate that our two bounds hold for overdamped Langevin
systems, while additional terms might be needed for under-
damped cases [50,51]. A future research direction entails
investigating whether this bound holds true or how it should be
modified when applied to partially observed Markov networks
[33,52,53]. Additionally, exploring the influence of quantum
effects, such as quantum coherence, on this relation represents
an intriguing avenue for further investigation.
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