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Multiple charge carrier species as a possible cause for triboelectric cycles
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The tendency of materials to order in triboelectric series has prompted suggestions that contact electrification
might have a single, unified underlying description. However, the possibility of “triboelectric cycles,” i.e.,
series that loop back onto themselves, is seemingly at odds with such a coherent description. In this work, we
propose that if multiple charge carrying species are at play, both triboelectric series and cycles are possible.
We show how series arise naturally if only a single charge carrier species is involved and if the driving
mechanism is approach toward thermodynamic equilibrium, and simultaneously, that cycles are forbidden under
such conditions. Suspecting multiple carriers might relax the situation, we affirm this is the case by explicit
construction of a cycle involving two carriers, and then extend this to show how more complex cycles emerge.
Our work highlights the importance of series and cycles towards determining the underlying mechanism(s) and
carrier(s) in contact electrification.
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Introduction. Contact electrification (CE)—the exchange
of charge through contact—is among the oldest topics
of scientific study [1], yet we understand little about it.
With metal-metal contacts, it is widely agreed that elec-
trons are transferred, driven by the system trying to reach
thermodynamic equilibrium where the Fermi surfaces are co-
incident [2,3]. This model is long-established, being proposed
and initially validated by Harper as early as the 1950s [4],
and then convincingly revalidated by Lowell in the 1970s [5].
Though few experiments are carried out with metals today,
these tend to reconfirm and add to the existing framework [6].
With insulator-insulator contacts, the topic of this work, lit-
tle is agreed upon: the identity of the charge carrier(s) is
unknown, the mechanism(s) driving transfer is unresolved,
and even whether or not it is an equilibrium process is a
matter of debate [3]. There is a long history of experimental
observations that suggest both ‘rhyme and reason’ as well
as puzzling inconsistency to insulator CE. Among the most
important of all observations is the tendency of materials to
order in a triboelectric (TE) series. First observed by Johan
Carl Wilcke in 1757, a TE series is an ordering of materials
based on the sign of charge they acquire during contact [7].
For example, Wilcke’s series [Fig. 1(a)] has glass at the posi-
tive end, meaning it charged positive against other materials.
Wood charged negative to glass but positive otherwise, etc.
When properly constructed, a series with N materials requires
N (N − 1)/2 experiments, hence more information is present
than a simple list can convey [8]. More appropriately, one
uses an N × N matrix, whose rows and columns indicate
the materials involved and whose values indicate the sign of
charge transferred (either to the column or row, depending on
convention). For materials that order in a series, the rows and
columns of the matrix can be rearranged such that all entries
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above (below) the diagonal have the same sign. For exam-
ple, Fig. 1(b) shows what Wilcke’s series would have looked
like in matrix form, where the color indicates the sign of
charge transferred to the column material. This representation
will be important to our discussion.

Many investigations have sought to identify the mate-
rial parameters that order TE series, e.g., acid and base
properties [8], zeta potential [9], water adsorption prop-
erties [10–15], Seebeck coefficient [16], cohesive energy
density [17], to name a few. To date, it is fair to say that
the CE community has not come to a consensus on which,
if any, of such proposals is the correct one, and it is highly
arguable that more than one might be at play [3]. What makes
matters more complicated is the lore scattered throughout the
literature regarding TE “cycles,” i.e., series that seem to “loop
back onto themselves.” To our knowledge, the first mention
of cycles comes from experiments conducted by Shaw and
Jex in 1928 [18]. One of their cycles—of which there were
many—is shown in Fig. 1(c). Zinc charged negative to filter
paper, cotton, fused glass and washed glass, whereas silk
charged positive to these—yet zinc charged positive to silk.
When cast into matrix form [Fig. 1(d)], these results cannot
be organized such that entries above (below) the diagonal all
have the same sign, no matter how the rows and columns in
the matrix are ordered.

Almost uniformly, subsequent references to TE cy-
cles [2,8,9,16,18–27] merely point back to the results of
Shaw and Jex, though some recent experiments measure cy-
cles without drawing attention to them [17]. As observations
of cycles are few, their existence is rightly a matter of de-
bate, and in recent years the notion of TE series itself has
been questioned. The traditional, perhaps optimistic view is
that TE series are real and arise naturally due to thermody-
namic considerations. This is appealing given the widespread
observation of series, but incurs doubt due to discrepancies in
series measured in different labs and by the notion of cycles.
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FIG. 1. (a) The triboelectric series of Wilcke [7], where materials
are ordered by their tendency to charge plus or minus. (b) Sketch of
what (a) may have looked like in matrix form. The color represents
the sign of the charge transferred to the column material. (c) Shaw
and Jex’s triboelectric “cycle” [18]. Zinc charges positive to silk (at
the top of the series) but negative to washed glass (at the bottom).
(d) Sketch of what (c) may have looked like in matrix form.

Conversely, there is the view that both TE series and cycles
are outdated notions, hopelessly compromised by uncontrol-
lable influences from the nature of contact, surface roughness,
mechanical stresses, humidity, etc. [3]—yet “throwing in the
towel” does not explain why series are so often observed, nor
does it explain or preclude cycles. Although these debates
are not resolved, they highlight the centrality of TE series
and cycles toward understanding the most important aspects
of CE.

In this paper, we propose a simple “toy model” that allows
for the existence of both TE series and cycles, all within a
framework explicitly based on equilibrium thermodynamics.
Our essential idea that permits this is that more than one
charge carrying species (e.g., electrons and ions) is involved in
CE. Given the charge carrier issue is a completely unresolved
one [3], this is not at all unreasonable to consider. We begin
by assuming a single carrier, and show that TE series arise
naturally if these (i) transfer between finite-depth energetic
wells, and (ii) approach toward thermodynamic equilibrium
is the driving mechanism. We simultaneously show that, as
often suspected but to our knowledge never demonstrated,
the assumption of one carrier precludes TE cycles. Next, we
show by explicit construction that two charge carrier species
can indeed permit the most basic TE cycle, i.e., with three
materials. Finally, we extend our framework to account for
more materials, considering in particular the different TE
matrix configurations that may arise. Our work provides a
rational framework for many widely held suspicions in the CE
community, and highlights the significance of the existence of
the TE series and cycles toward pinning down the underlying
carrier(s) and mechanism(s).

Equilibrium model for a TE series with a single charge
carrying species. The model we pursue is based on robust and
widely accepted experimental observations: in insulator CE,
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FIG. 2. In our “toy model,” we assume charge carriers inhabit
energetic wells of depth, ε. In the figure, the green curve corresponds
to the well of the charge carrier on surface 1, the purple curve the
well on surface 2, and the gray curve the sum of the two. When the
two surfaces make contact, the wells “merge,” allowing the carrier to
transfer between them. At zero temperature, the carrier would always
move toward the deeper well; however as we explain in the text,
at nonzero temperature and when many carriers are involved, some
fraction of carriers will move “uphill,” and a thermodynamic picture
is appropriate.

charge carriers are locally trapped before and after exchange.
Before exchange, this is confirmed by the inability of insu-
lators to conduct charge. After exchange, it is confirmed by
Kelvin probe force microscopy (KPFM) and scanning Kelvin
probe (SKP) experiments, which reveal finite-size charge re-
gions that are stable for hours or even longer, dependent on
material and environmental conditions [28–33]. Regardless of
whether charge carriers are ions or electrons, these observa-
tions reveal they occupy energetic wells of finite depth on each
surface (Fig. 2). This idea was put forth as early as 1957 by
Henry [34], and continues to receive interest [9]. We assume
charge transfer occurs as a result of carriers moving between
wells as they merge or split during contact. Many other
influences surely affect CE and could be considered (e.g.,
friction [25], roughness effects [35], surface water [10,11],
mechanochemistry [36–38], etc.), but they are outside the
scope of our work and do not affect our eventual conclusion.

If a charge carrier occupying a well on material i, with
binding energy εi, is brought near to an empty well on material
j, with binding energy ε j , then charge transfer may occur.
Macroscopic surfaces have many such well-pairs, which we
must consider. We denote the initial number of carriers on
surfaces i and j as ni and n j , respectively, which we call the
“neutral numbers” since the surfaces are neutral with these
numbers of carriers present. We consider the binding energies
and neutral numbers “material properties,” and furthermore
we consider the neutral numbers as extensive. The rationale
for this is that, whether charge carriers are electrons or ions,
their interaction with a surface depends on the atoms present
(including potential adsorbates), their relative proportions and
structural arrangement—i.e., material properties. Due to the
fact that properties of a material surface can change due to
a myriad of factors, our definition of “material” is prepa-
ration specific. More generally, one could consider that for
identically prepared samples of a single material, the neu-
tral numbers could be drawn from a distribution inherent
to the material. This would allow, for example, “same-
material” tribocharging. For simplicity, however, we do not
delve into this possibility. During contact, some pairs of
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merging wells may have transfer i → j, others j → i, and
others not at all. Assuming the final distribution of charge
is caused by the system moving toward equilibrium, we can
determine the final configuration.

We therefore look at the partition function of the system.
We make the assumption that the surfaces come into normal,
frictionless contact and that each charge carrier is independent
from all others. The situation is therefore that of a two-well
system in a heat bath with a constant temperature T , and can
be treated with the canonical ensemble. Strictly speaking, the
partition function is Z = eεi/κT + e(ε j+�U (d ))/κT , with κ the
Boltzmann constant. The term, �U (d ), reflects the fact that if
the surfaces have net charge due to the transfer, a long range
electrostatic energy is present that grows with the separa-
tion, d [34]. Such long-range interactions are also considered
in the metal-metal case [2] and lead to “back-tunneling” of
charge after contact, but are cutoff at very small length scales
(∼1 nm) due to the increasing difficulty of tunneling with
separation. Cutoff lengths should be even shorter in other
circumstances (e.g., for ions versus electrons). We therefore
approximate this term as null, and the partition function sim-
plifies to Z = eεi/κT + eε j/κT . Thus, the average number of
carriers on surface j in equilibrium is

n̄i j = (ni + n j )eε j/κT

eεi/κT + eε j/κT
, (1)

and, naturally, for surface i, n̄ ji = ni + n j − n̄i j due to charge
conservation. Taking for now that the charge carriers are pos-
itive and unity, and assuming the surfaces start out neutral
before contact and approach equilibrium after, the total charge
given from surface i to j is qi j ≡ n̄i j − n j (where the first
index transfers charge to the second). Note as well that charge
conservation implies q ji = −qi j . Surface j charges positively
when qi j > 0, which given Eq. (1) leads to the condition

n j

ni
< e(ε j−εi )/κT . (2)

If instead we had assumed negative charge carriers, then the
inequality would be flipped. This result highlights that the sign
of charge a surface acquires is not driven solely by energetic
differences but also by differences in neutral numbers [34].
For example, if εi = ε j , then the condition reads n j < ni,
which is equivalent to saying that carriers diffuse from regions
of higher to lower concentration.

Now, we extend this single-carrier framework to show that
it (i) leads naturally to TE series, and (ii) simultaneously
precludes cycles. We consider three materials, i, j, and k,
and assume that j charges positively to i, and that k charges
positively to j, i.e.,

n j

ni
< e(ε j−εi )/κT , (3)

nk

n j
< e(εk−ε j )/κT . (4)

Multiplying these two equations together, we have

nk

ni
< e(εk−εi )/κT , (5)

which is equivalent to the statement that k charges positively
to i. Hence, this establishes that our three materials with a
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FIG. 3. (a) We explicitly construct a cycle with two carriers and
three materials. Assuming positive carriers A and B, A alone would
give the series {i, j, k}, while B alone would give {k, i}. (b) In combi-
nation, and with appropriately chosen neutral numbers, a three-cycle
〈i, j, k〉 is possible. (c) Matrix representation of the three-cycle.
(d) Arrow diagram to visualize the relations between surfaces when
cycles are involved. An arrowhead pointing from k to i implies that
charge transfers in that direction, or equivalently, k charges negative
and i charges positive.

single charge carrier species will order into a series. Since
a cycle would require replacing the less-than sign of Eq. (5)
with a greater-than sign, it simultaneously shows cycles are
not possible. Conveniently, using indices such as “i” and “ j”
naturally translates to matrix notation when an arbitrary num-
ber of materials, N , are involved. As mentioned previously,
this matrix has the property qi j = −q ji, and if the materials
order into a series it can have the rows and columns swapped
such that all entries above (below) the diagonal are the same
sign, as in Fig. 1(b).

Explicit construction of a cycle with two charge carrying
species. We now show with a particular example that cycles
are possible when more than one carrier is present, assum-
ing they transfer independently. We consider three materials,
i, j, k, and two carriers, A and B. For carrier A, we assume
the particular values εA

i = εA
j = εA

k . For carrier B, we assume
εB

i = εB
k , but for material j there is no well—i.e., surface j has

no sites to accommodate carrier B, or effectively εB
j = −∞

[see Fig. 3(a)]. This choice for εB
j is not a necessary one, but

it is a particularly convenient one as it allows us to construct a
cycle that is obvious and requires little math. Regarding neu-
tral numbers, we assume for carrier A that nA

i > nA
j > nA

k = 0,
and for carrier B that nB

k > nB
i = nB

j = 0. Under these assump-
tions, transfer of carrier A alone would give the series from
negative to positive, {i, j, k}, while transfer of B alone would
give the series {k, i}—material j excluded since no transfer
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of B occurs when j is involved. When both carriers transfer
simultaneously, the total charge is now the sum of the two,

qi j = qA
i j, (6)

q jk = qA
jk, (7)

qki = qA
ki + qB

ki. (8)

One particular set of conditions that define a cycle is
when qi j, q jk, qki > 0. Recalling Eq. (2), this leads to the
inequalities

nA
j < nA

i , (9)

0 < nA
j , (10)

nA
i < nB

k . (11)

Equations (9) and (10) are trivially satisfied, as they simply
reiterate the assumed neutral numbers for carrier A to produce
the series {i, j, k}. However, Eq. (11) merely requires that the
neutral number of carrier B on k is greater than that of carrier
A on i, which is not at all at odds with our assumptions.
Hence, within this equilibrium picture, the existence of two
charge carrier species can produce a cycle [Fig. 3(b)]. Cast
into matrix form, the cycle we have constructed here is as
shown in Fig. 3(c), where the entries above (below) the di-
agonal cannot be arranged to have a single sign, regardless of
any switching of rows and columns. As a conceptual aid, we
show in Fig. 3(d) the same information in the form of an arrow
diagram, which indicates the flow of positive charge.

Complex cycles of higher order. We now generalize to more
complex situations. We define the order of a cycle as the
number of materials that comprise it—an n-cycle is formed
by n materials; e.g., the cycle of the previous section is a
three-cycle. We now show that materials can be added to
existing cycles in different ways. We presume the existence of
a three-cycle with materials i, j and k, such that qi j, q jk, qki >

0. We now consider a new material, �, and ask whether or
not it can have (nA

� , nB
� , εA

� , εB
� ) so it creates specific charging

configurations. In principle, there are eight possibilities, since
� can charge two ways (positively or negatively) with each of
the three other materials. Incidentally, the charging matrices
of several of these are isomorphic, so only three need be
investigated.

The first configuration is that � charges negative to i, j and
k. The matrix for this is shown in Fig. 4(a), where we have the
“insertion” of � before i. We now take a perturbative approach,
and assume all parameters of � are identical to i except for nA

� ,
which is infinitesimally different from nA

i , i.e.,

nA
� = nA

i + η. (12)

Following this, we find the requirement that η must satisfy

0 <
qki

f
(
εA

i , εA
k

) < η, (13)

where

f
(
εA

i , εA
k

) ≡ eεk/κT

eεi/κT + eεk/κT
. (14)

Hence, if a three-cycle exists, then it is possible to “add a
material before it” that charges negatively to all materials in
the cycle. As a visual aid, Fig. 4(b) shows an arrow diagram
that illustrates the relation between surfaces after the insertion
of the additional material. Note that this configuration leaves
the existing three-cycle unaffected and there are no new cycles
created as a consequence.

From the previous analysis, it is straightforward to show
that an arbitrary number of materials M can be introduced
consecutively, provided that the neutral numbers for A are
defined incrementally, i.e., nA

�m
= nA

i + mη, where m is an
index on the set of new materials �m = {�1, �2, ..., �M}. The
rest of parameters are identical to those of i. Then η must
satisfy

0 <
qki

M f
(
εA

i , εA
k

) < η. (15)

The extension of the process again leaves the original cycle
untouched, as seen in Fig. 4(c). Naturally, this analysis for
the addition of materials “before” a cycle can be extended to
the addition of materials “after” one as well, as illustrated
in Figs. [4(d)–4(f)]. Hence, cycles can be “embedded” in
arbitrarily large series.

The cases considered so far leave the original cycle un-
touched. However, it is also possible to add new materials in
such a way that new and more complex cycles are created.
We again start with the same three-cycle, but now the charge
exchanges for the new surface � must satisfy q�i, q� j < 0 and
q�k > 0, that is, we put � between j and k [Fig. 4(g)]. Under
the same assumptions for the parameters as for the previous
case, this time η must satisfy

− q jk

f
(
εA

j , ε
A
k

) < η < 0. (16)

In Fig. 4(h) we observe that the insertion of a new material
in this manner has created an additional three-cycle: 〈i, �, k〉,
as well as a four-cycle: 〈i, j, �, k〉. We remark that this case is
isomorphic to all five of the remaining configurations for the
insertion for �.

Furthermore, if we add an arbitrary number of materials M
by a process analogous to the previous cases, then we obtain
the following conditions for the parameter η:

− q jk

M f
(
εA

j , ε
A
k

) < η < 0. (17)

Thus, we can create a cycle of arbitrary order M, as shown
in Fig. 4(i), and hence recover the Shaw and Jex-type
six-cycle in Figs. 1(c) and 1(d). Additionally, such config-
uration has the consequence of creating new three-cycles
with each new material added: 〈i, �m, k〉, as well as four-
cycles with pairs of these new materials, e.g., 〈i, �1, �2, k〉,
and potentially, a number of cycles of increasing orders up
to M.

This line of analysis shows that it is possible not only
to reproduce a Shaw and Jex’s type of cycle, but also to
create other types with a variety of orders and configurations.
It also highlights the fact that inconsistencies observed in a
reported TE series when put in matrix representation actually
translate to cycles hiding in plain sight, such as the one in
reference [17].
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FIG. 4. Creation of more complex cycles through insertion of new materials (a–c) before the existing cycle, (d–f) after, and (g–i) in-between
materials. Panels (a), (d), (g) show the matrix representation of the material insertion process for a three-cycle, while the respective arrow
diagrams (b), (e), (h) provide visual aid to understand the relation between surfaces in each case. The process can be extended to introduce an
arbitrary number of new materials, as shown in diagrams (c), (f), (i).

Discussion and conclusions. The situation we have consid-
ered is straightforward: charge carriers are assumed to live in
and transfer between energetic wells, the number of carriers
and well depths are material parameters, and the final distri-
bution of carriers is set by thermodynamic equilibrium. In this
context, we showed that a single charge carrier species implies
only TE series, while more than one allows for the possibility
of TE cycles. We further showed that for more than three
materials, more complex situations are possible. For example,
materials can be added to a cycle in such a way that new cycles
are created or avoided.

Our focus on a “toy model” leaves out many important
considerations that are pertinent to insulator CE. First, we
have assumed that the physics underlying charge transfer is
driven by the approach to equilibrium. The field fails to agree
if this is the case or not [3]. Conceptually, the equilibrium
we consider can only be established over surface regions that
are close enough to be considered in contact, since charge
carriers in other regions cannot move. Our argument that neu-
tral numbers are extensive material parameters means that the
sign of charging depends only on the materials, not inevitable
changes in the contact area—hence, within our assumptions,
our conclusions about series and cycles survive this subtlety.
Moreover, we have assumed that the contact is normal and
frictionless, hence does not involve the nonequilibrium ingre-
dients of localized heating or stress. This is motivated by the
fact that even the most careful experiments meant to avoid
rubbing and sliding still observe charge exchange, and by the
fact that “hot spot” models for charging have not been widely
accepted as a (let alone “the”) cause for CE [3]. Last, the
idea that the neutral numbers are material properties can itself

be challenged, leading to the possibility for other causes for
cycles. For example, if neutral numbers are allowed to vary
significantly from one sample of the same material to the
next, then even a single carrier could lead to the appearance of
cycles. The “rhyme and reason” found in CE, and specifically
the prevalence of series, suggests this is not the case.

Naturally, a model like ours asks for clever and care-
ful experiments to test its validity. This is unfortunately not
possible given the current state of the field—there is no
agreement on identifying any one charge carrier species in-
volved in CE, let alone on the possibility that two or more
could be at play. Given this reality, the primary benefit of
our work is not to predict the ordering of a particular TE
series in different experiments or whether or not a specific
cycle would occur. Instead, the value of this work is to: (a)
present a rational explanation for how cycles can exist, (b)
show that the simultaneous existence of series and cycles
need not be contradictory, and (c) show that cycles do not
require a nonequilibrium process. These insights high-
light how important series and cycles are toward under-
standing the fundamental carrier(s) and mechanism(s) of
CE. In other words, we make an effort to address the
“elephant in the room” of CE, as TE series and cy-
cles are so often mentioned in the literature but they
are rarely discussed in depth, neither theoretically nor
experimentally.
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