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Dynamically emergent correlations between particles in a switching harmonic trap
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We study a one dimensional gas of N noninteracting diffusing particles in a harmonic trap, whose stiffness
switches between two values μ1 and μ2 with constant rates r1 and r2, respectively. Despite the absence of direct
interaction between the particles, we show that strong correlations between them emerge in the stationary state
at long times, induced purely by the dynamics itself. We compute exactly the joint distribution of the positions
of the particles in the stationary state, which allows us to compute several physical observables analytically. In
particular, we show that the extreme value statistics (EVS), i.e., the distribution of the position of the rightmost
particle, has a nontrivial shape in the large N limit. The scaling function characterizing this EVS has a finite
support with a tunable shape (by varying the parameters). Remarkably, this scaling function turns out to be
universal. First, it also describes the distribution of the position of the kth rightmost particle in a 1d trap.
Moreover, the distribution of the position of the particle farthest from the center of the harmonic trap in d
dimensions is also described by the same scaling function for all d � 1. Numerical simulations are in excellent
agreement with our analytical predictions.
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Introduction. Stochastic resetting (SR) has emerged as
a major area of research in statistical physics with mul-
tidisciplinary applications across diverse fields, such as
search algorithms in computer science, foraging processes
in ecology, reaction-diffusion processes in chemistry, and
transcription processes in biology [1–3]. SR simply means
interrupting the natural dynamics of a system at random times
and instantaneously restarting the process either from its ini-
tial configuration or more generally from any predecided state.
The interval between two successive resettings is typically
Poissonian, though other protocols such as periodic resetting
have also been studied. One of the main effects of SR is
that the resetting moves violate detailed balance and drive
the system to a nonequilibrium stationary state (NESS) [4,5].
Characterizing such a NESS and its possible spatial structure
has generated a lot of interest, both theoretically (for reviews
see [1–3]) and experimentally [6–9]. One of the simplest
theoretical models corresponds to a single diffusing particle
in d dimensions and subjected to SR with a constant rate
r (i.e., Poissonian resetting) [4,5]. In this case, the position
distribution becomes time independent at long times and has
a nontrivial non-Gaussian shape. This result has been verified
experimentally in optical traps setups [6]. Subsequently, sev-
eral other models of single particle noisy dynamics subject to
stochastic resetting have been studied theoretically [10–37].

The stochastic resetting for single particle systems dis-
cussed above can be easily generalized to many-body systems.
In this case, the whole configuration of the system (i.e., all the
degrees of freedom) is reset instantaneously to a predecided
configuration at random times with rate r. This leads to a
many-body NESS with interesting spatial structures that have
been observed in a number of systems, such as fluctuating

interfaces [38], symmetric exclusion process [39], the Ising
model [40], etc. Recently, a very simple model of N nonin-
teracting Brownian motions in one dimension, subjected to
simultaneous resetting to their initial positions with rate r,
was introduced [41]. Remarkably, even though the particles
are noninteracting in this model, the simultaneous resetting
generates an effective all-to-all attractive interaction between
these particles that persists even at long times in the NESS.
This model demonstrated an important phenomenon, namely
the emergence of strong collective correlations in the steady
state of a many-body system, where the interactions between
constituents are not built in but instead emerge from the dy-
namics itself.

One of the shortcomings of these theoretical models, either
for single or multiparticle systems, is the assumption of in-
stantaneous resetting [15,26,27,42,43]. While this assumption
makes the problem simpler and easier to implement in both
numerical simulations and theoretical analysis, it is not very
realistic experimentally. For example, in the optical trap ex-
periments of a single diffusing particle with SR, the typical
protocol consists of alternative intervals of free diffusion and
confined motions [7,8]. During the free period, the particle is
allowed to diffuse freely in the absence of an optical trap. At
the end of this period a harmonic trap is switched on and the
particle is thermally equilibrated in the trap. Once the particle
has equilibrated, the trap is switched off and a new period
of free motion starts. In the confined phase, no measurement
is performed, since this protocol was designed to mimic the
instantaneous resetting move [7,8]. One may naturally wonder
what happens if one does not wait till the full equilibration
in the confined phase but instead switches off the trap at a
random time, e.g., distributed exponentially.
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FIG. 1. The left panel illustrates the setup where N particles are
confined in a harmonic potential V (x), whose stiffness alternates
between μ1 and μ2 with rates r1 (from μ1 to μ2) and r2 (from μ2 to
μ1), respectively. On the right, we show the schematic trajectories for
N = 3 diffusing particles. The switching times are shown by dashed
vertical black lines.

This leads to a more realistic and general protocol where
the particle moves in a harmonic trap whose stiffness switches
intermittently between μ1 and μ2 (with μ1 > μ2 without any
loss of generality). The stiffness changes from μ1 to μ2 with
rate r1 and reciprocally with rate r2 from μ2 to μ1 (see Fig. 1
for an illustration). In the limit μ1 → ∞, μ2 → 0 with r1

and r2 fixed and subsequently r1 → ∞, this general protocol
reduces to the standard model of diffusion under SR to the
origin. The limit μ1 → ∞ and μ2 → 0 ensures resetting of
a diffusing particle to the origin, while the subsequent limit
r1 → ∞ guarantees that once it is reset to the origin, it im-
mediately restarts, thus realizing the instantaneous resetting.
For a single particle undergoing this switching intermittent
protocol, the resulting position distribution in the NESS has
been studied only recently, both theoretically [44–50] and ex-
perimentally in the μ1 → ∞ limit [9]. In this paper, our goal
is to study N independent particles undergoing this switching
intermittent protocol. One of our main results is to show that,
indeed, the switching dynamics between two stiffnesses of
the trap drives the system into a NESS with strong collective
correlations that emerge purely out of the dynamics. Thus, the
emergence of strong correlations without direct interaction is
a robust phenomenon and is not just an artefact of instanta-
neous resetting.

Let us first summarize our main results. For N indepen-
dent particles on the line driven by this switching intermittent
protocol, we first provide a complete characterization of the
NESS, i.e., the exact computation of the joint distribution of
the positions of the particles. This allows us to compute the
spatial correlations in the NESS, as well as several other phys-
ical observables, such as the average density, the distribution
of the position of the rightmost particle in the gas (extreme
value statistics), the spacing distribution between particles
and the full counting statistics (FCS), i.e., the statistics of
the number of particles in a given interval. These observables
have been calculated recently for large N in the limit of instan-
taneous resetting [41] but, here, we show that these asymptotic
results get drastically modified under this intermittent switch-
ing protocol. In particular, we find a surprising result for the
extreme value statistics (EVS), i.e., the distribution of
the position M1 of the rightmost particle. We show that in the
large N limit, M1 typically scales as

√
ln N and its probability

distribution function (PDF) takes the scaling form

Prob.(M1 = w, N ) ≈
√

rH

4D ln N
f

(
w

√
rH

4D ln N

)
, (1)

where rH = 2/(1/r1 + 1/r2) is the harmonic mean of the
switching rates and the scaling function f (z) has a nontriv-
ial shape supported over a finite interval

√
rH/(2μ1) � z �√

rH/(2μ2) [see Eqs. (16) and (17) and Fig. 2], even though
the average density is supported over the full line (see Fig. 1).
By tuning the parameters r1, r2, μ1, μ2, the shape of this PDF
changes drastically as seen in Fig. 2. This is remarkable since
in all the known examples of EVS in uncorrelated [51–58]
or correlated [59–66] systems (for a recent review see [67]),
including the instantaneous resetting case discussed above,
the limiting distribution of the maximum is always supported
over an unbounded interval (infinite or semiinfinite). The
emergence of a finite support with a tunable shape for the EVS
is thus a strong signature of the noninstantaneous nature of
this switching protocol. In addition to having a finite support,
we find that the scaling function f (z) in Eq. (1) is surprisingly
robust and universal: it also describes the scaling of the kth
maximum in d = 1 as well as the distribution of the distance
of the farthest particle from the center of a d-dimensional
harmonic trap. In the rest of the paper, we present only the
computation of the joint distribution and the EVS in Eq. (1).
The computations of the other observables mentioned above
are provided in the Supplemental Material [68].

The Model. We consider N independent Brownian particles
on a line, all starting at the origin which feel a potential that
switches between V1(x) = μ1x2/2 and V2(x) = μ2x2/2, with
Poissonian rate r1 (from μ1 to μ2) and rate r2 (from μ2 to μ1).
Hence, the duration τ of the time intervals between successive
switches is distributed via Prob.[τ ] = rie−riτ , where ri is r1

or r2. Moreover, the intervals are statistically independent. In
each phase the positions {xi} evolve as independent Ornstein-
Uhlenbeck processes [78]

dxi

dt
= −μkxi +

√
2Dηi(t ), (2)

where μk = μ1 or μ2 depending on the phase, D is the
diffusion constant and ηi(t ) is a zero-mean Gaussian white
noise with a correlator 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′). Let P1(	x, t )
(resp. P2) denote the joint PDF of the particles being at
	x = (x1, . . . , xN ) at time t and that the system is in phase
1 (resp. phase 2). From Eq. (2), they evolve by the coupled
Fokker-Planck equations

∂P1

∂t
=

N∑
i=1

[
D

∂2P1

∂x2
i

+ μ1
∂

∂xi
(xiP1)

]
− r1P1 + r2P2 (3)

∂P2

∂t
=

N∑
i=1

[
D

∂2P2

∂x2
i

+ μ2
∂

∂xi
(xiP2)

]
− r2P2 + r1P1 (4)

with the initial conditions

P1(	x, t = 0) = 1
2δ(	x) and P2(	x, t = 0) = 1

2δ(	x), (5)

where we assumed that, initially, both phases occur equally
likely. Hence, the joint PDF of the positions only is given by
P(	x, t ) = P1(	x, t ) + P2(	x, t ). The first terms on the right hand
side of Eqs. (3) and (4) represent diffusion and advection in a
harmonic potential, while the last two terms represent the loss
and gain due to the switching between potentials, with rates r1

and r2, respectively. Note that Eqs. (3) and (4) also describe
the motion of N components of a single particle in N spatial
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FIG. 2. Scaling collapse of the distribution of the kth maximum as in Eq. (17) for different values of α = k/N and different values of
the parameters. We set r1 = r2 = 1, D = 1, N = 106, and vary μ1 and μ2. From left to right we used, respectively, μ1 = 0.4, μ2 = 0.2,

then μ1 = 2, μ2 = 0.4, and finally μ1 = 2, μ2 = 1. The dashed black line corresponds to the theoretical prediction and the symbols are the
numerical results. Different colors correspond to different values of α. The numerical results were obtained by sampling 105 examples directly
from the NESS distribution given in Eq. (12).

dimensions in a switching harmonic trap. However, here we
consider them as the positions of N independent particles in a
gas that allows us to study observables with physical meaning
only in the latter interpretation, such as gap statistics or the
full counting statistics, etc.

To solve this pair of Fokker-Planck equations, it is conve-
nient to work in the Fourier space where we define P̃n(	k, t ) =∫ +∞
−∞ d	x ei	k̇	xPn(	x, t ), with n = 1, 2. In the steady state, setting

∂t P̃n = 0, Eqs. (3) and (4) in the Fourier space reduce to(
D

N∑
i=1

k2
i + r1

)
P̃1 + μ1

N∑
i=1

ki
∂P̃1

∂ki
= r2P̃2, (6)

(
D

N∑
i=1

k2
i + r2

)
P̃2 + μ2

N∑
i=1

ki
∂P̃2

∂ki
= r1P̃1, (7)

with initial conditions P̃n(	k = 0) = 1/2. Notice that Eqs. (6)
and (7) are spherically symmetric. It is therefore much easier

to move to hyperspherical coordinates where k =
√∑N

i=1 k2
i is

the distance to the origin and θi, for i = 1, · · · , N − 1 are the
different angular coordinates. Then Eqs. (6) and (7) simplify
to

[(Dk2 + r1) + μ1k∂k]P̃1 = r2P̃2, (8)

[(Dk2 + r2) + μ2k∂k]P̃2 = r1P̃1. (9)

Notice that by permuting the indices 1 ↔ 2 in Eq. (8) leads
to Eq. (9). Hence, we can solve only for P̃1 and the solution
for P̃2 will follow by permuting the indices. By eliminat-
ing P̃2 between Eqs. (8) and (9) we get an ordinary second
order differential equation for P̃1 (respectively P̃2). Solving
these ordinary differential equations with appropriate bound-
ary conditions (see the Supplemental Material for details), we
obtain

P̃1(k) = r2 e− Dk2

2μ1

r1 + r2
M

(
R1; 1 + R1 + R2;

Dk2(μ2 − μ1)

2μ1μ2

)
,

(10)

where R1 = r1/(2μ1), R2 = r2/(2μ2), and M(a; b; z) is the
Kummer’s function [79]. Similarly, one can obtain P̃2(	k) just
by exchanging μ1 ↔ μ2 and r1 ↔ r2. To reveal the spatial
correlations in the NESS, it is useful to invert this Fourier
transform, which is not easy. However, fortunately, one can

make use of a convenient integral representation [79]

M(a; b; z) = �(b)

�(a)�(b − a)

∫ 1

0
du ezuua−1(1 − u)b−a−1,

(11)
where �(x) is the � function. Using Eq. (11) in Eq. (10) and
inverting the Fourier transform we obtain an expression for
P1(	x) and similarly for P2(	x). Adding them gives the joint PDF
in the NESS [68]

Pst (	x) =
∫ 1

0
du h(u)

N∏
i=1

p(xi|u), (12)

where

h(u) = c rH

4
uR1−1(1 − u)R2−1

[
1 − u

μ1
+ u

μ2

]
(13)

with c = �(R1 + R2 + 1)/(�(R1 + 1)�(R2 + 1)) and rH =
2 r1r2/(r1 + r2). The function p(x|u) = e− x2

2V (u) /
√

2πV (u) is a
pure Gaussian with zero mean and variance V (u) = D( u

μ2
+

1−u
μ1

). This fully characterizes the joint PDF of the positions
in the NESS. Note that h(u) is normalized to unity, i.e.,∫ 1

0 h(u)du = 1. Thus, one can interpret Eq. (12) as the joint
distribution of N i.i.d. Gaussian variables with zero mean and
a common variance V (u) parametrized by u, which itself is a
random variable distributed via the PDF h(u). There is indeed
a nice physical meaning of this random variable u. If the parti-
cle was entirely in phase 2, its stationary distribution would be
a Gaussian (the Gibbs state) with a variance D/μ2. In contrast,
if it was in phase 1, it will again be a Gaussian with a variance
D/μ1. Hence, from the formula V (u) = D( u

μ2
+ 1−u

μ1
), one

sees that 0 � u � 1 can be interpreted as the effective fraction
of time that each particle spends in phase 2. This can be put
on a more rigorous footing by using the so-called Kesten
variables as shown in the Supplemental Material [68]. For
simplicity, we will henceforth set r1 = r2 = r and the results
for general r1 �= r2 are given in the Supplemental Material
[68].

We note that the joint PDF in Eq. (12) does not fac-
torize, indicating the presence of correlations in the NESS.
One can easily calculate the two-point correlation function
from Eq. (12) using the fact that, for a fixed u, they are
i.i.d. variables. The natural correlator 〈xix j〉 − 〈xi〉〈x j〉 for i �=
j vanishes identically since p(xi|u) is Gaussian and hence
symmetric in xi. The first nonzero correlator for i �= j is
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given by

〈
x2

i x2
j

〉 − 〈
x2

i

〉〈
x2

j

〉= D2

r2

(R1 − R2)2(2 + 3R1 + 3R2 + 4R1R2)

(1 + R1 + R2)2(2 + R1 + R2)
,

(14)

where we recall that R1 = r/(2μ1) and R2 = r/(2μ2). The
positive value of this correlator indicates that there are ef-
fective all-to-all attractive correlations between the particles
in the NESS. These correlations are not built-in but get gen-
erated by the switching dynamics of the potential, which all
the particles share together. This makes the particles strongly
correlated in the NESS. Despite such strong correlations, the
structure of the joint PDF in Eq. (12) allows us to com-
pute several physical observables exactly, such as the average
density, the EVS, the distribution of the spacings between par-
ticles and also the FCS. The reason for the solvability can be
traced back to Eq. (12) where one can first fix u and compute
the observables for N independent variables, each distributed
via p(x|u) where u is just a fixed parameter and then the
average over u drawn from the PDF h(u) in Eq. (13). For i.i.d.
variables, this computation is rather standard. This solvable
structure holds more generally for any conditionally indepen-
dent and identically distributed (c.i.i.d.) variables, as studied
recently in Ref. [80]. Here, the c.i.i.d. structure emerges from
the basic dynamics of the system and thus provides a natural
physical example of such systems. The computations of these
physical observables are provided in detail in the Supplemen-
tal Material [68], and here we focus only on the EVS. This is
because the EVS of strongly correlated variables is known to
be a very hard problem and there are only a few cases where
it can be derived analytically. Our model provides not only
a solvable example of EVS in a strongly correlated system,
but also the distribution of the EVS turns out to be rather
surprising, as discussed below.

To compute the EVS, we start from the joint PDF in
Eq. (12). We first fix u and compute the EVS of N i.i.d.
Gaussian random variables of zero mean and variance V (u).
It is well known [67] that, for large N , the maximum M1

of such i.i.d. Gaussian variables behaves almost determinis-
tically as M1 ≈ √

2V (u) ln N , with fluctuations around it of
order 1/

√
ln N . It turns out that, to leading order for large

N , one can approximate this distribution by a delta function,
namely P(M1 = w|u) ≈ δ(w − √

2V (u) ln N ). Finally, aver-
aging over u we get

P(M1 = w, N ) ≈
∫ 1

0
du h(u) δ(w −

√
2V (u) ln N ), (15)

where V (u) = D(u/μ2 + (1 − u)/μ1) and h(u) is given in
Eq. (13). Performing this integral explicitly [68], we get the
scaling form in Eq. (1) where the scaling function f (z) has a
nontrivial shape given by

f (z) = c RR1−1
1 RR2−1

2

(R2 − R1)R1+R2−1
|z|3

(
1 − z2

R2

)R2−1 (
z2

R1
− 1

)R1−1

,

(16)

with
√

R1 � z � √
R2. As mentioned earlier, an EVS scaling

function with a finite support is rather surprising because the
average density is spread over the full real line [68]. Moreover,
the shape of the scaling function f (z) can be tuned by varying
the parameters R1 and R2. At both edges of the support,
f (z) can either diverge, go to a nonzero constant, or vanish,
depending on R1, R2. The scaling function f (z) also turns out
to be universal in the following sense. If one calculates the
distribution of the kth maximum (order statistics), one finds a
scaling form

Prob.[Mk = w, N] ≈
√

rH

4Dβ2
f

(
w

√
rH

4Dβ2

)
, (17)

where β = erfc−1(2k/N ), but the scaling function f (z) is in-
dependent of k and has the same expression as in Eq. (16).
Here erfc(z) = 2/

√
π

∫ ∞
z e−y2

dy. In Fig. 2, we verify this
scaling form by collapsing data for different α = k/N and for
different values of R1 and R2. The numerical results are in
excellent agreement with our theoretical predictions. Further-
more, one can easily generalize our results to a harmonic trap
in d dimensions [68]. Following exactly the same analysis as
in the d = 1 case above, one can also compute the distribution
of the distance of the farthest particle from the center of
the trap and we find the remarkable result that it is again
described by Eq. (1) with the same scaling function f (z) given
in Eq. (16). Thus, the scaling function f (z) is extremely robust
and “super universal” in the sense that it neither depends on k
in d = 1, nor on the dimension d itself.

To summarize, we have completely characterized the
nonequilibrium stationary state of N Brownian particles in a
harmonic trap in an experimentally realistic protocol where
the stiffness of the trap switches between two values at con-
stant rate. The strong correlations between the positions of
the particles in the stationary state emerge from the dynamics
itself and are not built in. The exact joint distribution of
the particle positions allows us to compute several physical
observables analytically. In particular, we have shown that
the EVS is characterized by a nontrivial scaling function
which has a finite support and a tunable shape. Moreover, the
scaling function of the EVS is universal in the sense that it
also describes the limiting distribution of the kth maximum
in d = 1, as well as the distribution of the distance of the
particle farthest from the center of the harmonic trap in d
dimensions [68]. It would be interesting if our predictions
could be verified experimentally and also to investigate the
NESS in nonharmonic traps.
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