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Logarithmic or algebraic: Roughening of an active Kardar-Parisi-Zhang surface
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The Kardar-Parisi-Zhang (KPZ) equation sets the universality class for growing and roughening of nonequi-
librium surfaces without any conservation law and nonlocal effects. We argue here that the KPZ equation can
be generalized by including a symmetry-permitted nonlocal nonlinear term of active origin that is of the
same order as the one included in the KPZ equation. Including this term, the 2D active KPZ equation is
stable in some parameter regimes, in which the interface conformation fluctuations exhibit sublogarithmic or
superlogarithmic roughness, with nonuniversal exponents, giving positional generalized quasi-long-ranged order.
For other parameter choices, the model is unstable, suggesting a perturbatively inaccessible algebraically rough
interface or positional short-ranged order. Our model should serve as a paradigmatic nonlocal growth equation.

DOI: 10.1103/PhysRevE.109.L.032104

The Kardar-Parisi-Zhang (KPZ) equation [1-3] for grow-
ing nonequilibrium surfaces displays a nonequilibrium rough-
ening transition between a smooth phase, whose long
wavelength scaling properties are identical to an Edward-
Wilkinson (EW) surface [4], to a perturbatively inaccessible
rough surface [3,5] whend > d, = 2, its lower critical dimen-
sion. Importantly, the local normal velocity of a KPZ surface
depends locally on surface fluctuations, and hence can-
not describe nonequilibrium surface dynamics with nonlocal
interactions.

Theoretical studies on nonlocal interactions has a long-
standing history in equilibrium systems [6—11]. Examples
of their prominent nonequilibrium counterparts include in-
terface dynamics involving nonlocal interactions, e.g., flame
front propagation, thin film growth [12], and shading phe-
nomena in surface growth [13]. Kinetic roughening in the
presence of nonlocal interactions [14] display generic non-
KPZ scaling behavior. Nonlocal effects are often important
in biological growth processes; see, e.g., Ref. [15] for a re-
cent study. Furthermore, in many applications, the growth is
controlled by fast nonlocal transport not included in the KPZ
equation. Prominent examples include diffusion-controlled
nonlocal transport [16], dissolution or precipitation processes
[17], gas-solid reactions [18], a variety of reaction engineer-
ing processes [19], diffusion-limited erosion, that displays
nonlocal stabilization of surfaces [20] (see also Ref. [21]),
and even geological contexts, e.g., earth surface roughness
[22]. Inspired by these past studies, we explore the generic
consequences of competition between local contributions and
those that depend on the global surface profile, i.e., nonlocal
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contributions to the local surface velocity, by constructing a
purpose-built conceptual model.

In this Letter, we set up and study a generalization of the
KPZ equation, where the surface velocity depends, in contrast
to the KPZ equation, nonlocally on the surface fluctuations.
We do this by adding symmetry-permitted nonlocal nonlinear
gradient terms that are of the same order as the usual KPZ
nonlinear term. These nonlocal, nonlinear terms have the same
scaling as the usual local nonlinear term of the KPZ equation.
This allows us to study competition and interplay between lo-
cal and nonlocal nonlinear effects, resulting into stable steady
states and roughening transitions distinct from both the usual
KPZ equation, or the KPZ equation with truly long-range
effects (with either long range nonlinearity or long range
noises) [14,23]. To generalize the scope of our study, we also
include chiral contributions, which is ubiquitous in soft matter
and biologically inspired systems; see, e.g., Refs. [24,25].
The resulting equation in 2D, named active-KPZ or a-KPZ
equation, is

ah A U

+ 220ij ()€ (VihVyh) + 1, ey

a nonlocal generalization to the usual KPZ equation that
is distinct from the one considered in Ref. [14]. Here, the
tensor e, is the 2D totally antisymmetric matrix. Further,
Q;j(r) is the longitudinal projection operator that in the
Fourier space is Q;;(k) :kik‘,»/kz, where k is a Fourier
wave vector, and is nonlocal. Physically, A;Q;;(r)(V;hV;h) +
A20;i(r)e ;i (VihV,h) is the contribution to the surface veloc-
ity normal to the base plane v, = dh/0t that is nonlocal in
height fluctuations Vh. Noise n is a zero-mean, Gaussian-
distributed white noise with a variance (n(x,1)n(0,0)) =
2D8(x)8(t). We extract the scaling of the stable phases,
which exists for a range of the model parameters. In
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particular, we show that the variance A = (h(Xx, t)2) ~
[In(L/a)]* for a surface of lateral size L, where u < (>)1
for sub (super) logarithmic roughness and a is a microscopic
cutoff. This defines positional generalized quasi-long-ranged
order (QLRO), generalizing the well-known QLRO of EW
surfaces [3], in which A ~ In(L/a), i.e., & = 1. Further, the
time-scale of relaxation (L) ~ L?>(In L)™*, « > 0, i.e., log-
arithmically superdiffusive. Both © and x are nonuniversal.
They vary continuously with A; /A, Ay /A.

The form of Eq. (1) can be obtained by first considering the
mapping from the KPZ equation to the Burgers equation [26]
in terms of the “Burgers velocity v = Vh.” Now generaliz-
ing the Burgers equation nonlinearity AVv? to AVj(viv;) +
A2, Vj(vivy,), and then writing them in terms of /4 produces
the A; and X, terms in (1); see the Supplemental Material (SM)
[27].

The X and A, terms in (1) can be motivated by considering
a nearly flat nonequilibrium surface without any momentum
conservation described by a single valued height field A(x, t)
in Monge gauge [28,29], with an active conserved density
p(x, t) living on it. Its hydrodynamic equation, retaining only
the lowest order in nonlinearities and spatial gradients, reads

= Vg SOV o)+, @
where v(p) is a local density-dependent velocity of the mem-
brane; v(p) = vg + g1p to the leading order in p; g; is a
coupling constant of either sign. Further, density p follows
d;p = —V -J, where J is the current. The specific form of
the particle dynamics decides the structure of J. We choose
Jl‘ = —BV,-,O + Vjoij, where 0ij = aV,-thh + ﬂeij,-thh
is reminiscent of “active stresses” found in active matter the-
ories [30], the B term is a chiral contribution. The quadratic
dependence of J on VA implies the active particles (i) re-
spond, unsurprisingly, to the height fluctuations, but not the
absolute height; and (ii) ignoring gravity, the particles do not
distinguish valleys from the hills (although the surface itself
breaks the inversion symmetry). Here, D > 0 is a diffusivity.
We focus on the quasistatic limit of infinitely fast dynamics of
p, such that dp/dt ~ 0, giving DV?p = aV;V;(V;hV;h) +
Be;jnViV;(VihV,h) neglecting any noise in the o dynamics.
Now use this to eliminate p in (2) to get (1), after absorbing a
factor of D. (We have implicitly assumed o, 8 to scale with
D, and ignored any advective-type nonlinearity originating
from projecting the particle dynamics on the plane of the
membrane in the large D limit). All of A, A, A, can be indi-
vidually positive and negative. The chiral term is 2D specific;
the other two nonlinear terms with coefficients A and A; can
exist in any dimension d. Thus, the A; and X, terms in (1)
are physical, although our active species origin need not be
the only possible source of these two terms. See Ref. [31]
for a similar mechanism to generate an effective nonlocal
dynamics in the noisy Fisher-Kolmogorov equation [32,33]
for population dynamics coupled with a fast chemical signal.
Further Eq. (1) can be realized microscopically by considering
an “active” 2D single-step model for a 2D KPZ surface with
point particles living on it. The dynamical update rules of the
modified single-step model now depend on the local excess
or deficit population of the active particles, instead of being
constants as they are in standard single-step models [34-38].

The particle hopping rates to the nearest neighbor sites in turn
depends not only on the number inhomogeneities, but also
on the height fluctuations (but without distinguishing local
valleys from hills). Monte-Carlo simulations of this model,
focusing on the limiting case of fast dynamics by the number
fluctuations, should bring out the physics described in this
Letter. The limit of fast particle dynamics can be implemented
by considering time-scale separations in the rates of particle
position updates and surface conformation updates.

At one dimension, the A, term vanishes, and the A, term be-
comes indistinguishable from the A term. The transformation
X, =x; — (A 4+ 2Xx1)cit — Aejjcjt and t’ = ¢, together with the
height function 4 transforming as #'(x',t') = h(x,t) + ¢ - X,
leaves Eq. (1) invariant; see the SM [27]. This generalizes
invariance of the usual KPZ equation under a pseudo-Galilean
transformation [3].

Similar to the KPZ equation, dimensional analysis via
scaling r — br, t — b’t, h — b*h, where z and x are the
dynamic and roughness exponents, reveals that all of A, A1, A
scale similarly, and hence are equally relevant (in the scal-
ing sense). Furthermore, d = 2 is the critical dimension of
Eq. (1); see the SM [27]. Whether it is the upper or lower
critical dimension requires further analysis that follows be-
low. That all of A, A;, A, scale the same way is important: it
means the nonlocal, nonlinear effects in (1) are as relevant
as the short-range, local nonlinear effects in the original KPZ
equation [3]. This feature clearly distinguishes the active KPZ
equation (1) from generalized KPZ equations with genuine
long-range interactions [14]. Indeed, just as the usual KPZ
equation [3] is universal in the sense that all short-range
growth processes with just one soft mode (height /) and with-
out any conservation laws, inversion symmetry and disorder
should be described by it; the active KPZ equation (1) should
likewise describe all such nonlocal growth processes having
the same scaling properties as the corresponding local growth
processes in the KPZ equation, and with just one soft mode
(h) but without any conservation laws, inversion symmetry,
and disorder, highlighting the universal nature of (1).

We first determine if Eq. (1) has a stable nonequilibrium
steady state (NESS), and second, if so, the scaling prop-
erties in those NESS. We use renormalization group (RG)
framework, well suited to systematically handle the diverging
corrections encountered in naive perturbation theories. The
Wilson dynamic RG method for our model closely resembles
that for the KPZ equation [1,3,26,39]; see the SM [27] for
the one-loop Feynman diagrams. There are no one-loop cor-
rections to A, A, A,. However, there are diverging one-loop
corrections to v and D. Dimensional analysis allows us to
identify an effective dimensionless coupling constant g and

. . . 2
two dimensionless ratios y;, y, defined as g= 221, y =

A}\—‘, V= )‘7° The RG recursion relations for D, v at the one-

loop order (here [ is the “RG time;” exp(/) is a length scale)

dD

dv

Z = v[z—2+gC()/1, )’2)]a (4)

with y;, y» being marginal at the one-loop order, stem-
ming from the nonrenormalization of A, Ay, A, at that
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FIG. 1. (a) RG flow diagram in the g-y; plane in the achiral limit
(y2 = 0). Arrows indicate RG flows. Flow in the stable (unstable),
i.e., toward (away from), g = 0 region are marked. (b) Variations
of 1 and « as functions of y; in the stable region for the achiral
case. (¢) RG flow diagram in the space spanned by y;-y,-g in the
full a-KPZ equation. RG flow lines in the stable and unstable regions
are shown by the arrows. (d) Phase diagram in the y;-y, plane for
the a-KPZ equation. The central gray region containing the origin is
unstable. Regions with SQLRO and WQLRO are marked (see text).

order. Here, Bly1, v2l = 3v7 + 3% + 573 + 1, Cln, ol =
1y2+ 3 + Ly} B > 0.Flow Egs. (3) and (4) yield the flow
equation for g:

Z—f = —¢Aln, rl, (5)
where Aly1, 2] = 3v + Sni + 1vi — 1.

In the achiral case, i.e., » =0, an RG flow diagram
in the g-y; plane is shown in Fig. 1(a). The condition
A(y1) = A(y1, y» = 0) = 0 defines two solid (black) lines
y1 = Y4+, y— parallel to the g axis in the g-y; plane, where
y+ = 0.161, y_ = —1.383, such that for y; > y; > y_ (gray
region), the RG flow lines flow away parallel to the g axis
toward infinity, indicating a perturbatively inaccessible, pre-
sumably rough, phase with short-ranged positional order.
In this unstable region g(I) diverges as [ — 1/[|A(y)I],
reminiscent of the 2D KPZ equation [3], presumably cor-
responding to algebraically rough phase [40,41]. Outside
this region, where A(y;) > 0, the flow lines flow toward
g = 0 parallel to the g axis, implying stability, while g(/) ~
1/[1.A(y1)] vanishes slowly in the long wavelength limit / —
oo. Although g* = 0 is the only fixed point (FP) in the stable
region, the vanishing of g(/) is so slow, being proportional
to 1/1, the parameters D and v are infinitely renormalized,
altering the linear theory scaling in the long wavelength limit.
The simplest way to see this is to set z = 2, x = 0 (i.e., their

linear theory values) in (3) and (4) with y, = 0, which gives

D(l) = Dol®/4,  v(l) = vol®/4, (6)
where B(y1) = B(y1, y2 =0), C(y1) =C(y1, v2 = 0), Do, vy
are the small-scale or unrenormalized values of D and v. Since
B is positive definite, D(I) > Dy for [ — co. On the other
hand, C is positive in stable regions, for which v(I) > v
for | — oo, giving the time-scale 7(L) ~ L?[In(L/a)]™* for
relaxation over lateral size L, where () = C/A is a pos-
itive definite but nonuniversal, y;-dependent exponent. The
logarithmic modulation in t(L) implies (i) breakdown of con-
ventional dynamic scaling [42—44], and (ii) nonuniversally
faster relaxation, being parametrized by y;, of fluctuations.
Furthermore, by defining RG time ! ~ In(1/ag) and using
v(q), D(q), the variance is

1/a
A = (B*(x,1)) ~/ d? Dla) ~ [In(L/a)]*, (7)

q
1/L v(g)q*

where () =14+ (B —-C)/A is also nonuniversal,
parametrized by y;, and can be more or less than unity,
depending upon the sign of B —C, as mentioned above.
Variations of u and « as functions of y; are shown in
Fig. 1(b). For u(y1) < 1(> 1), A(y1) grows with the system
size L slower (faster) than positional QLRO, as in the 2D
EW equation [4]. We call these stronger (weaker) than
QLRO or SQLRO (WQLRO), corresponding to sub (super)
logarithmically rough surfaces with positional generalized
QLRO, that generalize the well-known QLRO in the 2D EW
equation or 2D equilibrium XY model [28]. In particular, the
minimum of p = 0.89. In Fig. 1(a) the blue outer regions
(green inner strips) correspond to SQLRO (WQLRO). Solid
red lines correspond to positional QLRO. These results
are reminiscent of the logarithmic anomalous elasticity in
three-dimensional equilibrium smectics [45,46], and a 2D
equilibrium elastic sheet having vanishing thermal expansion
coupled with Ising spins [47,48]; see also Ref. [44] for similar
results.

Including the chiral effects (y, # 0), stability of the RG
flow is now determined by A(yy, ¥2) > 0. Flow lines having
initial conditions within a narrow elliptical cylinder, contain-
ing the origin (0,0,0), and having the axis parallel to the g axis,
with its surface given by A(y1, y») = 0 for any g, run away
parallel to the g axis, leaving the perturbatively accessible
region. Flow lines with initial conditions falling in regions
outside of this elliptical cylinder flow toward the y,;-y, plane
with stable states. See Fig. 1(c) depicting the RG flow lines in
the space spanned by y;-y»-g. Outside the elliptical cylinder
g(l) ~ 1/(Al) for large I, similar to its achiral analog. Inside
the cylinder, g(/) diverges as [ — 1/(|.4|) from below. Focus-
ing on the y;-y» plane, A(y1, y2) = 0 sketches out an inner
elliptical unstable region, whereas the outer region is stable;
see Fig. 1(d). We use the above results to find that in the sta-
ble region A ~ [In(L/a)]*™7), where u =1+ (B —C)/A
is now parametrized by both y, . Similar to and quantita-
tively extending the achiral case, u < 1(> 1) is referred to
as SQLRO (WQLRO), giving positional generalised QLRO.
The SQLRO and WQLRO regions are demarcated within the
stable region in Fig. 1(d).
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The equal-time height-difference correlator Cp(r,0) =
([h(x, 1) — h(0,)]?) ~ %[ln(r/a)]“, for large r = |x| > a,
indicating logarithmically faster or slower rise with the sepa-
ration r for large r [42,43], again generalizing the well-known
QLRO found in a 2D EW surface.

Our continuously varying scaling exponents are a crucial
outcome of the nonrenormalization of A, A; and X,, render-
ing y1, y» marginal, which have been demonstrated at the
one-loop order. Unlike the usual KPZ equation, Galilean in-
variance of the present model ensures nonrenormalization of
a combination of A, Ay, Aj, and not each of them individually.
Thus, there is no surety that y;, y» should remain marginal
even at higher-loop orders. We now argue that these possible
higher-loop contributions, even though they may exist, ac-
tually do not matter. For large I, g(I) ~ 1/I at the one-loop
order. At higher-loop orders, the Feynman diagrams will con-
tain higher power of g. Hence, a general scaling solution for
g(1) should have the form g(/) ~ 1/l + )", c,/I", andn > 1
is an integer. Thus, the higher-loop corrections to the one-loop
solution of g(/) should vanish like 1/I°, s > 1. Therefore,
their integrals over / from zero to infinity will be finite, so they
will not change the anomalous behavior of D and v. Similarly,
they cannot make any divergent contribution to y;(/) and
y2(1), even though there can be higher-loop diagrams. There-
fore, our one-loop results are, in fact, asymptotically exact.
This then implies that the continuous variation of the scaling
exponents, making them nonuniversal, is also asymptotically
exact in the long wavelength limit. See Refs. [40,42,43,49-53]
for similar nonuniversal scaling exponents in other models.

At higher dimensions d > 2, the chiral term with coupling
M cannot exist. The other two achiral nonlinear terms in
Eq. (1) are present at d > 2. The RG recursion relations for
d > 2 can be obtained from the Feynman diagrams given in
the SM [27] with y, = 0. Using a d = 2 + € expansion as in
the KPZ equation [5], we find at the one-loop order or to the
lowest order in €,

f{—f = —eg— An)g’. ®)
Parameter y; remains marginal at the lowest order. There-
fore, if A(y;) > 0, g(I) flows to zero rapidly, with g(/) ~
g(0)exp(—el) in the long wavelength limit; g* = 0 is the
only FP that is globally stable. This renders the nonlinearities
irrelevant in the RG sense. Therefore, scaling in the long
wavelength limit is identical to that in the EW equation: z =
2, x = (2 —d)/2. Furthermore, d = 2 is then the upper criti-
cal dimension. On the other hand, if fl(yl ) < 0, g(I) has three
FPs: gt = —¢ /A(y1), an unstable FP, parametrized by y; and
separating possibly two stable FPs, one being at g* = 0 Gaus-
sian FP with EW scaling, and another putative perturbatively
inaccessible FP, corresponding presumably to an algebraically
rough phase. This gives, with 2D as the lower critical dimen-
sion, a roughening transition at d > 2, very similar to the
KPZ equation at d > 2, but with one caveat. At this unstable

FP, using (3) and (4), to O(€) z =2+ €S2 y = —e S0,
depend explicitly on y; and deviate from their linear theory
(or EW equation) values already at O(e). This is in contrast
to the KPZ equation at d > 2, where z and x at the unstable

FP are at least O(e?) [5]. In fact, application of the Cole-Hopf

FIG. 2. (a) Variation of z and x with y; on the fixed line g8 =
—1/A(y) for € = 1. (b) RG flow diagram in the g-y; plane for d >
2. The black dashed line is the fixed line g8 = —1 JA(yy) for e = 1,
bounded by lines y; = y_, v, (blue dashed lines). Stable (unstable)
flow lines are the arrows pointing toward (away from) g =0 (see
text).

transformation shows that z = 2, x = 0 at the unstable FP of
the KPZ equation at d > 2 [54].

When .,Zl(yl) < 0, the solution of C (y1) = 0 gives the red
dashed lines y; =y, ' where y¥ =0 and y~ = —1.25;
see Fig. 2(a) for a variation of z and y with y; for a fixed
€. Green strips correspond to C(y;) > 0 where x > 0 and
z < 2; C(y1) < 0 is the blue region where x < 0 and z > 2.
For a given €, maximum value of z and minimum value of x
are Zmax = 2 + 0.292¢ and xpmin = —0.292¢ at y; = —0.651,
such that the dynamics is slowest and the surface is smoothest
at the unstable FP. Since xmin > xgw = —€/2, an a-KPZ
surface at the unstable FP is always rougher than an EW
surface.

In the g-y; plane, gt = —€/ A(y) is a fixed line, such that
RG flow lines with initial g values above the line flows to
perturbatively inaccessible FP, see Fig. 2(b). And for systems
with initial g values lying below the line, the RG flow lines
run parallel to the g axis toward Gaussian FP, corresponding
to the smooth phase belonging to the EW class. This behavior
holds within a range y_ > y; > y4. As ¥ = V4, Y-, A(y1)
vanishes and g7 diverges. As soon as y; exceeds y, or falls
short of y_, g% no longer exists with the roughening transition
disappearing. RG flow lines starting from any initial condition
with y; > y4 or y; < y_ (red region) where A(y;) > 0, flow
to g* = 0 ensuing scaling belonging to the EW class.

In summary, we have proposed and studied an ‘“active
KPZ” equation, having a surface velocity v, depending non-
locally on the surface gradients. Surprisingly, we find stable
surfaces with positional generalized QLRO or generalized
logarithmic roughness with nonuniversal exponents for wide-
ranging choices of the model parameters, unlike the 2D
KPZ equation. Physically, this is due to the competition be-
tween the nonlocal and local nonlinear terms and the lack of
their renormalization. Indeed, this competition between the
nonlocal and local nonlinear terms distinguishes our model
(1) from that studied in Ref. [14], giving either general-
ized QLRO with nonuniversal scaling exponents or a novel
roughening transition even in 2D controlled by the rela-
tive strengths of the local and nonlocal interactions. At d >
2, sufficiently strong nonlinear nonlocal effects can either
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entirely suppress the KPZ roughening transitions, resulting
into only smooth surfaces, or else give a roughening transition
with nonuniversal scaling very different from the well-known
roughening transition in the KPZ equation. Heuristically, a
nonlocal part in v, means a local large fluctuation can gen-
erate a propulsion not just locally, but over large scales,
which when sufficiently strong can suppress local variations
in v, due to the local KPZ-nonlinear term. This in turn has
the effect of reducing surface fluctuations. For other param-
eter choices, a KPZ-like perturbatively inaccessible rough
phase is speculated. This may be explored by mode-coupling

methods [55]. In that parameter space, the roughening transi-
tion survives at d > 2, but with significantly different scaling
properties, again with nonuniversal exponents. We hope our
studies here will provide further impetus to study nonlocal
effects on similar nonequilibrium surface dynamics mod-
els, e.g., the conserved KPZ [56,57] and the |q|KPZ [58]
equations.

A.B. thanks the SERB, DST (India) for partial fi-
nancial support through the MATRICS scheme [File No.
MTR/2020,/000406].
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