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Fluctuation corrections to Lifshitz tails in disordered systems
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Quenched disorder in semiconductors induces localized electronic states at the band edge, which manifest as
an exponential tail in the density of states. For large impurity densities, this tail takes a universal Lifshitz form
that is characterized by short-ranged potential fluctuations. We provide both analytical expressions and numerical
values for the Lifshitz tail of a parabolic conduction band including its exact fluctuation prefactor. Our analysis
is based on a replica field integral approach, where the leading exponential scaling of the tail is determined by
an instanton profile and fluctuations around the instanton determine the subleading preexponential factor. This
factor contains the determinant of a fluctuation operator, and we avoid a full computation of its spectrum by
using a Gel’fand-Yaglom formalism, which provides a concise general derivation of fluctuation corrections in
disorder problems. We provide a revised result for the disorder band tail in two dimensions.
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Disorder is an inherent property of physical systems,
arising, for example, as defects or impurities in doped semi-
conductors [1], frozen nonequilibrium degrees of freedom
in quenched alloys and glasses [2,3], or thermal fluctua-
tions [4]. It can also be engineered in photonic structures [5,6]
or quantum gases in an optical speckle potential [7,8]. For
the electronic density of states in a semiconductor, disorder
has two effects: First, it induces a narrowing of the band
gap, where valence- and conduction-band levels are raised
and lowered, respectively, by a characteristic impurity en-
ergy. Second, it causes band tailing, where fluctuations in
the disorder potential give rise to localized states inside the
band gap. Describing the disorder-induced band narrowing
and tailing is important because it affects semiconductor de-
vices such as transistors [1,9,10] or limits the efficiency of
solar cells [11,12], and it sets the variable-range hopping
conduction that dominates transport in localized systems at
low temperatures [13].

In general, potential fluctuations that are large enough to
generate states with energies far away from the band edge are
rare, and the tail of localized levels takes an exponential form
(written here for a single conduction band) [1,14–16],

〈ρ(E )〉 E→−∞= A(E )e−B(E ), (1)

where E is the energy below the band edge and 〈·〉 denotes
a disorder average. Of particular interest is the limit of high
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impurity density, which is universal in the sense that the band
tail is insensitive to details of the disorder correlations over a
large energy range [1]. This is the Lifshitz region or Lifshitz
tail [17,18], where (1) takes a stretched exponential form
[i.e., the argument B(E ) of the exponential has a power-law
dependence on E ]. Remarkably, even for the seemingly sim-
ple case of noninteracting particles in a Gaussian-correlated
disorder potential, the disorder-averaged density of states can
only be computed exactly in one space dimension (1D) [19].
In higher dimensions, dating back to works by Halperin and
Lax [19–21] and Zittartz and Langer [22], the tail exponential
B(E ) is obtained from a variational argument that determines
the most likely disorder potential that gives rise to a bound
state at large negative energy E . Such variational arguments
are quite general [23,24] and may be extended to include
the effect of correlated disorder [25], magnetic fields [26],
interactions [27], and also to describe the spectra of random
operators [28–30]. However, they do not capture the prefactor
A(E ) in the density of states (1), which is set by fluctuations
of the disorder potential and which requires the evaluation
of a functional determinant. The established result for A(E )
derived by Brézin and Parisi [31] is based on an analysis of
large-order perturbations in φ4 theory discussed in a clas-
sical paper by the same authors [32], which evaluates the
fluctuation determinant by exact diagonalization [32,33]. At
the same time, the computation of fluctuation corrections is
a recurring problem in other areas, for example to determine
the decay rate of metastable states [34]. Indeed, one of the first
studies on the subject by Gel’fand and Yaglom [35], Levit and
Smilansky [36] in the context of one-dimensional path inte-
grals in quantum mechanics avoids the direct evaluation of the
fluctuation spectrum by mapping the functional determinant
to a differential equation, a more tractable problem compared
to exact diagonalization.

In this Letter, we show that the fundamental problem of
computing the band tail prefactor A(E ) of the Lifshitz tail (1)
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has an efficient solution that does not rely on evaluating
the full fluctuation determinant. This is achieved using a
Gel’fand-Yaglom approach, which in particular provides a
revised result for the band tail in two dimensions. While the
calculation is very general, we focus on the universal Lifshitz
regime of infinitely dense but infinitesimally weak point scat-
terers, which is described by a Gaussian white noise disorder
potential,

〈V (x)〉 = 0, 〈V (x)V (x′)〉 = w2δ(x − x′), (2)

and consider a parabolic conduction band described by the
one-electron Hamiltonian

HV = − h̄2

2m
∇2 + V (x). (3)

Throughout this Letter, we set h̄ = 2m = 1. We base our
calculation on a functional integral representation for the
disorder-averaged density of states, which we evaluate in a
saddle-point approximation including fluctuations. The cen-
tral results of our work are the following revised expressions
for the density of states in the deep-tail regime (i.e., for E →
−∞),

〈ρ(E )〉
ρ0(−E )

E→−∞=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8 |E |3/2

w2 e− 8|E |3/2

3w2 , d = 1,

20.06 |E |3/2

w3 e−11.70 |E |
w2 , d = 2,

8796 |E |
w4 e−37.79 |E |1/2

w2 , d = 3,

(4)

expressed here in relation to the density of states of the
free Hamiltonian, ρ0 = Ed/2−1/(4π )d/2�(d/2). The 1D and
3D cases agree with previous results derived using other
means [19,20,31], but the 2D result corrects an existing lit-
erature value [31].

The starting point of our analysis is a functional integral
representation of the disorder-averaged density of states

〈ρ(E )〉 =
∫

D[V ]e− ∫
dx V 2 (x)

2w2
1

Ld

∑
n

δ
(
E − EV

n

)

= −i

πLd

〈
∂

∂E
[lnZV (E + i0) − lnZV (E − i0)]

〉
. (5)

Here, the probability measure for the random field V (x) is
normalized to unity, Ld is the d-dimensional volume, and EV

n
is the nth energy eigenvalue for a realization of the Hamilto-
nian (3) with potential V (x). In the second line, we introduce
the partition function

ZV (E ) =
∏

n

(
EV

n − E
)−1/2

=
∫

D[φ] exp

[
−1

2

∫
dx φ(HV − E )φ

]
, (6)

which we express as a path integral over a scalar field φ(x).
Written in this form, Eq. (5) is equivalent to the Edwards-
Jones formula for the eigenvalue distribution of the random
matrix HV [37,38]. The factors (EV

n − E )−1/2 in the partition
function have a branch cut for E > EV

n , resulting in a discon-
tinuity between complex energies E ± i0, and thus a nonzero
contribution to the density of states (5). The analytic contin-
uation of the path integral to energies E ± i0 is performed
by rotating the fields φ in Eq. (6) into the complex plane by

+Σ =

FIG. 1. Divergent self-energy diagrams for the φ4 theory (9).

an angle e±iπ/4, i.e., on a contour C± along the positive and
negative complex diagonals [34,39–41]. Note that with these
contour choices, the integral representation (6) is convergent
for all E with nonzero imaginary part.

The disorder average (5) is difficult to compute directly
due to the presence of the logarithm; therefore, we apply the
replica trick [42], lnZ = limN→0(ZN − 1)/N , which avoids
the logarithm in favor of introducing N copies (replicas) of
the original system. The disorder average is now performed
exactly as a Gaussian integral over the potential V (r), which
gives

〈ρ(E )〉 = lim
N→0

(−E )1− d
2

iπw2NLd

∫
C+−C−

D[�]
∫

dr �2e− 1
g S[�]

,

(7)
where the subscript indicates that we consider the differ-
ence over both contours, �(r) =

√
−w2/2E (φ1, . . . , φN ) is a

vector of dimensionless replica fields that depend on a dimen-
sionless position r = x

√−E , and we introduce the scaling
parameter

1

g
= (−E )2− d

2

w2
. (8)

The effective action

S[�] =
∫

dr �

(
−∇2 + 1 − 1

2
�2

)
� (9)

corresponds to a φ4 Ginzburg-Landau theory [40], where the
disorder field is removed at the expense of introducing a
nonlinear term. Crucially, for d < 4, the prefactor g−1 of the
effective action (7) is large in the deep-tail regime E → −∞.
This allows us to evaluate the integral over the replica field �

in the saddle-point approximation [43], that is, by expanding
around the dominant contribution to the action.

Before evaluating the saddle point, however, note that
the theory (9) requires renormalization. The divergent one-
loop self-energy corrections are shown in Fig. 1, where a
continuous line denotes the free Green’s function and the
vertex is split to connect two replica indices. Physically, the
divergences are a consequence of the white-noise approxima-
tion (2) to the disorder potential, which breaks down as the
field � varies over length scales smaller than the separation
between scatterers. The divergences are subtracted by adding
a counterterm to the action (9),

δS[�] = N + 2

2
gG0

∫
dr �2, (10)

which is linear in g and will thus give a subleading correction
in the saddle-point approximation. Here,

G0 =
∫

dq
(2π )d

1

q2 + 1
(11)
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FIG. 2. Instanton solution of the saddle-point equation (12),
which determines the leading scaling of the band tail B(E ).

is the free Green’s function at coinciding points, which di-
verges in d � 2, and the factor N + 2 in Eq. (10) arises
from the different contractions of the replica fields. The self-
energy 	(E ) computed including the counterterm is finite
and represents the band narrowing that shifts the reference
point E0 of the energy scale. Including the finite part of G0

in the counterterm corresponds to a renormalization choice
	(E )|0 = 0 that puts this reference at the origin [44]. Another
possible choice is ∂	(E )/∂E |0 = 1, which is motivated from
a coherent potential approximation [31,45]. Results computed
in different schemes are identical and linked by a shift in
the energy parameter (with possible logarithmic corrections
in 2D).

The leading saddle point of the action (9) is the trivial
configuration � = 0; however, this contribution is the same
for both contours C± and cancels when taking the difference
in Eq. (7). The parameter B(E ) in the exponential band tail (1)
is thus determined by the action at the subleading saddle point
of Eq. (7), which is of order S[�] = O(g−1). The field config-
uration that minimizes the effective action (9) is of the form
�(r + r0) = f (r)u [41,46], where r0 is an arbitrary center, u
an arbitrary unit vector in replica space, and f (r) is a node-
less radial function known as the instanton. The saddle-point
equation is

−∇2 f (r) + f (r) − f 3(r) = 0, (12)

with boundary conditions f ′(0) = f (r → ∞) = 0. We can
interpret it as a Schrödinger equation for the potential − f 2(r)
that describes the most likely shape of the disorder poten-
tial with a bound state at energy E [27]. Figure 2 shows
the instanton profile in d = 1, 2, and 3. In 1D, the solution
f (r) = √

2 sech(r) is known analytically, and for d � 2, we
employ a spectral renormalization method to solve Eq. (12)
numerically [47]. The exponential band tail is then given by
the saddle-point action

B(E ) = 1

g
S[ f ] = I4

2g
, (13)

where

In =
∫

dr f n(r). (14)

The corresponding values for I4 are well established [33,41]
and tabulated in Table I.

TABLE I. Numerical values for the moments of the instanton
profile (14) and for the normalized longitudinal and transverse fluc-
tuation determinant e3zI2G0 D(z) in d = 1, 2, and 3.

d 1 2 3

I2 4 11.7009 18.8973
I4 16/3 23.4018 75.5890
eI2G0 D(1/3) 1/4 1.0558 0.364
e3I2G0 D(1) −1/12 −5.35 −0.0096

Our main task in this Letter is to determine the leading
contribution to the prefactor A(E ) of the exponential band
tail (1) by evaluating the next order in the saddle-point ap-
proximation. To this end, we expand the action to second order
in new fields that represent longitudinal (δ f‖) and transverse
(δ f k

⊥) fluctuations,

�(r) = u[ f (r) + δ f‖(r)] +
N−1∑
k=1

vkδ f k
⊥(r), (15)

where the set {u, v1, . . . , vN−1} forms an orthonormal basis of
replica space. However, certain fluctuations do not represent
small corrections to the saddle-point action. These so-called
zero modes correspond to changes of the orientation u of the
instanton in replica space and of its center r0. These changes
leave the action invariant and thus cannot be treated pertur-
batively but must be integrated exactly. This is done using
the method of collective coordinates [48,49], resulting in an
overall factor

A0 =
(

I4

4πg

) d
2

[L
√−E ]d

(
I2

πg

) N−1
2 2πN/2

�(N/2)
. (16)

Here, terms in parentheses are the Jacobian of the transfor-
mation to the collective position r0 and angle coordinate u.
Note that this contribution introduces additional factors of g
and thus contributes to the energy dependence of the prefactor
A(E ). The remaining terms correspond to the measure of
the degenerate symmetry spaces, which is the N-dimensional
surface element in replica space and the real-space volume Ld .

Formally, the full fluctuation correction reads

A(E ) = lim
N→0

(−E )1− d
2

iπw2NLd
I2A0 e− N+2

2 G0I2

×
∫

D[δ f ]e− 1
g

∫
dr(δ f‖
1δ f‖+

∑
k δ f k

⊥
1/3δ f k
⊥), (17)

where the factor I2 is the saddle-point value of the field �2 in
Eq. (7), the exponential prefactor is the counterterm contribu-
tion (10), and we define the fluctuation kernel


z = −∇2 + 1 − 3z f 2, (18)

which describes the decoupled longitudinal (z = 1) and trans-
verse (z = 1/3) fluctuations. The excluded zero modes that
correspond to an infinitesimal shift along one coordinate axis
α = 1, . . . , d are linked to d zero modes of the longitudinal
fluctuation kernel 
1 given by ∂α f (r). Likewise, the opera-
tor 
1/3 has a zero mode f (r) corresponding to rotations in
replica space. The path integral in Eq. (17) over the fluctu-
ations δ f‖ and δ f⊥,k excludes the zero modes. It is then a
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Gaussian integral and results in factors involving the func-
tional determinant of 
z,

D(z) = lim
ε→0

1

εm
det


z + ε


0 + ε
, (19)

where for the shifted operator 
z + ε the zero modes have
eigenvalue ε, and are thus removed in the limit ε → 0 (m is the
degeneracy of zero modes, with m = d for z = 1 and m = 1
for z = 1/3).

Taken together, the longitudinal and transverse fluctuation
contribution to the path integral (17) reads

A(E ) = lim
N→0

(−E )1− d
2

πw2NLd
I2A0

× [e3I2G0 |D(1)|]− 1
2
[
eI2G0 D

(
1
3

)]− N−1
2 , (20)

where the exponent in the third factor accounts for the N − 1
transverse replica field directions, and we split up the coun-
terterm contribution. Note that the longitudinal kernel D(1)
is negative since it contains a single eigenfunction f with
negative eigenvalue −2. The square root is still well defined
after analytic continuation, and the resulting imaginary unit
cancels with that in the prefactor of Eq. (17). Moreover, in
d > 1, the fluctuation determinant D(z) diverges. The math-
ematical origin of this divergence is identified by expanding
the determinant in powers of z,

det

[
1 − 3z f 2

−∇2 + 1

]
= e1−3zI2G0+O(z2 ), (21)

where G0 is introduced in Eq. (11) and higher-order terms in z
are finite. The divergent term in Eq. (21), however, is precisely
canceled by the leading-order counterterm (10), rendering the
fluctuation determinant (20) manifestly finite.

To evaluate the finite renormalized fluctuation determinant,
one could in principle compute the eigenvalues of 
z and
evaluate their product, which was done in a similar context by
Brézin and Parisi [32] to determine the large-order behavior
of perturbation series in φ4 theories. Here, we make use of
a more direct method using spectral functions. This method
was originally proposed by Gel’fand and Yaglom [35], and
applied to higher-dimensional problems with radial symmetry
in Ref. [50] (for a review, see Refs. [51–53]). Crucially, the
Gel’fand-Yaglom method does not require knowledge of the
eigenvalues, but instead expresses the functional determinant
in terms of the solution to an ordinary differential equation,
which greatly simplifies the overall calculation.

The Gel’fand-Yaglom method is based on the formal
identity [36]

det 
z =
∏

n

λn = e−ζ ′
z (0), (22)

where λn are the eigenvalues of the operator 
z, defined in
Eq. (18), and

ζz(s) =
∑

n

1

λs
n

. (23)

We introduce an analytic function Fz(λ) with zeros that co-
incide in location and multiplicity with the eigenvalues λn, in

Re[λ]

Im[λ]

Initial contour γ
enclosing the eigenvalues

Final contour γ ′

enclosing
the branch

cut

θ

FIG. 3. Complex structure of the integral (24). Crosses indicate
eigenvalues (shown here for longitudinal fluctuations with one neg-
ative eigenvalue) and the wavy line denotes the branch cut. The
dashed line indicates the initial integration contour γ that encloses
all eigenvalues, and the solid line shows the deformed contour γ ′

that runs around the branch cut.

terms of which

ζz(s) − ζ0(s) = 1

2π i

∫
γ

dλ λ−s d

dλ

[
ln

Fz(λ)

F0(λ)

]

= e−is(π−θ ) sin πs

π

∫ ∞

0
dλ λ−s d

dλ

[
ln

Fz(eiθλ)

F0(eiθλ)

]
.

(24)

Here, the contour γ encircles all eigenvalues, and we place the
branch cut of the integrand at an angle θ with the real axis to
avoid overlapping with the eigenvalues [51]; see Fig. 3 for an
illustration. To obtain the last identity, we deform the contour
to enclose the branch cut, which is shown as a continuous line
in Fig. 3. We may now take the derivative with respect to s to
obtain

det

z


0
= e−ζ ′

z (0)+ζ ′
0(0) = Fz(0)

F0(0)
=

∞∏
l=0

[
F (l )

z (0)

F (l )
0 (0)

]d (l;d )

,

(25)
where we use the rotational symmetry of 
z to factorize the
determinant and by extension F into angular components
F (l ) [50], and we denote the angular degeneracy of the eigen-
values by d (l; d ). Note that in 1D the rotational symmetry
reduces to a parity symmetry; thus, l labels only nondegener-
ate even (l = 0) and odd (l = 1) contributions. Intuitively, the
function Fz(λ) generalizes the characteristic polynomial of
finite-dimensional matrices to the operator 
z. Equation (25)
then corresponds to the result that the constant term in the
characteristic polynomial is the determinant.

To obtain F (l )
z (λ), we follow the same heuristic as used to

find eigenvalues numerically with the shooting method [51]:
Consider the function φ(l )

z (λ, r) obtained by solving the initial
value problem(


(l )
z + ε

)
φ(l )

z = λφ(l )
z , φ(l )

z (λ, r)
r→0∼ rl+ d−1

2 , (26)

where we include the factor ε � 1 in Eq. (19), and


(l )
z = − d2

dr2
+

(
l + d−3

2

)(
l + d−1

2

)
r2

+ 1 − 3z f 2. (27)

If λ is such that the function vanishes at infinity, φ(l )
z (λ,∞) =

0, φ will also be an eigenfunction of 
(l )
z with eigenvalue λ.

But this is exactly the defining property of F (l )
z , and hence

L032103-4



FLUCTUATION CORRECTIONS TO LIFSHITZ TAILS IN … PHYSICAL REVIEW E 109, L032103 (2024)

we set F (l )
z (λ) = φ(l )

z (λ,∞). Note that only the ratio R(l )
z,ε =

F (l )
z /F (l )

0 contributes to Eq. (25), so it is useful to derive an
equation for R(l )

z,ε directly [54],

0 = R(l )′′
z,ε (r) + 3z f 2(r)R(l )

z,ε(r)

+
[

2l + d − 1

r
+ 2

√
1 + ε

Il+ d
2
(
√

1 + εr)

Il+ d
2 −1(

√
1 + εr)

]
R(l )′

z,ε (r),

(28)

with boundary conditions R(l )
z,ε(0) = 1 and R(l )′

z,ε (0) = 0, in-
herited from Eq. (26). Here, I is the modified Bessel function
of the first kind.

The renormalized determinant, finite to all orders in z and
without zero modes, reads

ln
[
e−zI2G0 D(z)

] = lim
ε→0

∞∑
l=0

d (l; d )

[
1

εδl
lnR(l )

z,ε(∞) − zr (l )

]
,

(29)

where δl is equal to unity if 
(l )
z has a zero mode, and zero

otherwise. The second term in the brackets is the counterterm
contribution, which in our discussion of Eq. (21) we identified
as the term of linear order in z, and which is thus written as

r (l ) = ∂ lnR(l )
z,ε(∞)

∂z

∣∣∣∣∣
z=0

= −3
∫ ∞

0
dr r f 2(r)Kν (r)Iν (r),

(30)
where ν = l + d/2 − 1. In the last identity we used the con-
nection between R and the established asymptotic expansion
of the Jost function in scattering theory [50]. The values of
the renormalized functional determinant e3zI2G0 D(z), Eq. (29),
are listed in Table I. In the 1D case, the results agree with
the known exact values derived from the eigenvalues of the
Pöschl-Teller potential [34]. The calculations for two and
three dimensions were previously carried out by Brézin and
Parisi [32] by a direct computation of the spectrum of 
z. We
agree with their results in 3D, but not in the 2D case. However,
repeating their calculation in 2D, which also illustrates the

comparative efficiency of the Gel’fand-Yaglom approach, we
confirm the result derived in this Letter [47].

Taking everything together, our final result for the density
of states is (taking the replica limit N → 0)

〈ρ(E )〉
ρ0(−E )

E→−∞= �(d/2)

(
I2Id

4

π

D(1/3)

|D(1)|
) 1

2

g− d+1
2 e− 1

2g I4 . (31)

The numerical results for these band tails are stated in Eq. (4).
Again, our results agree with the explicit result in 1D [1].
In 2D, we correct the values for the prefactor reported in
Refs. [31,32], and in 3D we agree with Ref. [31] when
adjusting for a factor e−I4/16π that accounts for a different
renormalization choice (i.e., a shifted band origin).

In summary, we have quantified disorder effects on the
electronic density of states in the universal Lifshitz regime
including fluctuations, which set the prefactor of the Lif-
shitz tail. Using a replica path-integral approach, we derive
the leading exponential form of the tail from an instanton
saddle-point profile, which describes the most likely disor-
der potential that gives rise to a particular deep bound state.
Importantly, we also obtain the fluctuation correction to this
result, which sets the magnitude of this tail. Here, the main
technical advance of our work is a generalization of the
Gel’fand-Yaglom approach to evaluate the fluctuation deter-
minant around the saddle-point solution, which avoids a direct
evaluation of the fluctuation spectrum. We thus provide an
efficient calculation of disorder tails that confirms results in
1D and 3D obtained using other means, and which corrects
a result for the important case of two-dimensional systems.
The derivation presented in this Letter has the dual advantage
of simplicity and adaptability to more complex scenarios.
For instance, extending our calculations to describe a broader
class of band structures with, for example, fourth-order cor-
rections, spin-orbit coupling, or band-structure asymmetries,
or to include more general disorder correlations are avenues
for future work.
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