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Interpretable conservation laws as sparse invariants
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Discovering conservation laws for a given dynamical system is important but challenging. In a theorist setup
(differential equations and basis functions are both known), we propose the sparse invariant detector (SID),
an algorithm that autodiscovers conservation laws from differential equations. Its algorithmic simplicity allows
robustness and interpretability of the discovered conserved quantities. We show that SID is able to rediscover
known and even discover new conservation laws in a variety of systems. For two examples in fluid mechanics
and atmospheric chemistry, SID discovers 14 and 3 conserved quantities, respectively, where only 12 and 2 were
previously known to domain experts.
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Introduction. Conservation laws are important concepts in
physics, yet discovering them is challenging. Ideally, the set
of discovered conserved quantities should be complete, inde-
pendent, and interpretable. Although several attempts have
been made to automate the discovery process with machine
learning [1–8], their complicated setups and blackbox nature
make it hard to guarantee all these desirable properties. This
Letter considers a simple yet realistic setup where all these
desirable properties can be met.

“Discovering conservation laws” can mean wildly different
things for experimentalists, computationalists, and theorists,
as shown in Table I. Most prior work [1–6] takes on the
experimentalist setup, assuming knowledge of neither the
differential equations nor the form of conservation laws.
Reference [7] takes the computationalist setup, assuming
knowledge of differential equations. This Letter explores the
theorist setup, where both differential equations and basis
functions of conservation laws are known. Admittedly, this
setup is simpler than the other two, but is still realistic when
theorists have the differential equations at hand and have
educated guesses about the basis functions that may span the
conserved quantities.

We propose the sparse invariant detector (SID), an algo-
rithm that reveals conservation laws. SID is incredibly simple
in the sense that it only requires linear algorithms (except
for sparsification), so the results are much more trustworthy
and interpretable than blackbox machine-learning methods.
Note that SID does not replace us human scientists, but rather
acts as a helpful assistant: While humans need to input basis
functions (i.e., formulating hypotheses) to SID, SID is good
at computing conserved quantities (i.e., testing hypotheses)
based on the given prompt. In this manner, human scien-
tists can focus on the more creative part of the job, while
SID does the technical and tedious work. This Letter gives
two examples where new conserved quantities are success-
fully discovered by SID: one in fluid mechanics, and another
in atmospheric chemistry (see Table II). In the former one,

although the new conserved quantities are somewhat expected
in hindsight, humans alone may need several more months to
find them. In the latter one, a new conserved quantity is found,
which was unintended in the design of the model.

Method: Problem setup. We consider a first-order differen-
tial equation ẋ = f (x), where ẋ ≡ dx

dt , x ≡ (x1, . . . , xd ) ∈ Rd

is the state vector, and f : Rd → Rd is a vector field [9].
This ordinary differential equation (ODE) formulation is more
general than it seems: (1) Hamiltonian systems are subsumed
as x ≡ (x′, p′); (2) higher-order differential equations [e.g.,
ÿ = f (y)] are included as x ≡ (y, ẏ, . . .); and (3) partial dif-
ferential equations (PDEs) become ODEs once discretized.

A conserved quantity (CQ) is a scalar function H (x) :
Rd → R, such that its value remains constant along any
trajectory obeying ẋ = f (x) [10]. As proved in Ref. [7], a
necessary and sufficient condition for H (x) being a conserved
quantity is ∇H (x) · f (x) = 0, since

0 = Ḣ = ∇H (x) · ẋ = ∇H (x) · f (x). (1)

Given the differential equation ẋ = f (x), we hope to find a
set of conserved quantities {H1, . . . , Hc} which satisfies these
three properties:

(1) Independence: They are functionally independent.
None of them can be written as (possibly) nonlinear combi-
nations of others, i.e., g(H1, . . . , Hc) = 0 ⇒ g = 0.

(2) Completeness: Any conserved quantity H (in the func-
tion space spanned by basis functions) can be expressed by
them, i.e., there exists g such that H = g(H1, . . . , Hc).

(3) Interpretability: Conserved quantities can be written as
(hopefully simple) symbolic formulas.

Method: Solving the linear equation and completeness.
The prior work [7] parametrizes the conserved quantities
Hθ (x) as neural networks and learns the parameters θ to
make |∇Hθ (x) · f (x)|2 close to zero. However, neural network
training may get stuck at local minima, so the results are not
reliable. Moreover, the parametrized conserved quantities are
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FIG. 1. SID workflow: Inputs are differential equations, basis functions, and sample points. Outputs are a set of conserved quantities which
are complete, independent, and interpretable.

not immediately interpretable. We consider a simpler setup.
Assume that we know Hθ (x) to be a linear combination of K
predefined basis functions bi(x) (1 � i � K) such that

Hθ (x) =
K∑

i=1

θibi(x) ≡ θ · b(x), (2)

where only θ ∈ RK are learnable parameters to be determined
and the vector b : Rd → RK defines the basis functions. Since
the number of conserved quantities can exceed one, we define
a set of parameters � ≡ {θ1, θ2, . . .} and their corresponding
functions H� ≡ {Hθ|θ ∈ �}. As shown in Fig. 1, Eq. (2) is
equivalent to a neural network whose last linear layer contains
the only trainable parameters. With Eq. (2), the conservation
condition Eq. (1) becomes

g(x)T θ = 0, g(x) ≡ [∇b(x)]f (x), (3)

which is a linear equation of θ. Remember that in our setup,
both b(x) and f (x) are known, so g(x) ≡ [∇b(x)]f (x) is
known as well. In practice, we draw P random points xi (1 �
i � P) from phase space. A solution θ should make Eq. (3)
hold for all xi, or more explicitly,

⎛
⎜⎜⎜⎜⎜⎝

g1(x1) g2(x1) · · · gK (x1)

g1(x2) g2(x2) · · · gK (x2)
...

...
...

g1(xP ) g2(xP ) · · · gK (xP )

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
G

⎛
⎜⎜⎜⎜⎝

θ1

θ2

...

θK

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
θ

= 0, (4)

TABLE I. Three setups of conservation law discovery.

Setup Experimentalist Computationalist Theorist

Model-based No Yes Yes
Known basis No No Yes
Independence Partial Yes Yes
Completeness No Partial Yes
Interpretability Partial Partial Yes
Reference [1–6] [7] This work

which is simply linear regression. In practice, we apply sin-
gular value decomposition to G = U�VT , where U ∈ RP×P

and V ∈ RK×K are orthogonal matrices, and � ∈ RP×K is di-
agonal with singular values 0 � σ1 � σ2 � · · · . We count σi

as effectively zero if σi < ε ≡ 10−8. The number of vanishing
singular values, denoted M, is equal to the dimensionality of
the solution space (null space), which is spanned by the first M
columns of VT , denoted �(1) ≡ (θ(1)

1 , θ
(1)
2 , . . . , θ

(1)
M ) ∈ RK×M .

The linear structure obviously gives completeness (in the
space spanned by basis functions), since any solution θ can
be expressed as a linear combination of columns of �(1).

Interpretability. In order to gain more interpretability, we
want �(1) to be sparse. Note that if R ∈ RM×M is an or-
thogonal matrix, the columns of �(2) = �(1)R also form a
set of complete and orthogonal solutions. Therefore we can
encourage sparsity by finding and applying the orthogonal
matrix that minimizes the following:

R∗ = argmin
RT R=I

||�(1)R||1, �(2) = �(1)R∗, (5)

where ||M||1 ≡ ∑
i j |Mi j | denotes the L1-norm of a matrix M,

encouraging sparsity.
Independence. Although columns of �(2) are linearly

independent, H�(2) are not guaranteed to be functionally inde-
pendent. Take the one-dimensional (1D) harmonic oscillator
x = (x, p), for example. Restricting basis functions to be
polynomials in x and p up to the fourth order, there are two
solutions,

Hθ1 = x2 + p2, Hθ2 = H2
θ1

= x4 + 2x2 p2 + p2, (6)

where θ1 and θ2 are orthogonal (hence independent), but
Hθ2 = H2

θ1
, so they are not functionally independent. Conse-

quently, we want a subset of �(2), denoted �(3), such that

TABLE II. The number of conserved quantities known to experts
and discovered by SID.

Fluid (2D) Fluid (3D) Atmosphere

Known 8 12 2
SID 8 (simpler) 14 3
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(a) (b)

FIG. 2. Three-species Lokta-Volterra equation. SID correctly
discovers that (a) there are four CQs (top) in polynomials up
to third order, yet only two of them (bottom) are independent.
(b) Coefficients of conserved quantities �(i) (i = 1, 2, 3), with more
interpretability.

H�(3) is both independent and complete (i.e., can generate
H�(2) ). The first question is, how many elements, denoted c,
does �(3) have? As shown in Ref. [7], c is equal to the rank of
the following matrix,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂Hθ1
∂x1

∂Hθ2
∂x1

· · · ∂HθM
∂x1

∂Hθ1
∂x2

∂Hθ2
∂x2

· · · ∂HθM
∂x2

...
...

...

∂Hθ1
∂xd

∂Hθ2
∂xd

· · · ∂HθM
∂xd

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7)

which hinges on the fact that gradients of functionally
dependent functions are linearly dependent [11]. In prac-
tice, applying singular value decomposition to A gives A =
U′�′V′T , where U′ ∈ Rd×d and V′ ∈ RM×M are orthogonal
matrices, and �′ is a diagonal matrix with singular values
s1 � s2 � · · · � 0. We count si as effectively nonzero if si >

ε = 10−8. The number of nonzero singular values is equal to
rank(A), which is in turn equal to c. After determining c, we
aim to obtain �(3) by selecting c elements from �(2). The
selection process is as follows: (1) We assign each conserved
quantity a complexity score (based on entropy [12]) and sort
them from the simplest to the most complex. (2) Starting from
an empty set �(3), looping over element θ ∈ �(2), we add θ to
�(3) if Hθ is independent of H�(3) (functions already added),
until �(3) contains c elements.

Results. To better illustrate SID, we apply it to three dy-
namical systems.

Systems biology. Our first application is from systems bi-
ology. The Lotka-Volterra equations (LV hereafter) describe
how the population of many species evolves in time via
interspecies interactions. We study this particular equation,

ẋ = x(y − z), ẏ = y(z − x), ż = z(x − y), (8)

with two known conserved quantities H1 = x + y + z and
H2 = xyz. We define basis functions to be all polynomials up
to third order [including K = 19 terms, shown in Fig. 2(b)].
We draw P = 100 data points from the standard Gaussian
distribution, i.e., xi ≡ (xi, yi, zi ) ∼ N (0, I3×3) (1 � i � P).
Within the function space spanned by the basis functions,
M = 4 conserved quantities are found, since Fig. 2(a) (top)

shows that there are four vanishing singular values σi. The
coefficients of four CQs are somewhat mixed, shown in
Fig. 2(b) (top). After sparsification [Eq. (5)], the coefficients
become less entangled, shown in Fig. 2(b) (middle), although
their represented conserved quantities are still dependent.
Among the four CQs, only c = 2 are independent, since
Fig. 2(a) (bottom) shows that there are two nonvanishing sin-
gular values si. Figure 2(b) (bottom) shows the final outputs:
The two conserved quantities agree with our prior knowledge.

What will happen if we choose the set of basis functions to
be smaller or larger? (1) Smaller: If we include polynomials
up to the first or the second order (K = 3 or K = 9) only, then
only H1 can be discovered by SID, while H2 is not discovered.
(2) Larger: If we instead include polynomials up to order 4,
5, and 6 (K = 34, 55, 83), then both H1 and H2 are still dis-
covered, although the sparsification and independence process
may take longer than with only third-order polynomials. De-
tailed results are included in the Supplemental Material [13].
The take-home message is that SID does not replace human
scientists since it requires the input of basis functions (formu-
late hypothesis) from human scientists. SID is good at testing
hypotheses (which could be technical and tedious), however, it
is human scientists who formulate hypotheses (which requires
creativity).

Fluid mechanics. Arguably the biggest puzzle in fluid
mechanics is turbulence [14,15]. Turbulence, and chaos in
general, are due to a lack of sufficient conserved quantities.
For example, a two-body problem is regular by having eight
degrees of freedom (DOF) and seven CQs, while a three-body
problem is chaotic with 12 DOF but only six CQs. Therefore,
studying conserved quantities of fluid systems is relevant to
understanding turbulence. As a preliminary step, we study
conserved quantities of a fluid element in an ideal fluid (zero
viscosity and incompressible). In 2D (3D), the fluid element
is a triangle (tetrahedron), which is represented by its three
(four) vertices [16]. Effectively, we can view the system as
three (four) “free” particles, with the only constraint being
that the area (volume) of the triangle (tetrahedron) should re-
main unchanged. The equations of motion are included in the
Supplemental Material [13], which appear a bit intimidating
(especially for 3D).

Fluid dynamics experts (including some authors of this
Letter) have attempted to find the conserved quantities with
pencil and paper. Given the complexity of the calculations, it
is impressive that they found eight (12) conserved quantities
for 2D (3D). However, they were unsure whether there were
more undiscovered conserved quantities, and whether the

FIG. 3. SID’s discovered conserved quantities (coefficients) for
the simplified fluid system (2D) with the basis set chosen to be
polynomials up to order 2.
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FIG. 4. (a), (b) SID discovers three independent conserved quantities in the ozone photochemical production model. (c) The coefficients
of these linear conserved quantities. The first two correspond to the known carbon and nitrogen conservation, while CQ3 is identified for the
first time.

discovered ones were in their simplest. So we turn to SID for
help. The results below are for the basis function set selected
to be polynomials up to second (third) order for 2D (3D), but
more polynomial orders are also tried in the Supplemental
Material [13].

For the 2D case, SID finds eight conserved quantities,
agreeing with the experts’ expectation. Interestingly, the con-
served quantities found by SID appear to be simpler. In fact,
all the conserved quantities discovered by SID are first- or
second-order polynomials (see Fig. 3), while experts found a
fourth-order polynomial, which later turned out to be a com-
bination of two second-order conserved quantities discovered
by SID (see Supplemental Material [13] for details).

For the 3D case, SID finds 14 conserved quantities, while
experts found only 12. The two new conserved quantities can
be interpreted as the angular momentum in the center-of-mass
(c.m.) frame. They are nontrivial because it is easy to (falsely)
think that the c.m. angular momentum is dependent on the
angular momentum and the linear momentum [17]. Although
humans alone will probably get the results right at the end
of the day without SID, SID can take care of subtle details
automatically, thus saving human experts’ mental labor to a
great extent.

Atmospheric chemistry. We next apply SID to a trun-
cated atmospheric chemistry model of photochemical ozone
production [18], where an exotic new conserved quantity is
found. This simplified dynamical system contains 11 species
and ten reactions involved in ozone formation, including NOx,

FIG. 5. The evolution of concentrations in simulation. Under
both conditions, CQ3 is well conserved.

organic, and radical chemistry [19]. A key characteristic of
this system is conservation of carbon and nitrogen atoms,
HC and HN, respectively. Though species in this model con-
tain two other elements, hydrogen and oxygen, neither are
conserved, as H2O molecules are not one of the 11 species
whose concentrations are tracked, and diatomic oxygen O2 is
treated as an infinite source and sink due to its abundance.
HC and HN are implied in the coefficients of a stoichiometric
matrix B ∈ Z11,10 used in prior work to enforce conservation
of atoms in machine-learning surrogate models [18]. HC and
HN can be represented by linear combinations of species con-
centrations, the coefficients of which form a basis for the null
space of BT . Further details are provided in the Supplemental
Material [13].

We applied SID to simulation trajectories expecting to
discover up to two conserved quantities which are linear com-
binations of concentrations. The training data are points on
simulation trajectories at pressure P = 0.95 atm and tempera-
ture T = 20.0 ◦C. As shown in Fig. 4, besides HC and HN, SID
surprisingly discovers a third conserved quantity CQ3 that is
a linear combination of species concentrations (CX means the
concentration of X ):

CQ3 ≈ 6CO3 − 5CNO + CNO2 + 3CHCHO

+ 9CHO2 + 6CHO2H + 2COH + 6CO

+ 4CHNO3 − 3CCO − 2.21CH2 . (9)

This additional quantity is linearly independent of HC and
HN and is not in the null space of BT . CQ3 has a relative
variation of less than 0.1% in 995 of 1000 simulated cases.
Two representative simulation trajectories are shown in Fig. 5,
where CQ3 holds under different chemical and meteorological
conditions. The evolving concentrations of O3, NO, and NO2

are included as contrasts to the invariance of CQ3. We have
not yet identified the underlying cause of CQ3, and whether
it is physically exact or numerically approximate. We have
ruled out symmetry corresponding to hydrogen conservation:
When explicitly incorporating production of H2O as an addi-
tional buildup species, SID identifies approximate hydrogen
conservation as well as a fourth conserved quantity (see Sup-
plemental Material [13]). This implies that CQ3 might be a
nontrivial conserved quantity that is worth thorough study in
future work.

Conclusions. We have presented an algorithm SID to au-
tomatically discover conserved quantities from dynamical
equations. In contrast to previous blackbox models, SID
is guaranteed to be robust and interpretable owing to its
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algorithmic simplicity. We demonstrate the power of SID on
two examples in atmospheric chemistry and fluid mechanics,
revealing new conserved quantities hitherto unknown to hu-
man experts. Although SID does not replace human scientists,
it is a helpful assistant that can facilitate the discovery process.
Promising future directions include applying SID to a broader
range of applications, e.g., large-scale molecule dynamics. We
discussed the possibilities in the Supplemental Material [13].
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