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Buckling kinetics of graphene membranes under uniaxial compression
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Despite past investigations of the buckling instability, the kinetics of the buckling process is not well
understood. We develop a generic framework for determining the buckling kinetics of membranes under
compressive stress (σb) via molecular dynamics simulations. The buckling time (tb) is modeled by an extended
Boltzmann-Arrhenius-Zhurkov equation accounting for temperature (T) and scale-dependent bending rigidity.
We discern three regimes: (I) tb decreases with T; (II) tb increases with T; (III) tb is T independent. Regime II
coheres with the predictions of the theory of fluctuating sheets (TFS). Regime I is seen at small scales due to
fluctuations about equilibrium and is not predicted by the TFS.
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Understanding the stability of membranes and the mech-
anisms responsible for wrinkle formation [1–4] is crucial for
the design of nanodevices and nanocomposite materials for
electronic [5–7], thermal management [8], strain engineering
[1–3,9,10], and biological [5,11–13] applications.

The elastic properties of slender plates are well-understood
[14–16]; however, as we move towards the atomistic regime
they become scale-dependent due to the onset of thermally
induced height fluctuations [17–25]. According to the theory
of fluctuating sheets (TFS) [17–20,26], the height fluctuations
〈h2〉 depend on the ratio of the lateral dimensions of the sheet
(lT) in relation to the thermal length:

lth = 2π

√
16πκ2

0 /
(
3kBT E2D

0

) ∼ T −0.5 (1)

with E2D
0 being the two-dimensional (2D) Young’s modulus

and κ0 the bending rigidity at 0 K; note that, limT →0 lth = ∞.
If lT � lth the elastic constants remain unaffected, whereas if
lT � lth, the (renormalized) elastic constants become scale-
dependent. Hereafter, a (renormalized) physical property A at
zero (finite) temperature will be denoted with A0 (A).

E2D decreases with increasing size: E2D/E2D
0 ∼

(lT/lth )−2+2η,lT � lth; where η∼ 0.8 − 0.85 [17,18,24,25].
At finite temperatures, part of the applied energy during a
tensile (compressive) experiment is spent towards suppressing
(promoting) the thermally induced ripples. Conversely, at
T = 0, the membranes remain planar and the applied stress
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deforms the intramolecular bonds and bond-bending angles;
hence, yielding higher E2D. κ describes the resistance of
the material to bending deformation and increases with slab
thickness [14–16]. The thermally induced ripples increase the
effective thickness of the sheet; thus, κ increases with size:
κ/κ0 ∼ (lT/lth )η,lT � lth.

Assuming that the stretching and bending modes are un-
coupled (harmonic approximation), the height fluctuations
scale with length as 〈h2〉 ∼ l2

T [19] and the membranes are
expected to crumple. However, graphene and other 2D ma-
terials are in fact stable at finite T [19,27,28]. Based on the
assumption that the stretching and bending modes are coupled
(anharmonic approximation), the TFS predicts that, 〈h2〉 ∼
l2–η

T [18,29]; 〈h2〉 is small relative to the sheet dimensions
and the latter can be treated as approximately flat. According
to Monte Carlo simulations [29], the scaling predictions of
the aforementioned theories are valid only for small graphene
sheets with dimensions below ∼ 4 nm. With increasing lT,
the scaling predictions break down and graphene features a
tendency for ripple formation at a preferred length scale of
∼ 8 − 9 nm [29,30], in accordance with experiments [31].

Graphene cannot sustain high compressive stresses and its
buckling resistance depends on interplay between stretching
and bending. The limiting stress along the loading direction x
for the onset of the buckling instability is related to κ as

σ TFS
lim ∼ κ (lx )l−2

x . (2)

Henceforth, we will invoke the convention used on compres-
sion experiments [20,32–36] where the compressive stress and
strain are reported with positive signs.

If the sheet is small, the thermal fluctuations are insignif-
icant (κ ∼ κ0) and Eq. (2) reduces to the predictions of the
wide-plate theory [14–16]:

σ TFS
lim,0 ∼ l−2

x ,lx � lth. (3)
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FIG. 1. Compressed graphene sheet with (nx, ny ) = (12, 6). See
text for more details [49].

If, however, the sheet is large, κ increases and the resis-
tance to buckling is enhanced:

σ TFS
lim ∼ l−2+η

x l−η

th ∼ l−2+η
x T η/2,lx � lth. (4)

Much work has been realized in order to understand the onset
of the buckling instability [19,20,37,38]; however, the kinetics
of the buckling process and the effect of duration are not well
understood.

We investigate the buckling kinetics of periodic graphene
sheets via molecular dynamics (MD) simulations powered
by a rare-event analysis framework [39]. The atomistic ob-
servables are described by the Boltzmann-Arrhenius-Zhurkov
(BAZ) model, which has been extended in order to account for
the scale- and temperature-dependent renormalized material
parameters [40]. The simulation strategy developed herein can
be used as a rigorous approach for quantifying the effect of
duration and finite-size; varying these parameters can lead to
very different qualitative response.

We employ an empirical force field based on first-
principles calculations [41–43]. By applying the framework
of linear elastic deformation [44] we retrieved analyti-
cally the 2D Lamé parameters, μ2D

0 = 130.57 Pa m and
λ2D

0 = 71.98 Pa m. The corresponding Young’s modulus
(E2D

0 = 317.6 Pa m), bulk modulus (B2D
0 = 202.6 Pa m) and

Poisson ratio (ν = 0.216) coincide with numerical evaluations
[45] and conform with the estimations in Ref. [41]. κ0 was
determined analytically [46] as 1.86 eV. The resulting thermal
wavelenth [Eq. (1)] is lth = 6.7 nm at 300 K. Additional
information regarding the force field, and the derivation of
the elastic constants and bending rigidity can be found in
Secs. S1–S3 of the Supplemental Material [47]).

The sheets were generated by replicating a four-atom
orthogonal unit cell with dimensions (ax/nm × ay/nm) =
(0.246 × 0.426), nx and ny times along the x and y axis,
respectively; e.g., see Fig. 1. The dimensions of the sheet
(l) and simulation box (L) are the same along the (periodic)
lateral dimensions Lα = lα = nαaα (α= x, y). A vacuum gap
of Lz = 2 nm is maintained along the (aperiodic) normal
direction. The effective thickness of graphene is set to the
interlayer distance in graphite; lz = 0.335 nm [48].

The calculations have been realized via LAMMPS [50] with
the Nosé-Hoover thermostat/barostat [51–53] and time step
1 fs. The sheets were equilibrated in the NVT ensemble for
0.5 ns, and then in the NPg

xxPg
yyLzT ensemble for 0.5 ns with

Pg
xx = Pg

yy = 1 atm. The relation between the system (Pαβ ) and
the local (Pg

αβ) pressure tensor, Pαβ = Pg
αβ lz/Lz, renders Pg

αβ

TABLE I. Universal coefficients of the buckling kinetics.

Quantity Value Unit

γ0/L 2.5149 10−20 m2

U0·L 900.0212 10−30 J m
cU1 41.6257 1012 m−2 K−1

cU2 –0.000409 K−1

cγ 1 25.6131 1012 m−2 K−1

cγ 2 –0.000479 K−1

ctrav 0.0093 GPa−1

independent on the choice of Lz (vacuum gap). The simulation
was continued for additional 5 ns, during which we estimated
the reference dimensions (〈lx,T 〉, 〈ly,T 〉).

Subsequently, the sheets experience compressive stresses
(σb) along the loading x direction and atmospheric pressure
along the y axis; i.e., NPg

xxPg
yyLzT ensemble where Pg

xx = σb

and Pg
yy = 1 atm (see Fig. 1). Our simulations were termi-

nated at the time tb,i where the compressive strain ε(t ) =
1–lx(t )/〈lx,T 〉 reached a threshold value εth; i.e., tb,i is quan-
tified as the first passage time for reaching εth. For each
set of (lx, ly, T and σb) we conducted multiple simula-
tions, each one starting with different velocity distribution
and followed by a short thermalization run at atmospheric
pressure for 80 ps. From the buckling times we deter-
mined the mean buckling time (tb) and the corresponding
standard error.

Setting εth to 0.03 ensures buckling in all cases examined
here; it is larger than the buckling strain of the shortest sheet
examined (see Sec. S4 of the Supplemental Material [47]),
while it is known that buckling strain decreases with length
[34,35]. tb is insensitive to the precise value of εth because the
strain increases abruptly after the emergence of the buckling
(see Sec. S5 of the Supplemental Material [47]). This insen-
sitivity becomes more apparent with increasing length. The
choice of εth affects the quantification of the kinetics at ex-
tremely short time scales, commensurate with the oscillation
frequency of the sheet; this regime is of minor importance
since buckling is realized about instantaneously in these cases.
The adoption of alternative buckling criteria based on the out-
of-plane displacement of the graphene atoms yields similar
results qualitatively; see Sec. S5 of the Supplemental Material
[47]. Due to the lateral periodicity, the maximum wavelength
of the buckling pattern equals the sheet size along the loading
axis (see pre/post-buckling snapshots in Sec. S5 of the Supple-
mental Material [47] and the corresponding movie files). Even
though the compressive experiments are stress-controlled (and
not strain-rate-controlled), inertial effects are naturally incor-
porated in our model. One could identify an effective strain
rate as ε̇ ∼ εth/tb (e.g., compare with Eq. (4) in Ref. [39])
which is an increasing function of σb. The same response is
observed from strain-controlled setups [54].

Figure 2 presents tb versus σb at various temperatures. The
black vertical line corresponds to the limiting stress at zero
temperature (σlim,0). A sheet will never buckle if the applied
stress is lower than σlim,0 (at 0 K); i.e.:

tb = ∞,∀σb < σlim,0, T = 0.
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FIG. 2. Log-log plot of tb versus σb for lx ∼ 5.9 nm and ly ∼
5.1 nm. The black vertical (horizontal) dotted lines illustrate σlim,0

(τlim,0) from Eqs. (9) and (14)). The colored dotted lines illustrate σlim

from Eq. (13). The colored (black) dashed lines depict evaluations
with Eqs. (12) and (15) using the parameters from Table I. The error
bars depict the standard error.

According to Fig. 2, tb decreases monotonically with σb

and its scaling with T can be classified into three regimes:
(I) σb < σlim,0, tb decreases with T; (II) σlim,0 < σb < σlim,
tb increases with T; (III) σlim � σb; tb is T independent. σlim

can be envisioned as a variable (renormalized) limiting stress
marking the boundary between the thermally activated regime
II, and the barrierless (T independent) regime III. As indicated
by the vertical dotted lines, σlim increases with T.

According to the predictions of the continuum theory of
wide plates (TWP) [14–16], σlim,0 is insensitive to ly and

scales with the inverse square length; σlim,0 ∼ l−2
x . Figure 3

displays tb against σbl2
x for graphenes with varying size. The

atomistic simulations conducted here and elsewhere [20,32–
36] conform to these predictions; since the limiting buckling
stress (at low T) can be described accurately with the scaling
law of Eq. (3).

However, with increasing T the boundary between regimes
II and III (σlim), shifts towards higher stresses, indicating that
the resistance to buckling is enhanced across regime II and
becomes scale-dependent. For the same T, the curves in Fig. 3
shift towards larger stresses with increasing lx, indicating that
σlim ∼ l−a

x , with a being lower than 2. This response coheres
with the TFS [20,26]; if the scale of the system exceeds lth the
buckling resistance is enhanced with increasing temperature
and the scaling with length becomes weaker [(see Eq. (4)].

The long-time behavior in regime I is incompatible with the
TFS since the buckled state can appear faster with increasing
T. We postulate that this unexpected behavior arises because
the TFS does not take into account the fluctuations about equi-
librium, which become important as the sample size becomes
small.

At finite temperatures, the out-of-plane fluctuations arise
on either side of the sheet with the same probability. At any
time, the fraction of displaced regions on either side of a
sheet is the same, provided the sheet is very large. However,
as the sheet size becomes smaller, it is probable that these
fluctuations synchronize and occur on the same side. This kind
of spontaneous bending can lead to premature buckling; i.e.,
given enough time the sheet can buckle even for σb < σlim,0

(regime I; top row in Fig. 3).
With increasing width this kind of synchronization be-

comes rather improbable and this is reflected in the ever-
increasing buckling times in Fig. 3 (from top to bottom) for

FIG. 3. Same as Fig. 2 (but with semilog axes) for the dimensions [lx/nm × ly/nm] illustrated in (a)–(i).
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σb < σlim,0. Indeed, in Figs. 3(c), 3(f), and 3(i) we notice that
tb increases precipitously with decreasing stress close to σlim,0,
and regime I becomes inaccessible by the simulation. In the
limit ly → ∞, the aforementioned synchronization becomes
impossible; thus, the resistance to buckling is enhanced with
increasing temperature regardless of the duration of the exper-
iment, in accordance with the TFS.

The premature buckling instability for low ly is reminiscent
of the predictions of the wide-column model [55] and MD
simulations of loaded ribbons [33]—according to which the
resistance to buckling is suppressed when the aspect ratio of
the sheet is small.

We will devise a model for the buckling times, by invoking
a modified version of the BAZ model [40]. According to BAZ,
the mean time required to surpass an energy barrier U0 in the
presence of an external stress field σb is

tBAZ
b = τ0exp

(
U0 − γ0σb

kBT

)
, (5)

where τ0 corresponds to an oscillation period [40] or a traver-
sal time [39]. The activation volume γ0 corresponds to the
volume of the region which is responsible for transferring
the applied stress to the system. In a semilog plot, γ0 dic-
tates the slope of the curve, whereas the quantity log10τ0 +
U0/[(ln 10)kBT ] corresponds to the decimal logarithm of the
buckling time for σb = 0. According to Eq. (5), the limiting
stress for barrierless transitions is σlim,0 = U0/γ0. However,
since σlim,0 ∼ 1/l2

x [Eq. (3)], it follows that: γ0 ∼ ln
x and

U0 ∼ ln−2
x with n ranging between 0 and 2. According to the

fitting procedure in Sec. S6.2 of the Supplemental Material
[47], the best fit is achieved for n ∼ 1; thus, indicating that
γ0 ∼ lx and U0 ∼ l–1

x . We see that, in contrast to common im-
plementations of the BAZ formula [39,40,56], γ0 and U0 are
not material constants, but rather length-dependent quantities.
By re-expressing Eq. (5) in terms of the following length-
independent constants:

U0·L = U0lx = const, (6)

γ0/L = γ0l−1
x = const, (7)

we derive the modified BAZ equation shown in Eq. (8):

tBAZ
b,0 (T, σb, lx ) = τ0 exp

(
U0·Ll−1

x − γ0/Llxσb

kBT

)
,σb � σlim,0.

(8)
The corresponding limiting stress shown in Eq. (9) is fully
compatible with the TWP [14–16] and the TFS [20,26] (when
lx, ly < lth), since the ∼ l–2

x dependence of the limiting stress
arises naturally:

σlim,0 = U0

γ0
= 1

l2
x

U0·L
γ0/L

(9)

Equations (8) and (9) are incompatible with the TFS for lx,
ly > lth and with the atomistic simulations conducted here and
elsewhere [20,29,33], according to which thermal fluctuations
affect the buckling stress and make it scale dependent. Ac-
cording to Fig. 3, the slope in regime I becomes steeper with
increasing ly (from top to bottom). The slope increases with lx

as well, but this cannot be illustrated clearly from Fig. 3 since
tb is plotted against σbl2

x . According to Eq. (9), increasing γ0/L

while keeping U0·L constant results in a lower σlim,0. The fact
that the curves shift towards larger stresses with increasing
area is an indication that the barrier energy increases by a
larger amount than the activation volume. Therefore, accord-
ing to our findings, both γ0/L and U0·L in Eq. (8) would have
to vary with the area of the sheet in order to reproduce the
buckling times in Fig. 3.

This kind of behavior can arise from a simple model for
a sheet with n uncorrelated subregions, each one fluctuating
towards either side of the sheet under the imposed stress. The
probability that all subregions in a primary simulation box
point either in the up or the down direction is P = 21–n. Con-
sidering that pointing in the same direction is a prerequisite
for buckling to nucleate, there will be a free energy barrier of
entropic origin associated with buckling commensurate to

Uentropic ∼ −kBT ln P = nkBT ln 2 − kBT ln 2.

Assuming that the number of subdomains increases propor-
tionally (n ∼ S) with the area of the sheet (S = lxly) we get an
entropic barrier of the form:

Uentropic ∼ (aS + b)T

with a > 0 and b < 0 being constants. The bigger the simula-
tion box, the higher this entropic contribution to the activation
energy for buckling will be. On the contrary, when the sheet is
small (n � 1) the entropy promotes the onset of the buckling
instability; the out-of-plane fluctuations (which are enhanced
with increasing T) can synchronize and initiate the buckling.
Discerning the effect of temperature and scale on the activa-
tion volume is not straightforward. Nonetheless, since the two
are interrelated [Eq. (9)] we will assume a similar functional
dependence on T and S.

By taking the two mechanisms into account we can express
the renormalized, barrier energy (U·L) and activation volume
(γ/L) as follows:

U·L
U0·L

= 1 + (cU1S + cU2)T, (10)

γ/L

γ0/L
= 1 + (cγ 1S + cγ 2)T, (11)

where cU1, cγ 1 > 0 (since the barrier increases with S), and
cU2, cγ 2 < 0, since at low T, the energy barrier and activation
volume decrease with increasing T.

We can generalize Eqs. 8 and 9 in terms of U·L and γ/L as

tBAZ
b (T, σb, lx, ly) = τlim,0 exp

(
U·Ll−1

x − γ/Llxσb

kBT

)
, (12)

σlim = 1

l2
x

U·L
γ/L

. (13)

Note that tBAZ
b is T independent at σlim,0; see proof in Sec. S7

of the Supplemental Material [47].
By following the footsteps of Ref. [39], the limiting time

was set equal to the intercept of the limiting stress with the
traversal time:

τlim,0 = τ trav
b (σlim,0), (14)
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FIG. 4. Master plot of tb/τ
model
b from Eq. (16) versus σblx

2 for
T/K = 100 (◦), 200 (�), 300 (�), 600 (�) and 900 (×). Colors
refer to sheets with different dimensions according to the table in the
figure legend. The vertical (horizontal) dotted line illustrates σlim,0lx

2

(tb/τ
model
b = 1).

the latter being commensurate to the time required for the
graphene edges to exceed a threshold displacement lxεth in the
barrierless regime. According to Fig. 2, τtrav can be described
very accurately by a power-law of the form:

τ trav
b = ctravσ

−1
b . (15)

Since the time is inversely proportional to stress (see
Sec. S6.1 of the Supplemental Material [47]) and since
σlim,0l2

x = const (Eq. (9)), it follows that τlim,0/l2
x = const

as well.
Accounting accurately for the intermediate regime II is not

straightforward due to the gradual transition from exponen-
tial to power-law scaling behavior exhibited by the buckling
time versus stress curves. Nevertheless, in order to reduce the
complexity of the model, we will assume exponential scaling
across regimes I and II, and a power-law dependence across
regime III. In doing so, we can describe the buckling times

with the model in Eq. (16):

tmodel
b (T, σb, lx, ly) =

{
tBAZ
b ,

τ trav
b ,

σb � σlim

σb � σlim

(regimes I and II)

(regime III)
.

(16)
The model has been fitted to the buckling times from the first
two rows in Fig. 3 (ly � 5.1 nm) where regime I is accessible
by using the Nelder-Mead method [57]; see Sec. S6.2 of the
Supplemental Material [47]. The fitted coefficients reported in
Table I are universal for all samples.

According to the evaluations of Eq. (12) (dashed lines in
Fig. 3), the model accounts for the monotonic enhancement of
the buckling stress with increasing T in regime II (conforming
to the TFS). Since cU1 > cγ 1, the barrier energy UR·L increases
at a faster pace that the activation volume γR/L; therefore,
σlim,Rl2

x in Eq. (13) is a strictly increasing function of T, coher-
ing in this manner with the TFS. Finally, the model describes
the premature buckling instability at long times (regime I).
The effect becomes more apparent at low widths and this is
reflected in that the factors (cU1S + cU2) and (cγ 1S + cγ 2) in
Eqs. (10) and (11) become negative.

The master plot in Fig. 4 illustrates the ratio of the sim-
ulated to the fitted buckling times according to Eq. (16) for
all the cases examined in Fig. 3. The model provides a fair
description of the buckling kinetics across the pure exponen-
tial (I) and barrierless (III) regimes. The largest discrepancy
appears in regime II, where the exponential scaling goes over
to a power-law scaling and this behavior cannot be captured
accurately by Eq. (12). The model can be extended in terms
of introducing a more complicated expression along regime
II (e.g., a stretched exponential function or various switching
functions) and by allowing for sublinear scaling of the ma-
terial constants with temperature [17,18,24,25], which could
potentially enhance its performance when considering meso-
scopic sheets where anharmonic effects become important
[29].
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