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Collective variables (CVs) are low-dimensional projections of high-dimensional system states. They are used
to gain insights into complex emergent dynamical behaviors of processes on networks. The relation between CVs
and network measures is not well understood and its derivation typically requires detailed knowledge of both the
dynamical system and the network topology. In this Letter, we present a data-driven method for algorithmically
learning and understanding CVs for binary-state spreading processes on networks of arbitrary topology. We
demonstrate our method using four example networks: the stochastic block model, a ring-shaped graph, a random
regular graph, and a scale-free network generated by the Albert-Barabási model. Our results deliver evidence for
the existence of low-dimensional CVs even in cases that are not yet understood theoretically.

DOI: 10.1103/PhysRevE.109.L022301

Introduction. Networks of interacting agents are widely
used to model sociodynamical phenomena [1] such as the
spreading of a disease [2–4] or the diffusion of a (political)
opinion within a society [5,6]. In such networks, nodes rep-
resent individual agents, and edges represent some form of
social interaction. Each node has a state that evolves over
time depending on the states of neighboring nodes. Often,
stochastic effects are included to account for uncertainty in
the dynamics and for the unpredictability of agents. These
types of spreading processes are at the core of numerous open
problems in a wide range of disciplines, such as understand-
ing social collective behavior [7], assessing systemic risk in
financial systems [8], or controlling modern power grids [9].

One approach to elevate our understanding of these models
is to seek a low-dimensional representation of the system that
captures the fundamental dynamics on timescales of interest.
The projection into this low-dimensional space is called a col-
lective variable (CV), and the projected dynamics is called the
effective dynamics. Good CVs retain the essential information
about the system’s behavior, reducing the dimensionality and
enabling a more efficient analysis and prediction.

For discrete-state spreading processes on certain simple
networks, e.g., complete graphs and dense Erdős-Rényi ran-
dom graphs, it is known that the shares of nodes in each state
constitute a good CV, and its evolution is given by an ordinary
differential equation in the mean-field limit [10]. There are
many other results, valid for a varying range of networks and
models, that describe the evolution of the shares of states in

terms of (partial) differential equations in the mean-field or
hydrodynamic limit [11–14]. Another popular choice of CVs
are the counts of certain network motifs, e.g., the number
of links between nodes of different states (typically called
pair approximation [15–17]), and moment-closure methods
can be used to approximate their evolution [18–22]. For the
special case of binary-state dynamics, standard mean-field
or pair-approximation theories have been complemented by
higher-order master equations which improve accuracy by
introducing fractions of neighbors of one or the other state,
resolved with respect to the degrees of the nodes [23–27].
However, there is no all-encompassing theory relating any
network topology and any process occurring on it to resulting
CVs. Hence, a constructive computational approach—such as
the one we will present—can elucidate cases that theoretical
results do not yet cover. Moreover, the above-mentioned tech-
niques postulate a candidate CV based on (physical) insights
about the system, whereas our procedure does not require such
intuition.

In this Letter, we extend the transition manifold ap-
proach [28,29] to learn CVs based on simulation data and
to systematically find the relationship of the learned CVs to
topological features of the network (see Fig. 1). The transition
manifold approach assumes and exploits that the transition
density functions of the system accumulate around a low-
dimensional manifold, from which a CV can be inferred. The
approach is designed such that most information of the density
propagation of the process is retained under projection onto
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FIG. 1. Illustration of our method. Left: The random process is described by its distribution, sampled through S samples per initial network
state (anchor). Middle: These distributions are used to learn a low-dimensional parametrization of the transition manifold. Right: A regression
step allows for interpretability of the learned CV.

the CV [28]. To make it applicable to binary-state spreading
processes on networks, we develop a technique for evenly
sampling the state space and we add a linear regression step
to produce interpretable CVs.

While goals similar to ours have been pursued in the lit-
erature before, to our best knowledge, this is the first work
to learn CVs from data for networks of interacting agents. A
crucial difference to previous works which learn reduced (also
called surrogate or emergent) spaces [30–33] from data—even
in the agent-based context [34]—is that they perform the
reduction primarily based on the information of a state, and
not on its dynamics. Once a good CV has been learned with
our method, a surrogate dynamical model for its evolution
could be determined and analyzed by tools also utilized in
these references, in particular by linear transition operators
associated with the dynamics [35–37]. Other approaches for
data-based analysis and reduced modeling of interacting agent
systems postulate CVs instead of learning them [38–42].

Recently, deep learning techniques have become popular
for finding low-dimensional variables and surrogate dynam-
ical models [35,36,43–48]. Artificial neural networks can
represent coordinates from a large general class, but the dy-
namical conditions necessary for them to perform well remain
implicit in these methods. Our approach, however, relies on
explicit dynamical assumptions that are validated during the
data-driven computation.

The transition manifold. Consider a fixed network of N
nodes, on which each node i ∈ {1, . . . , N} has a discrete state
xi ∈ S. The state space of the process is thus X := SN , and its
elements are system states x = (x1, . . . , xN ). Given a system
state x ∈ X and time τ � 0, the transition density function
pτ

x ∈ L1(X) =: L1 is defined such that pτ
x(y) is the probability

that the system is in state y at time τ after having started in
state x at time 0. (The term density comes from the original
theory for continuous state spaces. We use L1 to emphasize
that these are vectors with entries summing to 1.) The transi-
tion manifold approach [28,29] exploits the observation that
for certain systems and an appropriate choice of τ , the set

Mτ := {
pτ

x | x ∈ X
} ⊂ L1 (1)

is close to a d-dimensional submanifold M ⊂ L1 called the
transition manifold. The lag time τ needs to be longer than
the “relaxation time” towards M and shorter than the time it

takes to eventually converge to a stationary distribution (see
Supplemental Material Sec. S2 [49] for details).

As a consequence, one can show that there exists a d-
dimensional collective variable ϕ : X → Rd , such that for all
x ∈ X,

pτ
x ≈ p̃τ

ϕ(x), (2)

for some function p̃τ
(·). Hence, the essential information

needed to characterize the dynamics is captured by the collec-
tive variable ϕ. A coordinate function ϕ satisfying this is for
instance a “parametrization” of the manifold M, in the sense
that the assignment M → X → Rd , pτ

x �→ x �→ ϕ(x) is one
to one (cf. Refs. [28,29]). Typically, the dimension d of the
reduced state is significantly smaller than the dimension of
the original state.

From now on, we consider binary-state dynamics, i.e.,
S = {0, 1}. While this already covers a wide range of inter-
esting dynamics, we expect that most of the following can
be extended to an arbitrary number of states, at the cost of
additional technicalities. For binary-state dynamics on a com-
plete network, to give an example, a good collective variable
is often given by the share of nodes in state 1, i.e., d = 1
and ϕ(x) = ∑

i xi/N [10]. This is related to the quantity called
magnetization in the similar Ising model [59].

Learning interpretable CVs. We propose the following
method, which consists of three steps (Fig. 1).

Step 1. We choose a diverse set of dynamically relevant
anchor points x1, . . . , xK ∈ X in which the CV is going to
be computed in the first instance. Diversity of the points is
crucial in the sense that their respective transition densities
cover Mτ sufficiently well. Otherwise, the parametrization
learned in the next step would yield a result biased by the
insufficient coverage, that is potentially not a CV for the entire
process. A precise quantification of sufficient coverage cannot
be stated in generality as it depends on the system at hand and
on the desired quality of the CVs. We employ an algorithm
that prioritizes sampling anchor points containing communi-
ties of nodes with the same state, as this strategy produced
the best results for the spreading processes we examined (see
Supplemental Material Sec. S2 [49] for details).

Step 2. Next, we approximate a “parametrization” ϕ of the
transition manifold M from simulation data. For each anchor
point xκ we conduct S ∈ N simulations of the process of
length τ , yielding S samples for each transition density pτ

xκ .
Using these data, we obtain evaluations of the collective vari-
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able ϕ at the anchor points x1, . . . , xK by applying a manifold
learning technique. Here, the dimension d of the CV is also
an output. See Supplemental Material Sec. S2 [49] for further
details on the approximation of the transition manifold.

The necessary number K of anchor points and S of simu-
lations per anchor point depend on the size and complexity of
the network. For the examples below (N < 1000), we found
K ≈ 1000 and S ≈ 100 adequate. This very small number
of anchor points compared to the number 2N of all possible
states is sufficient due to the targeted sampling method we
employ (cf. step 1). We observed a substantial robustness of
the results in varying the method’s hyperparameters, but an
entirely automatic procedure for their selection has yet to be
designed. The output of this second step of the method is
evaluations of the d-dimensional CV ϕ at the anchor points,
ϕ(x1), . . . , ϕ(xK ) ∈ Rd .

Step 3. The third step of the method aims at determining
the meaning of the CV and finding a reasonable map ϕ̄ :
{0, 1}N → Rd that extends it to states x outside of the original
data set. Motivated by the fact that, for binary-state dynamics,
the share of nodes in state 1 in (parts of) the network is known
to be a good CV in specific cases [10], we propose maps ϕ̄ of
the form

ϕ̄(x) =

⎛
⎜⎝

ϕ̄1(x)
...

ϕ̄d (x)

⎞
⎟⎠, ϕ̄ j (x) =

N∑
i=1

� j,i xi, (3)

where � ∈ Rd×N is a parameter matrix. For example, choos-
ing d = 1 and � = (1, . . . , 1) yields a map describing the
total count of state 1. In the different context of coupled ordi-
nary differential equations, a CV similar to (3) was examined
in Refs. [60,61].

We find optimal parameters � by employing linear re-
gression to fit ϕ̄ to the computed CV values in the anchors,
ϕ(x1), . . . , ϕ(xK ), from step 2. To prevent overfitting we
use the graph total variation regularizer, which penalizes
variation of � along the edges (see Supplemental Material
Sec. S3 [49]). The reason for this choice is that each node
in densely interconnected clusters is expected to contribute
similarly to the CV. Even for networks containing hubs we
can maintain this regularizer by bootstrapping our result to
modify the ansatz functions (cf. Example 4 below). There we
use linear basis functions for a first regression step, observe a
strong correlation in � to the network’s degrees, and modify
the ansatz functions accordingly. If suggested by physical
intuition, one can also entirely deviate from the linear ansatz
functions we propose.

In the following examples binary-state spreading processes
are studied, in which each node experiences memoryless
random evolution in continuous time, with transition rates
determined by a constant exploration rate (noise) and an “in-
fluence” rate based on the states in the node’s neighborhood
(see Supplemental Material Sec. S1 [49] for details). The
investigations below refer to the noisy voter model [62,63],
yet the Supplemental Material also includes findings related
to alternative dynamics.

Example 1: Stochastic block model. We examine a network
of N = 900 nodes that is constructed using the stochastic
block model. The network consists of three clusters such that

FIG. 2. For the stochastic block model network (left), the tran-
sition manifold is a three-dimensional cuboid (right). The vertices
of the cuboid correspond to extreme states x where for each cluster
either all (solid circle) or no nodes (open circle) have state 1.

cluster 1 and 2 are densely connected, cluster 1 and 3 are
connected only sparsely, and cluster 2 and 3 are not connected
at all (cf. Fig. 2). We expect the optimal CV to be d = 3
dimensional and contain the counts of 1’s in each cluster. This
CV is exact in the sense that for N → ∞ it satisfies a mean-
field equation [10]. Applying our method and plotting the
resulting CV point cloud {ϕ(x1), . . . , ϕ(xK )} ⊂ R3 yields an
approximately cuboid-shaped transition manifold. We found
that the vertices of this cuboid correspond to extreme states
x in which for each cluster either all or no nodes have state
1 (cf. Fig. 2). To discover the meaning of the three coordi-
nates ϕ1, ϕ2, ϕ3, we calculate the optimal fit according to the
regression problem proposed in step 3 of the method, which
yields a collective variable ϕ̄(x) = �x with optimal parame-
ters � shown in Fig. 3. The entries of the first row �1,: are
approximately equal and thus ϕ̄1 describes the count of 1’s in
the whole network. The optimal �2,: is positive and constant
within cluster 3 and negative and constant within clusters 1
and 2. Thus, ϕ̄2, calculates how the 1’s are distributed between
clusters {1, 2} and {3}. Finally, �3,: is positive in cluster 1,
negative in cluster 2, and approximately 0 in cluster 3, which
implies that ϕ̄3 measures how the 1’s are distributed between
clusters 1 and 2, regardless of the number of 1’s in cluster 3.
Hence, the learned CV ϕ̄ includes exactly the information that
was predicted by theory [10] for large N , i.e., the counts of 1’s

FIG. 3. Optimal � from (3) for Example 1. (a) Data ϕ1(xk ) vs
optimal fit ϕ̄1. [(b)–(d)] Optimal � entries for the respective coordi-
nates plotted as color values on the network.
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FIG. 4. Left: Optimal �i,: plotted as color values on the ring-
shaped network. Right: �i,: (blue crosses) and a sine fit (orange line).
The collective variables ϕi represent the real Fourier coefficients of
the distribution of 1’s on the ring, since ϕi(x) ≈ �i,: x with the �i,:

being sines and cosines of increasing frequencies.

for each cluster, but the coordinates are ordered by dynamical
prevalence. (For instance, coordinate 3 is the least prevalent
because information flows quickly between the two densely
connected clusters 1 and 2.)

An interesting question would be to consider the change
of the CV and especially its dimension with increasing edge
density between the clusters. In particular, do structural tran-
sitions in the CV coincide with the so-called detectability
threshold of the stochastic block model [64–66], where the
edge statistics become indistinguishable from an Erdős-Rényi
random graph model? This will be addressed in future work.

Example 2: Ring-shaped network. We apply our method to
a ring-shaped network of N = 50 nodes. Examining the point
cloud {ϕ(x1), . . . , ϕ(xK )} for different choices of d , we cannot
identify a low-dimensional transition manifold as increasing
d keeps adding valuable information. To keep the CV dimen-
sion reasonably small, we choose d = 5. (This yields CVs of
reasonable quality; cf. Supplemental Material Sec. S5 [49].)

Solving the regression problem in step 3 yields a � that
is constant in the first coordinate, i.e., the most important
information is again the total count of 1’s (see Fig. 4). The
subsequent � j,i are pairs of sine and cosine functions of the
node index i, starting with one oscillation for coordinates j =
2, 3 and then doubling the frequency for coordinates j = 4, 5.
Hence, the collective variable ϕ̄ measures the distribution of
1’s on the ring, with increasing precision as we let d increase.
This structure mimics Fourier coefficients, which suggests
that (in the limit of infinitely many nodes) the optimal collec-
tive variable measures the position-dependent concentration
of 1’s as a density function on the ring. This result agrees well
with other works considering ring-shaped or lattice networks

FIG. 5. (a) For the Albert-Barabási network, the optimal � as
in (3) assigns a large weight to nodes with a high degree. (b) After
preweighting with node degree [cf. (4)], the optimal � is constant.
Hence, the collective variable describes the degree-weighted count
of 1’s.

(e.g., Refs. [11,13,14]), which find that the concentration of
1’s is governed by a diffusive partial differential equation in
the hydrodynamic limit. The CV of the system thus being
a function on the ring, any finite-dimensional approximation
has a truncation error. However, orthogonal trigonometric
polynomials are a natural (and in an L2-sense optimal) choice,
found by our method.

Example 3: Random 3-regular network. One challenge in
reduced modeling of spreading processes on random regular
graphs is that edges are correlated. If the degree grows indefi-
nitely with the network size, it was shown for the voter model
that the share of state 1 is an asymptotically perfect CV [10].
In the same study it was observed numerically that for small
degrees this CV still seems to support an effective dynamics,
which deviates from the one obtained by mean-field approx-
imation. Our method applied to a random 3-regular network
validates the observation by reproducing this CV; see Supple-
mental Material Sec. S4 [49].

Example 4: Albert-Barabási network. Finally, we apply
our method to a network generated by the Albert-Barabási
model [67]. In the preferential attachment algorithm each new
node is connected to m = 2 existing nodes, that are randomly
picked with probability proportional to their degree. This
procedure yields (asymptotically) a scale-free network. Ap-
plying our method results in a point cloud {ϕ(x1), . . . , ϕ(xK )}
that indicates a d = 1-dimensional transition manifold (see
Supplemental Material Fig. S3 [49]). The optimal � ∈ RN

according to the linear regression problem in step 3 assigns
a large positive weight to nodes of a high degree, whereas
nodes with a small degree have small or even negative weight
(cf. Fig. 5). This conflicts with our choice of graph total
variation regularizer that favors solutions for which � is equal
for neighboring nodes. We tackle this issue by applying a
preweighting of each node i with its degree di:

ϕ̄(x) =
N∑

i=1

�i di xi. (4)

The optimal � for (4) becomes approximately constant, and
hence the CV measures the degree-weighted count of state 1
in the system (cf. Fig. 5). Multiple experiments for varying
parameters confirmed this result, provided the preferential at-
tachment parameter is chosen m � 2. (For m = 1 the resulting
networks exhibit a significantly larger diameter [68]. As a
consequence, the degree-weighted count does not seem to
sufficiently characterize the dynamics.) We are not aware of
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any theoretical work showing that the degree-weighted count
is a good CV for (binary-state or other) spreading processes
on Albert-Barabási networks, although Refs. [69,70] hint at
the significance of this observable.

Validation. A numerical validation of the CVs learned in
the above examples is presented in Supplemental Material
Sec. S5 [49].

Conclusion. We propose a method to learn interpretable
CVs for spreading processes on networks without the need
for prior expert knowledge about the network topology or
the dynamical process. This method consists of the following
steps: First, we sample anchor (network) states, from which
we start many short simulations. Then we approximate the
transition manifold and extend the learned CVs to unseen

data using (total-variation-regularized) linear regression. The
CVs are interpretable since the inferred parameters indicate
the function and significance of features of the network struc-
ture. We have demonstrated this method for four different
network topologies and two types of spreading dynamics (see
Supplemental Material Sec. S4 [49]) and have thus shown
its flexibility and usefulness. Although out of scope for the
current Letter, we expect that the method can be generalized
to processes with more than two discrete states as well as
inhomogeneous agent dynamics.
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