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We determine bifurcations from gradual to explosive synchronization in coupled oscillator networks with
higher-order coupling using self-consistency analysis. We obtain analytic bifurcation values for generic sym-
metric natural frequency distributions. We show that nonsynchronized, drifting, oscillators are non-negligible
and play a crucial role in bifurcation. As such, the entire natural frequency distribution must be accounted for,
rather than just the shape at the center. We verify our results for Lorentzian- and Gaussian-distributed natural
frequencies.
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Many natural phenomena and engineering applications can
be described as networks of coupled oscillators, for example,
the firing of neurons in the brain [1,2] and the dynamics of
power grids [3–6]. Classically, only pairwise interactions were
considered, but it has recently been brought to light that many
real-world networks have higher-order interactions [7–9] such
that nodes interact as triplets or quadruplets, or larger groups.
Moreover, it has been shown that these higher-order inter-
actions yield fundamentally different dynamics than can be
achieved with only pairwise coupling [10,11]. In particu-
lar, for coupled oscillators, higher-order interactions have
been shown to generate abrupt, explosive, transitions to syn-
chronization that do not generically occur with pairwise
coupling [9–17]. These explosive transitions have been stud-
ied in detail for many classes of higher-order interactions,
with most studies considering only Lorentzian-distributed nat-
ural frequencies due to their amenability to the Ott-Antonsen
ansatz [18,19].

Here we determine critical parameter sets for general
natural frequency distributions at which the onset of syn-
chronization bifurcates from a gradual smooth transition to
an abrupt explosive transition. We do this using a self-
consistency approach akin to that of Kuramoto’s [20,21].
In Kuramoto’s famous result, the onset of synchronization
for symmetric frequency distributions is governed entirely
by the shape of the frequency distribution at its center.
We show that this is not the case for general higher-order
dynamics because the population of “drifters” (oscilla-
tors that do not synchronize) cannot be neglected. As
such, the entirety of the frequency distribution must be
accounted for. We verify that our methodology recovers
known formulas for Lorentzian-distributed frequencies and
uncover analytic bifurcation values for Gaussian-distributed
frequencies.

*lauren.smith@auckland.ac.nz

We begin by considering an all-to-all coupled network,
with higher-order dynamics given by

θ̇i = ωi + K1

N

N∑
j=1

sin(θ j − θi ) + K2

N2

N∑
j,l=1

sin(2θ j − θl − θi )

+ K3

N3

N∑
j,l,m=1

sin(θ j + θl − θm − θi ), (1)

where N is the number of oscillators, ωi are natural frequen-
cies that are drawn from a probability distribution g(ω), and
K1, K2, and K3 are the coupling strengths of the dyadic, triadic,
and tetradic couplings, respectively. Later we will extend our
results to random hypergraphs. The model (1) derives from
the mean-field complex Ginzburg-Landau equation [22] or
from weakly coupled Hopf bifurcations [23]. The model (1)
has been studied in detail using the Ott-Antonsen approach
in the limit N → ∞ assuming Lorentzian-distributed natural
frequencies [14]. It was shown that there is a bifurcation
in the onset of synchronization from a gradual second-order
transition to an explosive first-order transition. Here we use
self-consistency to analyze these bifurcations for general sym-
metric natural frequency distributions g(ω). For instance,
using a Gaussian distribution with mean zero and variance
σ 2 = 0.1, Fig. 1 shows bifurcations from gradual (continuous)
to explosive (discontinuous) synchronization, quantified by
the order parameter r1 defined below and shown as a color
scale from dark blue for r1 = 0 (incoherent) to light yellow for
r1 = 1 (highly synchronized), as the parameters K1, K2, and
K3 are varied. We derive analytic expressions for the locations
of these bifurcations.

Self-consistency has been used for subcases of the dy-
namics (1), for instance, using K1 = K3 = 0 [24] (where the
dynamics are fundamentally different, i.e., the unstable branch
at onset of explosive synchronization never reconnects via
a pitchfork bifurcation), using K2 = 0 [25] (in which case
drifters can be ignored), and using K3 = 0 to study oscillators
with inertia [26], but so far the full system (1) has not been
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FIG. 1. Transitions between explosive and gradual synchronization, quantified by the order parameter r1 (color scale from dark blue for
r1 = 0 to light yellow for r1 = 1), for the higher-order system (1) with N = 104 and a Gaussian natural frequency distribution g(ω) with
mean zero and variance σ 2 = 0.1. Theoretical bifurcation values, from (12) and (18), are shown as red curves, solid for supercritical pitchfork
bifurcation (PF−), dashed for subcritical pitchfork bifurcation (PF+), and dot-dashed for saddle-node bifurcation (SN). The bifurcation curves
meet at a codimension-2 bifurcation point given by (12) and (18) (red circle). (a)–(c) Highly synchronized initial condition. (d)–(f) Uniformly
random initial condition. (a) and (d) K3 = 0, with K1 and K2 varying. (b) and (e) K2 = 0, with K1 and K3 varying. (c) and (f) K3 = 0.5, with K1

and K2 varying.

studied via self-consistency and generic bifurcation sets have
not been found.

We follow a similar self-consistency approach to that of
Kuramoto [20], which has been generalized for several classes
of higher-order interactions [24–29] [though not for (1)]. In
the limit N → ∞, the oscillator population is defined by a
density ρ(θ, ω, t ), where ρ(θ, ω, t )dθdω is the fraction of os-
cillators with phases in the range (θ, θ + dθ ) and frequencies
in the range (ω,ω + dω) at time t . We will determine station-
ary distributions ρ(θ, ω). To do so we write the dynamics (1)
in mean-field form

θ̇i = ωi + K1r1 sin(�1 − θi ) + K2r1r2 sin(�2 − �1 − θi )

+ K3r3
1 sin(�1 − θi ), (2)

where

r1ei�1 = 1

N

N∑
j=1

eiθ j , r2ei�2 = 1

N

N∑
j=1

e2iθ j (3)

denote the classical complex order parameter and a Daido or-
der parameter [30], respectively. Assuming g(ω) is symmetric,
in the limit N → ∞ we find �2 = �1, and we can assume,
without loss of generality, that �1 = 0. Thus the mean-field
form (2) simplifies to

θ̇i = ωi − γ sin θi, (4)

where γ = r1(K1 + K2r2 + K3r2
1 ). Equilibria of (4) satisfy

ωi = γ sin θi (5)

for oscillators satisfying |ωi| < γ . Such oscillators form the
synchronized cluster and are termed locked. Thus, the station-
ary density satisfies

ρ(θ, ω) = δ(ω − γ sin θ ), |ω| < γ . (6)

In partially synchronized states, there also exist “drifters”
which do not synchronize and are those oscillators with fre-
quencies |ωi| > γ . As in the Kuramoto model, stationarity of
the drifter density requires that ρ(θ, ω) is inversely propor-
tional to the speed at θ , i.e.,

ρ(θ, ω) = C(ω, γ )

|ω − γ sin θ | , |ω| > γ , (7)

where C(ω, γ ) = (2π )−1
√

ω2 − γ 2 is a normalization con-
stant chosen such that

∫ π

−π
ρ dθ = 1. The stationary den-

sity (6) and (7) shares a strong similarity to that of the original
Kuramoto model [20,21], except with Kr1 replaced by γ .
The symmetries ρ(−θ,−ω) = ρ(θ, ω) and ρ(θ + π,−ω) =
ρ(θ, ω) follow readily and are useful in our self-consistency
analysis.

Self-consistency requires that the order parameters defined
implicitly via (6) and (7) are consistent with the definitions
in (3). Noting that �1 = �2 = 0, the equations are self-
consistent provided

rk = rl
k + rd

k , k = 1, 2, (8)

where rl
k and rd

k are the locked and drifter components of
rk , respectively. As in the case of the Kuramoto model, the
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symmetries of g(ω) and ρ(θ, ω) ensure that the imaginary
parts of both the locked and drifter components are zero for
all k. Focusing first on the locked component, using (6) we
obtain

rl
k =

∫ γ

−γ

cos[kθ (ω)]g(ω)dω

= γ

∫ π/2

−π/2
cos(kθ ) cos(θ )g(γ sin θ )dθ, (9)

where θ (ω) is defined implicitly via (5). For the drifter com-
ponent, using (7), we obtain

rd
k =

∫
|ω|>γ

∫ π

−π

cos(kθ )g(ω)ρ(θ, ω)dθ dω. (10)

Using the symmetries of g and ρ, it is easily shown that rd
1 =

0 [31] and hence r1 = rl
1. However, rd

2 �= 0, in fact, and after
a change of variables η = ω/γ , we obtain

rd
2 = 2γ

∫ ∞

1
Iθ (η)g(γ η)dη, (11)

where, assuming η > 1,

Iθ (η) =
∫ π

−π

cos(2θ )ρ(θ, η)dθ = 1 + 2η(
√

η2 − 1 − η).

The combination of (8), (9), and (11) forms the self-
consistency equations for the model (1). For given parameters
K1, K2, and K3, the solutions to the self-consistency equa-
tions give the order parameters r1 and r2 and hence the
stationary density (6) and (7).

Having derived the self-consistency equations, we use
them to determine bifurcations in the type of synchronization
at onset. We use the general principle described in Ref. [32] to
determine when the onset of synchronization bifurcates from
gradual to explosive. Considering the values of K2 and K3 to
be fixed, with K1 varying, the incoherent state r1 = r2 = 0
is stable for small values of K1, i.e., those less than some
Kc, which may depend on K2 and K3. At the critical value
K1 = Kc, a branch of nonzero solutions for r1 and r2 emerges
via a pitchfork bifurcation. If the pitchfork bifurcation is su-
percritical, i.e., the new solution branch exists for K1 > Kc,
then the new branch is stable, indicating the onset of stable
synchronization via a (gradual) second-order phase transition.
Conversely, if the pitchfork bifurcation is subcritical, i.e., the
new solution branch exists for K1 < Kc, then the new branch
is unstable, which indicates an (explosive) first-order phase
transition to synchronization must occur at K1 = Kc, and the
synchronized state will vanish via a saddle-node bifurcation
at some value KSN

1 (K2, K3) < Kc. In this case there is bista-
bility in the parameter region KSN

1 (K2, K3) < K < Kc, with
both the incoherent and synchronized states being stable [cf.
Figs. 1(a)–1(c) compared to Figs. 1(d)–1(f)]. Therefore, in or-
der to determine when the onset of synchronization becomes
explosive, it is sufficient to determine Kc and whether the new
nonzero branch of solutions for r1 and r2 exists for K1 > Kc

or K1 < Kc.
To determine Kc, we find the critical parameter at which

the new nonzero branch emerges from the incoherent branch
r1 = r2 = 0. Therefore, we consider the limit as r1, r2 → 0

of solutions to (8). For r1 = rl
1 (9), assuming r1 �= 0, we can

divide both sides of (9) by r1 to obtain

1 = (
K1 + K2r2 + K3r2

1

) ∫ π/2

−π/2
cos2(θ ) g(γ sin θ )dθ.

In the limit r1, r2 → 0 we obtain 1 = K1πg(0)/2 and hence
the nonzero branch reaches zero at

K1 = Kc = 2

πg(0)
, (12)

which is identical to the critical coupling strength for the on-
set of synchronization in the classical Kuramoto model [20].
While we previously noted that Kc may depend on K2 and
K3, we find that it is independent of K2 and K3. Instead,
we will show that K2 and K3 control whether the nonzero
branching solution is stable or unstable and hence whether
synchronization occurs gradually or abruptly.

We now determine the criticality of the pitchfork bifurca-
tion at K1 = Kc, with K1 varying and K2 and K3 kept fixed.
This will yield critical bifurcation parameters that separate
explosive and gradual synchronization transitions. To do this,
we expand the self-consistency equations (8), (9), and (11) in
Taylor series about the critical point (r1, r2, K1) = (0, 0, Kc),
with K2 and K3 treated as constants. The right-hand sides of
the self-consistency equations (8) are functions of γ , and so
we first expand about γ = 0 and then substitute γ = Kcr1 +
r1(K1 − Kc) + K2r1r2 + K3r3

1 . For the locked components (9)
we obtain

r1 = rl
1 = 1

Kc
γ + πg′′(0)

16
γ 3 + O(γ 5), (13)

rl
2 = 2g(0)

3
γ − g′′(0)

15
γ 3 + O(γ 5). (14)

For the drifter component of r2 (11) we obtain

rd
2 = −2g(0)

3
γ + c2γ

2 + O(γ 3), (15)

where

c2 = 1

2
lim
γ→0

d2rd
2

dγ 2
= 2 lim

γ→0

∫ ∞

1
ηIθ (η)g′(γ η)dη. (16)

Here we have used the fact that the integral
∫ ∞

1 Iθ (η)dη =
−1/3 converges, which allows us to apply the domi-
nated convergence theorem to evaluate limγ→0 rd

2 = 0 and

limγ→0
drd

2
dγ

= − 2g(0)
3 . However, the integral

∫ ∞
1 ηIθ (η)dη di-

verges, meaning the limit and integral in (16) cannot be
interchanged [31]. Physically, this reflects that the contribu-
tion of the drifters is not localized to ω = 0 and the entirety
of the natural frequency distribution g(ω) must be accounted
for. We demonstrate this explicitly for two distributions with
a common central region in Sec. SII of the Supplemental Ma-
terial [31]. Combining (14) and (15), we obtain the expansion

r2 = c2γ
2 − g′′(0)

15
γ 3 + O(γ 5). (17)

We now substitute γ = Kcr1 + r1(K1 − Kc) + K2r1r2 + K3r3
1

into (13) and (17) and collect powers up to second order in r1,

L022202-3



LAUREN D. SMITH AND PENGHAO LIU PHYSICAL REVIEW E 109, L022202 (2024)

r2, and K1 − Kc, yielding

0 = 1

Kc
(K1 − Kc) + K2

Kc
r2 +

(
K3

Kc
+ πK3

c g′′(0)

16

)
r2

1 ,

r2 = c2K2
c r2

1 ,

where we have first divided (13) through by r1. Solving these
equations simultaneously gives

r2
1 = − 16(K1 − Kc)

16
(
c2K2

c K2 + K3
) + πK4

c g′′(0)
.

From our previous discussion, the onset of synchronization
will switch from gradual to explosive when this solution
switches from existing to the right of K1 = Kc to existing to
the left of K1 = Kc, i.e., at the critical parameter values

c2K2
c K2 + K3 = K∗

2,3 = −πK4
c g′′(0)

16
. (18)

Assuming that g′′(0) < 0, which is true for unimodal distri-
butions, the onset of synchronization is gradual for c2K2

c K2 +
K3 < K∗

2,3 and explosive for c2K2
c K2 + K3 > K∗

2,3.
From (18), if K2 = 0, then the bifurcation is at K3 = K∗

2,3,
which does not depend on c2 and only depends on g(0) and
g′′(0). This is similar to Kuramoto’s result [20], in which
bifurcation only depends on the shape of g at 0. The cause
of this is that the drifters can be neglected if K2 = 0 [25],
whereas the drifters have a non-negligible effect, quantified
by c2, if K2 �= 0.

We now demonstrate our results explicitly, first for
Lorentzian-distributed natural frequencies and then for
Gaussian-distributed natural frequencies. For a Lorentzian
distribution centered at zero and with spread � = 1 we have
g(ω) = [π (1 + ω2)]−1. Evaluating the self-consistency inte-
grals (9) and (11) directly yields

r1 =
√

1 + γ 2 − 1

γ
, r2 = 2 + γ 2 − 2

√
1 + γ 2

γ 2
= r2

1 .

The first equation can be solved for γ , which yields
γ = 2r1/(1 − r2

1 ). We also have our definition γ = r1(K1 +
K2r2 + K3r2

1 ). Solving this system of equations for r1 yields

0 = r1
[ − 2 + K1

(
1 − r2

1

) + K2+3r2
1

(
1 − r2

1

)]
, (19)

where K2+3 = K2 + K3, as defined in Ref. [14]. Equation (19)
is identical to the equivalent equation obtained via the Ott-
Antonsen approach [14], which has been shown to agree
with the full dynamics (1) for large N . For the Lorentzian
distribution we obtain Kc = 2, meaning that the new branch
of nonzero solutions r1 and r2 emanates from K1 = Kc =
2. We also directly compute c2 = 1/4 and K∗

2,3 = 2 and
hence our criticality condition (18) becomes K2+3 = K∗

2,3 = 2.
Our results agree with the analysis using the Ott-Antonsen
approach [14], which finds a codimension-2 bifurcation at
(K1, K2+3) = (2, 2) such that at bifurcation the pitchfork bi-
furcation changes criticality and a saddle-node bifurcation
emerges.

We now consider Gaussian-distributed natural frequencies,
with mean zero and variance σ 2 (in our numerical examples

we use σ 2 = 0.1). We can again directly integrate the self-
consistency integrals (9) and (11) to obtain

r1 =
√

π

2
Ae−A2/2[I0(A2/2) + I1(A2/2)], (20)

r2 = 1 + e−A2 − 1

A2
, (21)

where A = γ /
√

2σ and In denotes the nth modified Bessel
function of the first kind. In principle, Eq. (21) can be solved
for A and then the result is substituted into (20), which can
then be solved for r1; however, that is not possible in practice,
except numerically. We note that the relation r2 = r2

1 that
was true for the Lorentzian distribution, which allowed the
simplification of K2 and K3 to the combined variable K2+3, is
not true for Gaussian distributions. This is reflected in Fig. 1
by the differences between Figs. 1(a) and 1(d) and Figs. 1(b)
and 1(e). For our criticality results, we find Kc = 2σ

√
2/π ,

c2 = 1/4σ 2, and K∗
2,3 = 2σ

√
2/π3. The red curves in Fig. 1

show that these theoretical values agree well with numeri-
cal simulations of the full model (1). Our numerical results
show that the onset of synchronization from a random initial
condition [Figs. 1(d)–1(f)] occurs at K1 = Kc = 0.5046 via a
pitchfork bifurcation, with a switch from gradual to explosive
synchronization as K2 or K3 is increased, corresponding to
the change in criticality of the pitchfork bifurcation [shown
as solid for supercritical (PF−) and dashed for subcriti-
cal (PF+)]. From (12) and (18), for K3 = 0 [Figs. 1(a)
and 1(d)] this codimension-2 bifurcation occurs at (K1, K2) =
(Kc, K∗

2,3/c2K2
c ) = (0.5046, 0.2523). For K2 = 0 [Figs. 1(b)

and 1(e)] the codimension-2 bifurcation occurs at (K1, K3) =
(Kc, K∗

2,3) = (0.5046, 0.1606) and for K3 = 0.5 [Figs. 1(c)
and 1(f)] the codimension-2 bifurcation occurs at (K1, K2) =
(Kc, (K∗

2,3 − 0.5)/c2K2
c ) = (0.5046,−0.5331)

When the onset to synchronization is explosive, i.e., when
c2K2

c K2 + K3 > K∗
2,3, the branch of nonzero solutions for r1

and r2 that emanate from K1 = Kc are unstable, and there is a
saddle-node bifurcation that occurs at some KSN

1 (K2, K3) such
that the unstable branch meets a stable branch of synchronized
solutions. For Lorentzian-distributed natural frequencies the
saddle-node bifurcation can be found easily by directly
solving (19) [14]. However, for Gaussian-distributed natural
frequencies the same approach would require analytically
solving (20) and (21), which is not possible. As a method to
(numerically) find the saddle-node bifurcation for general fre-
quency distributions, we recognize that our self-consistency
equations (8)–(11) are of the form r1 = r1(γ ) = γ F1(γ ) and
r2 = r2(γ ). From the definition of γ , this sets up a single
self-consistency equation for γ ,

γ = r1(γ )[K1 + K2r2(γ ) + K3r1(γ )2],

which has solutions γ = 0 and γ satisfying

0 = F1(γ )[K1 + K2r2(γ ) + K3γ
2F1(γ )2] − 1 = H (γ ).

(22)

Each positive root of H (γ ) corresponds to a solution branch
of the self-consistency equations (8)–(11). Thus, finding the
saddle-node bifurcation is equivalent to finding double roots
of H , i.e., solutions to H (γ ) = 0 and H ′(γ ) = 0. For Gaussian
natural frequencies H (γ ) is obtained from (20) and (21) and
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FIG. 2. Plot of H (γ ) given by (22) for Gaussian-distributed nat-
ural frequencies with mean zero and variance σ 2 = 0.1 using K2 =
0.5, K3 = 0, and a range of K1 values (labeled in the figure near the
vertical axis).

shown in Fig. 2 for a range of K1 values with K2 = 0.5 and
K3 = 0 kept fixed. At K1 = 0.35 (bottom curve) there are no
roots and hence no synchronized solution. Increasing K1, at
KSN

1 = 0.445, H (γ ) has a double root, indicating a saddle-
node bifurcation and birth of a synchronized state via an
explosive transition. For KSN

1 < K1 < Kc = 0.505, H (γ ) has
two roots: one stable and one unstable synchronized solution.
For K1 > Kc, there is a single root of H (γ ); the unstable
solution has been destroyed in the pitchfork bifurcation at
K1 = Kc. We have numerically found the saddle-node bifurca-
tion KSN

1 (K2, K3) for Gaussian natural frequencies for a range
of K1, K2, and K3 values, as shown in Fig. 1 by the dot-dashed
curves. Our results show excellent agreement with the explo-
sive transitions from synchronized to incoherent states.

We now extend our results to random hypergraphs. Con-
sider the dynamics

θ̇i = ωi + K1

N

N∑
j=1

Ai j sin(θ j − θi )

+ K2

N2

N∑
j,l=1

Bi jl sin(2θ j − θl − θi )

+ K3

N3

N∑
j,l,m=1

Ci jlm sin(θ j + θl − θm − θi ), (23)

where A, B, and C are the adjacency matrices or tensors
encoding dyadic, triadic, and tetradic couplings, respec-
tively. As a higher-order extension to Erdős-Rényi graphs,
we consider the case such that each Ai j , Bi jl , and Ci jlm

is independently random with probabilities p1, p2, and p3

of being equal to 1, respectively; otherwise they are zero.
In the thermodynamic limit, the dynamics of (23) with a
random hypergraph is identical to that of an all-to-all cou-
pled network, with weighted adjacency matrices or tensors
Ai j = p1, Bi jl = p2, and Ci jlm = p3 for all i, j, l, m. As such,
upon renormalizing the coupling strengths K ′

k = Kk/pk , the
dynamics of (1) and (23) are identical in the thermody-
namic limit. This is demonstrated in Fig. 3, which shows

FIG. 3. Order parameter r1 as K1 is varied for Gaussian-
distributed natural frequencies with variance σ 2 = 0.1, for K2 ∈
{0, 0.5} and K3 ∈ {0, 0.5} [labeled in the figure as pairs (K2, K3)]. Re-
sults are shown for the thermodynamic limit with all-to-all coupling
(solid curves for stable and dashed curves for unstable solutions),
solving (20) and (21), as well as simulations of (23) for a random hy-
pergraph (crosses) with N = 103, pk = 0.1/Nk−1, and renormalized
coupling strengths K ′

k = Kk/pk .

that the order parameter r1 obtained by simulating (23) with
N = 103 and pk = 0.1/Nk−1, such that the mean degrees
are 〈dk〉 = 100, closely agrees with r1 obtained by solving
the self-consistency equations (20) and (21) for a range of
coupling strengths. In particular, the (saddle-node and pitch-
fork) bifurcations and their criticalities given by (12), (18),
and (22) apply also to random hypergraphs, provided the
coupling strengths Kk are renormalized by the probabilities
pk . This has been shown previously for Lorentzian-distributed
natural frequencies using the Ott-Antonsen ansatz [14] and
is extended here to general symmetric natural frequency
distributions.

In summary, we have found critical synchronization tran-
sitions for networks of coupled oscillators with generic sym-
metric natural frequency distributions via a self-consistency
approach. Our analysis shows that drifters play a crucial role
in controlling synchronization bifurcations, and so the whole
natural frequency distribution must be accounted for. This
is unlike most other self-consistency analyses, in which the
drifters can be neglected and hence bifurcations are deter-
mined exclusively by the shape of the distribution at its center.
We have shown the efficacy of our methodology for both
Lorentzian and Gaussian natural frequency distributions and
both all-to-all and random hypergraphs.

Our methodology can be readily extended to a broad class
of possible higher-order interactions, with the only require-
ment being that the mean-field dynamics can be written in
the form (4) for some γ that encodes the relevant Daido
order parameters and their weightings, in particular, for cou-
pling functions of the form sin(−θi + ∑P

p=1

∑Qp

q=1 apsp,qθ jp,q ),
where the ap are positive integers, sp,q = ±1, and jp,q

are indices that are summed over. To ensure diffusive-type
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dynamics, we require −1 + ∑
p

∑
q apsp,q = 0. The contri-

bution to γ from such a coupling function is
∏P

p=1 r
bp
ap ,

where bp = ∑
q |sp,q|. For example, the coupling function

sin(2θ j − θl − θi ) has M = 2, a1 = 2, s1,1 = 1, a2 = 1, and

s2,1 = −1. The contribution to γ from this term is r2r1. The
self-consistency analysis proceeds by applying our method-
ology discussed herein to solve for the relevant Daido order
parameters.
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