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Chimera states are dynamical states where regions of synchronous trajectories coexist with incoherent ones.
A significant amount of research has been devoted to studying chimera states in systems of identical oscillators,
nonlocally coupled through pairwise interactions. Nevertheless, there is increasing evidence, also supported by
available data, that complex systems are composed of multiple units experiencing many-body interactions that
can be modeled by using higher-order structures beyond the paradigm of classic pairwise networks. In this work
we investigate whether phase chimera states appear in this framework, by focusing on a topology solely involving
many-body, nonlocal, and nonregular interactions, hereby named nonlocal d-hyperring, (d + 1) being the order
of the interactions. We present the theory by using the paradigmatic Stuart-Landau oscillators as node dynamics,
and we show that phase chimera states emerge in a variety of structures and with different coupling functions. For
comparison, we show that, when higher-order interactions are “flattened” to pairwise ones, the chimera behavior
is weaker and more elusive.
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Introduction. Chimera states are an intriguing dynami-
cal phenomenon occurring in systems of coupled oscillators
where some units oscillate synchronously, forming coherent
domains that exist alongside other domains characterized by
incoherent oscillations. Since their first numerical observation
by Kaneko [1], the emergence of these patterns has raised the
interest of many scholars in nonlinear science. In later studies,
these patterns have been identified in experimental setups in-
volving Josephson junctions [2], laser systems [3], mechanical
systems [4], electronic circuits [5,6], nanoelectromechani-
cal oscillators [7], neuroscience [8], unihemispheric sleep in
birds, mammals, and reptiles [9], as well as various forms of
pathological brain states [10]. They have been also found in
numerical experiments involving systems of nonlocally cou-
pled oscillators, such as Ginzburg-Landau systems, Rössler
oscillators, logistic maps [11–15], and identical phase oscilla-
tors [16], prior to being named “Chimera states” in Ref. [17].

Chimera states have been extensively investigated over the
past years, leading to exploration along various intriguing
avenues [18,19]. From a theoretical point of view, there has
been considerable effort to characterize the different types of
chimera states that may appear: from phase chimeras [16]
to amplitude chimeras [20], amplitude mediated chimeras
[21], chimera death states [22], traveling chimeras [23], and
globally clustered chimeras [24,25]. Let us observe that the
recently defined phase chimera [26] differ from the ones
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presented in Ref. [16], despite bearing the same name.
Indeed, by writing the dynamics of the jth oscillator as
a j (t )exp[i(2π� jt + θ j )], Kuramoto and Battogtokh [16] de-
fined a phase chimera as a state where a j (t ) is constant for
all j while the angles φ j = 2π� jt + θ j can be divided into
two groups, one for which � j is constant and a second one
for which � j depends on the node index. Both behaviors
can be appreciated after a sufficiently large t . Differently,
Zajdela and Abrams [26] defined a phase chimera as a state
for which both a j (t ) and � j are constant, i.e., do not depend
on the node index, and only the phases θ j exhibit coherent
and incoherent behaviors. The latter is the framework we will
hereby consider.

Another avenue of research on chimera states has focused
on understanding the network topologies and coupling mech-
anisms that can facilitate their emergence. Although chimera
states have been proved to arise in 1D rings where every node
is connected to its two neighbors (a condition named local
coupling [27,28]) as well in the “opposite” case of a complete
network where each node is connected to all the other ones
(global coupling [29,30]), the nonlocal coupling configuration
proved to be particularly important for the onset of chimera
states. Indeed, a large amount of literature has demonstrated
that chimera states are commonly observed within such set-
ting [16,19]. The nonlocal coupling corresponds to a 1D ring
where, beside first order neighbors, each node is also con-
nected in a regular way to 2(k − 1) � 2 other ones, i.e., each
node is connected to k nearby nodes counted in anti-clockwise
manner and k in the other direction. The network is regular by
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construction, all the nodes having the same degree 2k, and
it has a complete group of automorphisms, i.e., it is invari-
ant for any possible translation. Beside those regular cases,
chimera states have been also found on networks with diverse
nonregular topologies [31–36]. Nonetheless, the identification
of chimera states has been proven to be challenging, given
their transient nature [37] and strong dependence on the initial
conditions [38]: hence, researchers have also endeavored to
propose mechanisms that can lead to the emergence of robust
and persistent chimeras [39,40].

While there have been numerous studies focusing on
chimera states within network structures, these states have
received significantly less attention in systems where the units
interact not only in pairs, but also in groups of three or more
units. Studying chimera states in the presence of these types
of interactions, known as higher-order or many-body [41,42],
is particularly important. In fact, on the one hand, there is
an increasing evidence that many systems, e.g., in neuro-
science [43–46], naturally exhibit higher-order interactions.
On the other hand, several studies on dynamics emerging in
hypergraphs and simplicial complexes have already shown a
significant impact of higher-order interactions on the collec-
tive behavior of the system; the latter include, e.g., studies on
synchronization and pattern formation [47–54], random walks
[55,56], and contagion processes [57–61]. Previous works on
chimera states in higher-order structures have already lead
to several interesting results [7,62–65]. Chimera states have
been found experimentally by considering triadic interactions
[7] and, theoretically, while developing a general theory for
the study of synchronization patterns in higher-order systems
[62,63]; despite dealing with small hypergraphs and specific
settings, these works have pointed out that chimera states may
also appear in the presence of higher-order interactions. A
more systematic study of the impact of higher-order interac-
tions has been done in Refs. [64,65], where phase oscillators
coupled through simplicial complexes are studied; both works
show that higher-order interactions, when added to paiwise
ones, enhance the likelihood of observing chimera states in
the system.

In this work, we further corroborate the claim that chimera
states are boosted by the presence of many-body interac-
tions by focusing on a higher-order structure that we call
nonlocal hyperring and consists exclusively of higher-order
interactions. This is an important difference with respect to
the setup studied, for instance, in Ref. [65], where sim-
plicial complexes are considered, or in Ref. [66], where a
generalization of the nonlocal coupling is extended to higher-
order interactions through a continuous limit [67]: in both
settings, the effects of pairwise and three-body interactions
cannot be fully disentangled. The topology that we consider
is nonlocal and nonregular, i.e., nodes have different hyper
degree. We consider a d-uniform hypergraph, where all the
hyperedges have the same size, d + 1, and are connected
two-by-two, in a periodic structure, by junctions nodes shared
by every two consecutive hyperedges. In this way, we have
a nonregular extension of the notion of nonlocal rings to
higher-order structures. Since nonlocal hyperrings only in-
clude higher-order interactions, the effect of the latter on the
emergence of chimera states can be better identified. Let us
observe that, despite the lack of regular topology, the studied

systems always admit a global synchronous solution, that
thus “competes” with the possible chimera state. For the sake
of definiteveness, we numerically investigate the behavior of
nonlocal hyperrings when the nodal dynamics is given by the
Stuart-Landau oscillator, which has been widely used as a
paradigmatic model of oscillatory dynamics to study chimera
states [18], given that this system is the normal form of the
Hopf-Andronov bifurcation and thus it presents the general
features of any limit-cycle oscillator close to such bifurcation
[68]. We then compare the results with the ones observed on
a pairwise network, obtained by projecting the higher-order
structure on a pairwise network: namely, we consider that
every node has a nonweighted pairwise connection with all
the nodes part of the same hyperedge, i.e., they form a clique.
The higher-order setting exhibits a considerable enhancement
of chimera patterns, meaning that they are present for a wider
range of coupling strengths and they have a longer life span.
Finally, we show that not only phase chimera states, but
also other interesting dynamical patterns, such as amplitude
chimeras [69], can be observed in the novel setting.

Stuart-Landau oscillators on nonlocal hyperrings. We con-
sider a system made of n interacting Stuart-Landau units, a
paradigmatic model of oscillatory dynamics. In the absence
of any interaction, each unit j ( j = 1, . . . , n) of the system is
described by the following equations:ital

ẋ j = λx j − ωy j − (
x2

j + y2
j

)
x j = f (x j, y j ),

ẏ j = ωx j + λy j − (
x2

j + y2
j

)
y j = g(x j, y j ), (1)

where λ is a bifurcation parameter controlling the onset of a
limit cycle of amplitude

√
λ, for λ > 0, and ω is the natural

frequency of the oscillator. Let us observe that we assume
those parameters to be the same for all nodes to ensure the
existence of a global synchronous solution.

Here, as in Refs. [47,70], we study nonlinear many-body
coupling functions that cannot be decomposed into a combi-
nation of weighted pairwise interactions [71]. To model the
higher-order interactions we use hyperedges, whose structure
can be encoded by using adjacency tensors, that are a general-
ization of the adjacency matrix for networks [41]. We adopt
the convention that a hyperedge involving (d + 1) nodes
[and, thus, encoding a (d + 1)-body interaction] is called a
d-hyperedge. Such notation is more common in the literature
dealing with simplicial complexes [72], while, in the context
of hypergraphs, often a d hyperedge encodes a d-body inter-
action [41]. For example, A(3) = {A(3)

i, j,k,l} is the third-order
adjacency tensor, encoding the four-body interactions, with
A(3)

i, j,k,l = 1 if units i, j, k, l have a group interaction (namely,
nodes i, j, k, l are part of the same three hyperedge), and 0
otherwise. Using these tensors, the generalized d degree (or
hyperdegree), k(d )

j , representing the number of d hyperedges
of which node j is part, can be computed as

k(d )
j = 1

d!

N∑

j1,.., jd =1

A(d )
j j1... jd

. (2)

Finally, we assume that the coupling terms act on both the
dynamical variables describing the Stuart-Landau oscillator
(1) and involve only the first component of the state vector of
the oscillator, as in Ref. [6]; let us observe that this working
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assumption is not restrictive and other couplings can also
be considered. Taking into account all these considerations,
the model of Stuart-Landau equations coupled via a generic
(d + 1)-body interactions reads

ẋ j = f (x j, y j ) + ε

n∑

j1,..., jd =1

A(d )
j, j1,..., jd

(h(d )(x j1 , . . . , x jd )

−h(d )(x j, . . . , x j )),

ẏ j = g(x j, y j ) + ε

n∑

j1,..., jd =1

A(d )
j, j1,..., jd

(h(d )(x j1 , . . . , x jd )

−h(d )(x j, . . . , x j )), (3)

where ε > 0 is the coupling strength and we assumed that
the coupling is diffusivelike [47]. The model encompasses
only multibody interactions (specifically, (d + 1)-body inter-
actions encoded in the dth order adjacency tensor A(d )), as we
aim to analyze a pure many-body framework.

Let us observe that higher-order interactions are often con-
sidered together with pairwise interactions [64,65]; however,
in this setting it is not clear how to distinguish the different
types of contributions. For this reason, we decided to consider
hypergraphs instead of simplicial complexes, as the latter
structures contain interactions of any order, from the highest
to the lowest (i.e., order one, which is the pairwise case).
Moreover, to the best of our knowledge, structures represent-
ing the higher-order counterpart of nonlocal rings have not
yet been considered in previous works on chimera states. Our
goal is to fill this gap by considering a ring encompassing
m hyperedges of order d . These hyperedges are placed on a
circle and labeled in counterclockwise order as 1, 2, . . . , m.
In the simplest case, the m hyperedges share with each other
only a single node. Furthermore, each shared node may belong
at most to two different hyperedges, meaning that the generic
hyperedge j has two shared nodes, one with the hyperedge
( j − 1) and one with the hyperedge ( j + 1). The remaining
d − 2 nodes are only part of the hyperedge j. Let us observe
that more general structures could be handled as well.

In the following, we will focus on the case of four-body
interactions, but similar results have been obtained for three-
body, as well as for five-body and six-body interactions (see
Supplemental Material (SM) [73]). In our model, the coupling
functions have been chosen to be cubic and diffusivelike, as
previously done in Ref. [47], namely

h(3)
(
x j1 , x j2 , x j3

) = x j1 x j2 x j3 . (4)

In the SM, we illustrate other choices, i.e., diffusivelike func-
tions that are not cubic. In this specific case, an example of
nonlocal ring with m = 5 hyperedges of size 4 is shown in
Fig. 1(a). The structure is nonregular, as some nodes are part
of two hyperedges, i.e., they have hyperdegree 2 [see Eq. (2)],
while others interact only within a single hyperedge, and thus
exhibit hyperdegree 1. In general, for a nonlocal ring with
d-body interactions and n nodes, the nodes that are shared
by two hyperedges, i.e., nodes {1, 1 + (d − 1), . . . , n − d −
(d − 3), n − (d − 2)} have generalized dth degree [74], equal
to 2, while all the other nodes have generalized dth degree
equal to 1. In the following, we will be interested in comparing

(a) (b)

FIG. 1. Nonlocal hyperring vs clique-projected network. (a) A
nonlocal three hyperring with m = 5 hyperedges and 15 nodes.
(b) Corresponding clique-projected network obtained by transform-
ing each hyperedge into a clique.

the dynamical behavior of SL oscillators coupled via higher-
order structures with the one resulting from a pairwise one.
To have a reliable comparison, we decide to work with the
network obtained by projecting each hyperedge in a clique,
as shown in Fig. 1(b), to obtain the so-called clique-projected
network (cpn). Namely, each couple of nodes in the hyperedge
is connected with an unweighted pairwise link. In this way, we
end up with d + 1 cliques connected through junction nodes,
that are part of two consecutive cliques, exactly as the hyper-
edges are disposed in the hyperring. Let us point out that this is
not the only possible projection onto a network, as one could
also consider projection based on one-cell complexes, which
are topological objects obtained by gluing together cells in
different ways. In this sense, they can be viewed as general-
izations of simplicial complexes [72] that have recently found
applications in several field, from machine learning [75] to
synchronization dynamics [76]. In the SM we have analysed a
different projection, specifically, mapping any d hyperedge as
a regular polygon having (d + 1) vertices. When the topology
is pairwise, the coupling functions take only one variable, we
thus define hcpn(x j ) = h(3)(x j1 , x j2 , x j3 )|x j1 =x j2 =x j3 =x j . In our
example of four-body interactions, the coupling functions (4)
can be replaced on the cpn by

hcpn(x	) − hcpn(x j ) = x3
	 − x3

j .

To make the difference between the pairwise and higher-
order coupling more visible, in the SM, we explicitly write the
equations for a node shared between two hyperedges (junction
node) and a node belonging to only one hyperedge (nonjunc-
tion node).

Higher-order versus pairwise interactions. We now pro-
ceed to the analysis of chimera states observed in the nonlocal
hyperring, while also comparing them to the pairwise case.
In all the simulations, we have considered hyperrings and
networks of n = 204 nodes, hence m = 68 hyperedges of
size 4 (i.e., 3-hyperedges), and we have set initial conditions
to (xi = +1, yi = −1) for nodes indexes j � n/2 and (x j =
−1, y j = +1) for j > n/2, as in Ref. [18].

In Fig. 2, we compare the dynamics emerging by using
higher-order and pairwise interactions. In Figs. 2(a) and 2(b),
we show the behavior of the system of SL oscillators coupled
with a nonlocal three hyperring, while Figs. 2(c) and 2(d)
depict the same system of oscillators, but now coupled via the
clique-projected network (pairwise interactions). In Fig. 2(a),
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(a)

(b)

(c)

(d)

FIG. 2. Nonlocal hyperring vs clique-projected network. Left panels show spatiotemporal patterns (a) and time series (b) for variables y j (t )
of the SL oscillators coupled with a nonlocal three hyperrings with n = 204 nodes and m = 68 hyperedges; the emerging dynamical behavior
is a phase chimera state with two heads, i.e., there are regions of regular behavior, separated by two regions of decoherence. Right panels
(c) and (d) show the analogous quantities on the clique-projected network. Panels (b) and (d) show the time series for nodes 50 (blue) and 101
(green). For panels (a) and (c), on the horizontal axis we set the node index j while in the vertical one, the time. The coupling strength is fixed
at ε = 0.01 and model parameters are λ = 1 and ω = 1.

we can appreciate a phase chimera behavior, whereas in
Fig. 2(c) there are no domains with incoherent behaviors.
Figures 2(b) and 2(d) show the time series for short and long
times for nodes j = 50 (blue) and j = 101 (green). First of
all, we observe that in both cases the orbits have the same
amplitude and the same period, hence same frequency. How-
ever, in the case of the higher-order coupling, nodes initially
synchronized are eventually found in phase opposition [see
blue and green curves in Fig. 2(b)]; On the other hand, in
the clique-projected network, nodes develop a small phase
lag [see blue and green curves in Fig. 2(d)]. We are thus
facing phase chimeras [26] in the hyperring, but not on the
clique-projected network. To better analyze the obtained pat-
tern, we cast the SL variables into a single complex number,
one for each node, z j (t ) := x j (t ) + iy j (t ), and we then rewrite
the latter as z j (t ) = a j (t )exp[i(2π� jt + θ j )], where a j is the
signal amplitude, � j the frequency and θ j the constant phase.

By using the Fast Fourier Transform and a sliding window
setting, we numerically compute these quantities for all nodes
after a sufficiently long transient interval. The results reported
in Fig. 3 support the claim that we are dealing with phase
chimeras according to Ref. [26]: indeed, the amplitudes, a j ,
and the frequencies, � j , are almost constant, i.e., their val-
ues do not depend on the node indexes, while the constant
phases, θ j , are node-dependent. In the case of higher-order
coupling [Fig. 3(c)], the phases can be divided into two re-
gions: a first one, where the phase value does not depend on
the node index, and a second one, where the opposite holds
true. Moreover, in this second region the phases are scat-
tered in [−π, π ). The clique-projected network has a similar
behavior: amplitudes and frequencies have constant values,
while the phases exhibit smooth transitions between two “flat”
regions, where there is no node dependence of the phase θ j .

The latter difference, which can be quantified through the
normalized total phase variation (see SM, which includes also
Refs. [78–80]), is indeed the key: while for the system with
higher-order coupling we can see a clear chimera behavior,
the aforementioned smooth variation cannot be considered a
chimera state, as there is no coexistence between coherent and
incoherent states. In the SM, we show that such difference
between a higher-order topology and a pairwise one persists
also when considering different pairwise projections, such as
the aforementioned boundary of the cell complex. Although
a full correspondence between the two cases cannot be estab-
lished, as we are dealing with interactions that are intrinsically
distinct, the difference is striking and it is consistently ob-
served when the coupling strength is varied. Moreover, it also
persists for different hyperrings, such as the two, four, and five
hyperrings, as shown in the SM numerically and by mean of
the normalized total phase variation.

Conclusions. In this work, we have studied the effect
of pure many-body interactions on chimera states, showing
that the presence of a higher-order topology enhances the
emergence of phase chimeras. We have introduced a nonlo-
cal nonregular (pure) higher-order topology, which we called
nonlocal hyperring, and observed that the comparison be-
tween the dynamics on the latter and on the clique-projected
network shows a remarkable difference in the behaviors and
allows to draw a conclusion that is consistent with the existing
literature, namely that higher-order interactions facilitate the
emergence of chimera states in systems of coupled oscillators.
Moreover, nonlocal hyperrings allow for the emergence of
other phenomena, as we show in the SM, such as a hybrid state
of amplitude chimeras and chimera death, and pure chimera
death [22]. We believe that the emergence of such type of
chimera states, widely studied for pairwise interactions, but
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Dynamical quantities associated to nonlocal hyperring and clique-projected network. Left panels show frequency (a), amplitude
(b), and phase (c) of the Stuart-Landau oscillators computed by using the fast Fourier transform (FFT) on the complex variables z j (t ) =
aj (t )exp[i(2π� jt + θ j )], as function of the node index, j, at 2500 time units. The left panels refer to quantities whose evolution is determined
by a nonlocal three hyperring with n = 204 nodes and m = 68 hyperedges. The right panels show the analogous quantities for Stuart-Landau
oscillators coupled via the clique-projected network. The coupling strength is ε = 0.01 and the model parameters are λ = 1 and ω = 1.

until now never observed with higher-order ones, makes our
framework promising and will inspire future studies in this
direction.
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