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Optimizing the random search of a finite-lived target by a Lévy flight
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In many random search processes of interest in chemistry, biology, or during rescue operations, an entity must
find a specific target site before the latter becomes inactive, no longer available for reaction or lost. We present
exact results on a minimal model system, a one-dimensional searcher performing a discrete time random walk,
or Lévy flight. In contrast with the case of a permanent target, the capture probability and the conditional mean
first passage time can be optimized. The optimal Lévy index takes a nontrivial value, even in the long lifetime
limit, and exhibits an abrupt transition as the initial distance to the target is varied. Depending on the target
lifetime, this transition is discontinuous or continuous, separated by a nonconventional tricritical point. These
results pave the way to the optimization of search processes under time constraints.
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Random search processes are ubiquitous in nature, such as
animals searching for food [1,2], rescue operations looking
for survivors after a shipwreck [3,4], or even searches for a
lost object like a key or a wallet. In typical search models,
one considers the targets to be “immortal”, i.e., they do not
disappear after a certain time. During the last decades, several
models of random search of infinitely lived targets have been
studied. The most popular among them is the search by a ran-
dom walker, either diffusive or performing Lévy flights where
the jumps are long ranged. Several strategies have been incor-
porated to make the search by a random walker optimal. Lévy
walks with certain exponent values can maximize the capture
rate by a forager of dispersed resources [5–12]. Another well
known strategy is the intermittent search process where short
range and long range moves alternate to locate a single target
[13,14]. A popular model that has received much attention in
recent years is a resetting random walker, where the walker
goes back to its starting point with a finite probability after
every step and restarts the search process [15–23]. In this case,
it turns out that the mean time to find an infinitely lived target
can be minimized by choosing an optimal resetting probability
[15,16,22,24–33]. This fact has also been verified in recent
experiments in optical traps [34–36].

However, there are many instances where the target has a
finite but random lifetime. For instance, ripe fruits in a tree
rot in a few days. The lifetime of a fruit is typically random
since it depends on the nature of the tree and the weather [37].
Similarly, after a shipwreck, a survivor can last in the water
only a finite amount of time, which is random as it depends
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on the general health of the person and sea conditions [38].
Inside a cell, target sites along the DNA are often blocked
for long periods of time, which gives a limited random time
to the transcription factors to bind to them [39–41]. In many
examples, the searcher has to capture the target before it dis-
appears or dies. Alternatively, in a dual view, one can consider
the target as permanent and the walker with a strong time
constraint, as an aerial rescue vehicle having a limited flight
time [42]. The termination of the search at a random time also
appears in the context of foraging theory, where a searcher
abandons a patch at any time with a certain give up proba-
bility [43]. For a mortal searcher performing a lattice random
walk [44] or Brownian motion [45], the capture probability
and conditional mean first-passage time cannot be optimized,
or only with an infinite diffusion coefficient. If a resetting
mechanism is further implemented, though, a nonzero reset-
ting rate can be optimal provided the mortality rate is not
too high [46,47].

A general question then is: is there any way to optimize
the search success for a nonpermanent target with a random
lifetime? A natural generalization of the Brownian case is
to investigate the search by a Lévy flight with a Lévy ex-
ponent 0 < μ < 2. One can then ask whether there is an
optimal value of μ that minimizes the conditional search
time or, alternatively, maximizes the capture probability of
the mortal target. In this Letter, we address this problem for
a one-dimensional Lévy flight (see Fig. 1). In our model, the
target is fixed at the origin and its lifetime n is distributed
geometrically via p(n) = (1 − a) an where 0 < a < 1, i.e., at
each discrete step, the target dies with probability 1 − a and
keeps alive with the complementary probability a. We assume
that the Lévy searcher starts from x0 > 0 and subsequently
evolves in discrete time via

xn = xn−1 + ηn, (1)
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FIG. 1. A searcher, performing a Lévy flight in one-dimension,
is looking for a nonpermanent target (i.e., a ripe fruit) located at
the origin. At each time step, the target (in red) stays active with
probability a < 1, while the searcher performs a random step. If the
searcher finds the target in the active state, the search is successful
(orange trajectory). In contrast, if the target dies (rots) before being
found by the searcher, the search is unsuccessful (blue trajectory).

where ηn’s are independent and identically distributed jump
variables, each distributed via the probability distribution
function f (η), which we assume to be symmetric and con-
tinuous with a power-law tail ∝ 1/|η|1+μ where μ ∈ (0, 2).
Note that both parameters x0 and a are given numbers and the
searcher has no control in optimizing with respect to them.
Thus, the only parameter that the searcher has in her disposal
to optimize is μ, since it is associated with her motion. The
search is successful only if the walker crosses the origin for
the first time (takes xn < 0) while the target is still alive. We
characterize the search success by two different observables:
(i) the capture probability of the target and (ii) the conditional
mean first-passage time (CMFPT), i.e., the mean search time
conditioned to finding the target alive. We find that, for fixed
x0 and a, these two quantities can be optimized by varying
the Lévy index μ. The two optimal parameters μ�

cap(x0, a)
and μ�

FP(x0, a) exhibit very rich phase diagrams in the (x0, a)
plane.

Our results, obtained analytically and numerically, are
summarized schematically in Fig. 2 for the capture
probability. For any fixed a < a1 = 2 e (

√
15 − 2)/11 =

0.925690 . . ., the index μ�
cap(x0, a) decreases monotonically

as a function of x0, and jumps to zero abruptly at a criti-
cal value x0 = xc(a). This signals a first-order transition. In
contrast, for any a > a1, μ�

cap(x0, a) again decreases with x0

but vanishes continuously at xc(a), signaling a second-order
transition. In the case a > a1, the critical value xc(a) freezes
to a constant value xc(a) = xm. Thus, (xm, a1), shown by a
red dot in Fig. 2, is a tricritical point that sits at the junc-
tion of a first and second-order transition. The green line
x0 → 0 is obtained analytically in the Supplemental Mate-
rial [48]. A qualitatively similar diagram can be drawn for
μ�

FP(x0, a), with a tricritical point at a slightly larger value
a2 = 0.973989 . . . [48].

Both observables, the capture probability and the CMFPT,
can be related to one fundamental quantity Qμ(x0, n) asso-
ciated with the random walk, denoting the probability that a

FIG. 2. Schematic phase diagram of the optimal Lévy index μ∗
cap

in the (x0, a) plane. For fixed a, as a function of x0, the optimal
μ∗

cap undergoes a first-order transition at x0 = xc(a) (for a < a1)
which changes to a second-order transition for a > a1. The critical
line xc(a) freezes to xm = 0.561459 . . . for a > a1. The point that
separates the first-order and second-order transitions is a tricritical
point (shown by the red dot).

Lévy flight with index μ, starting at x0 � 0, does not cross
zero up to step n [17,49,52–59]. Consequently, Qμ(x0, n −
1) − Qμ(x0, n) is the probability that the Lévy flight crosses
the origin for the first time at the nth step, with Qμ(x0, n =
0) = 1. Thus, for the target to be captured at the nth step,
it has to remain alive at least up to step n − 1, which oc-
curs with probability an−1. Therefore, the capture probability
Cμ(x0, a), defined as the probability that the searcher starting
at x0 finds the target before the latter becomes inactive, is
given by Cμ(x0, a) = ∑∞

n=1 an−1[Qμ(x0, n − 1) − Qμ(x0, n)].
This sum can be rewritten as

Cμ(x0, a) = 1 − (1 − a)Q̃μ(x0, s = a)

a
, (2)

where Q̃μ(x0, s) ≡ ∑∞
n=0 snQμ(x0, n) is the generating func-

tion of Qμ(x0, n). Similarly, the CMFPT Tμ(x0, a), the mean
time taken by the successful trajectories to locate the target
[45], can be expressed as Tμ(x0, a) = ∑∞

n=1 nan−1[Qμ(x0, n −
1) − Qμ(x0, n)]/Cμ(x0, a), where Cμ(x0, a) acts as a normal-
ization factor. This can also be rewritten again in terms of the
generating function of the survival probability

Tμ(x0, a) = a
∂

∂a
ln[1 − (1 − a)Q̃μ(x0, s = a)]. (3)

Thus, to analyze either Cμ(x0, a) or Tμ(x0, a), we need
the generating function Q̃μ(x0, s) for Lévy flights. Unfortu-
nately, there is no simple expression for Q̃μ(x0, s). However,
its Laplace transform with respect to x0 is given by the exact
Pollaczek-Spitzer formula [52,53],∫ ∞

0
Q̃μ(x0, s) e−λx0 dx0 = 1

λ
√

1 − s
ϕ(λ, s) (4)

with ϕ(λ, s) = exp

[
− λ

π

∫ ∞

0

ln[1 − s f̂ (k)]

λ2 + k2
dk

]
, (5)

L022103-2



OPTIMIZING THE RANDOM SEARCH OF A … PHYSICAL REVIEW E 109, L022103 (2024)

(a) (b) (c)

FIG. 3. (a) Discontinuous transition with short-lived targets (a = 0.5): numerical Q̃μ(x0, a) vs μ for different starting positions close to
xm. (b) Continuous transition for long-lived targets (a close to 1):

√
1 − aQ̃μ(x0, a) as a function of μ and for several x0 around xm. In (a) and

(b) the dotted lines represent the concavity approximation (12). (c) Optimal exponent for the CMFPT as a function of x0 for various a. Below
a2 = 0.973989..., the transition is discontinuous (a = 0.97), while it is continuous above (a = 0.98). The dots correspond to the minima in
(b), given by the concavity approximation. The index μ�

cap(x0, a) has analogous variations near a1.

where f̂ (k) = ∫ ∞
−∞ f (η) eikηdη is the Fourier transform of the

step distribution. Here we will focus on Lévy stable jump
distribution, with f̂ (k) = e−|k|μ with 0 < μ � 2.

With an infinite-lived target (a = 1), recall that Cμ = 1,
owing to the recurrence property of 1d random walks, while
Tμ = ∞, independently of x0 and f (η) [60]. Hence, there is no
option of optimizing them by varying μ. However, for a finite-
lived target where a < 1, both quantities become nontrivial
functions of μ and can be optimized by choosing μ appro-
priately with optimal values μ�

cap(x0, a) and μ�
FP(x0, a). One

finds that, even for short-lived targets, Cμ at optimality can be
larger than the maximal value 1/2 that could be achieved by a
naive ballistic strategy (see [48]).

In order to maximize the capture probability in Eq. (2)
by varying μ, for fixed x0 and a, it turns out that we need
to minimize Q̃μ(x0, s = a) with respect to μ. We will study
the exact relation in Eq. (4), both analytically in certain lim-
its and numerically by inverting the Laplace transform in
Eq. (4) using the Gaver-Stehfest method [50,51], which we
explain in [48].

We start by plotting the numerically obtained Q̃μ(x0, a) as
a function of μ, for fixed x0 and a. In Fig. 3(a) we show the
data for a = 0.5 and four different values of x0. For small
x0, the curve has a single minimum at a nonzero value of
μ�

cap(x0, a), while there is a local maximum at μ = 0. As x0

increases to some value xm, the derivative of Q̃μ(x0, a) with re-

spect to μ at μ = 0+ [61] vanishes, i.e., ∂μQ̃μ(xm, a)|μ=0 = 0.

This value of xm can be determined analytically [see Eq. (7)
below] and is given by xm = e−γE = 0.561459 . . ., where γE

is the Euler constant. When x0 slightly exceeds xm, the curve
has two minima: one at μ = 0+ and one at μ = μ�

cap(x0, a),
but the value at μ = 0+ is higher. This situation persists for
xm < x0 < xc(a). When x0 exceeds xc(a), the local minimum
at μ = 0+ becomes the global one and μ�

cap(x0, a) drops to
0+, triggering a first-order transition. The point xc(a) is thus
determined by

∂μQ̃μ(xc, a)|μ�
cap(xc ) = 0, Q̃μ(xc, a)|μ�

cap(xc ) = q0, (6)

where q0 ≡ Q̃μ=0(xc, a). From Eq. (4), q0 =
1/

√
(1 − a)(1 − ae−1), independent of the position (see

[48]). This scenario presented above for a = 0.5 continues to
hold up to a = a1 ≈ 0.926.

For a > a1, a different scenario occurs as displayed in
Fig. 3(b) where, again, Q̃μ(x0, a) is plotted as a function
of μ for different values of x0. In contrast to Fig. 3(a), the
curves always have a single minimum at μ = μ�

cap(x0, a) that
decreases continuously to 0+ as x0 approaches a critical value
xc(a) = xm, signaling a second-order phase transition. Thus,
the first and second-order phase transitions merge at a = a1,
making it a tricritical point. These numerical observations lead
to the phase diagram presented in Fig. 2.

The CMFPT exhibits the same qualitative features as
above, with a tricritical point now located at a = a2 ≈
0.974.... In Fig. 3(c), we plot μ�

FP(x0, a) as a function of x0 for
four different values of a close to a2. The jump discontinuity
at x0 = xc(a) is finite for a < a2 while it vanishes for a � a2,
confirming indeed that (x0 = xm, a = a2) is a tricritical point
for μ�

FP(x0, a) in the (x0, a) plane.
We show how a1 and a2 can be computed analytically

using a standard Landau-like expansion well known in critical
phenomena. There, by expanding the free energy in powers
of the order parameter, the Landau theory gives access to the
phase diagram close to a continuous critical/tricritical point.
Here we follow the same spirit with μ playing the role of
the “order parameter.” We then expand Q̃μ in powers of μ

near μ = 0+: Q̃μ(x0, a) = q0 + q1μ + q2μ
2/2! + q3μ

3/3! +
q4μ

4/4! + . . ., where the dependence of the qi’s on x0 and a
is implicit. Depending on these parameters, the signs of qi’s
in this expansion may change, leading either to a first or sec-
ond order transition and also to the possibility of a tricritical
point. In the standard Landau’s theory with a positive order
parameter, it is enough to keep terms up to order O(μ3) and
a tricritical point occurs when q1 = q2 = 0 while q3 > 0 [62]
(see also [63] in the context of stochastic resetting). However,
in our case, the dependence of qi’s on x0 and a are such that
this standard scenario is not realized and one needs to keep
terms up to order O(μ4). From Eq. (4), we show that [48]

q1 = ae−1

2
√

1 − a(1 − ae−1)3/2
(ln x0 + γE ), (7)

q2 = 3
√

ea2

4
√

1 − a(e − a)5/2
(ln x0 + γE )2. (8)

For x0 < xm = e−γE , we have q1 < 0 and q2 > 0. In contrast,
for x0 > xm, we have both q1, q2 > 0 and both of them vanish
simultaneously at x0 = xm, for any a. The tricritical point thus
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occurs when q3(xm, a) changes sign. We have [48]

q3(xm, a) = a
√

eK

8
√

1 − a(e − a)7/2
(11a2 + 8ea − 4e2), (9)

where K = 2ζ (3) = 2.40411.... Thus, q3(xm, a) < 0 for a <

a1 where a1 = 2e(
√

15 − 2)/11 is the unique root of 11a2 +
8ea − 4e2 = 0 in (0,1). At the transition point x0 = xc(a)
and for a < a1, since q3 < 0, we need to keep terms up to
order O(μ4) (assuming that q4 > 0 in the Landau expan-
sion). From Eq. (6), the first-order jump discontinuity 
(a) ≡
μ�

cap(xc(a), a) is given by [48]


(a) = 2

3 q4
(2|q3| +

√
4q2

3 − 9q2q4)|x0=xc (a). (10)

This discontinuity vanishes when q3 → 0 and q2 → 0, which
occurs at the point (x0 = xm, a = a1), indicating that this is
a tricritical point. If a > a1, then q2 > 0 and q3 > 0; when
q1 changes sign (always at x0 = xm), a second-order transi-
tion occurs. Hence, xc(a) freezes to xm for a > a1. A similar
Landau-like expansion can be carried out exactly for the
CMFPT, which leads to the same qualitative conclusions, with
a2 = 0.973989 . . . [48].

As mentioned before, for a permanent target (a = 1), there
is no optimal strategy since the capture probability is one and
the CMFPT infinite, irrespective of μ. However, it is very
important to notice that, for long-lived targets, there is a non-
trivial optimal strategy characterized by the same μ∗

cap = μ∗
FP

for both observables.
As a → 1, Eqs. (4) and (3) imply Q̃μ(x0, a) ≈

gμ(x0)/
√

1 − a and Tμ(x0,a) ≈ gμ(x0)/(2
√

1 − a), where
gμ(x0) is independent of a. Hence, both the capture
probability and the CMFPT are optimized by minimizing
gμ(x0) with respect to μ. Since the expression of gμ(x0) is
complicated, it is hard to obtain the full functional form of
μ∗

cap = μ∗
FP for all x0. However, close to the transition point

xm, where μ∗
cap is expected to be small due to the continuous

transition, gμ directly follows from the small μ expansion
of Qμ above. Using Eqs. (7) and (9), we obtain exactly the
leading order for small (xm − x0)/xm

μ∗
cap = μ�

FP ≈ A

(
xm − x0

xm

)1/2

, x0 < xm, (11)

where A = 2(e − 1)/
√

ζ (3)(11 + 8e − 4e2) = 1.7549 . . .

(see the SM [48] for more details). This shows that the limit
a → 1 does allow an optimization with respect to μ.

So far, we have analyzed the exact formula in Eq. (4) in
the small μ limit. When a → 1 and x0 → 0, far from xm,
a small x0 expansion in [48] gives μ�

cap → 0.905954..., as
indicated in Fig. 2. But to obtain analytically the full curves
in Figs. 3(a) and 3(b), as a function of μ from Eq. (4) for
any (x0, a), is extremely hard. Yet, we have found a concavity

approximation allowing a very accurate analytical estimate of
Q̃μ(x0, a). Starting from the concavity of the logarithm, we
approximate

∑
i wi ln(ri ) ≈ ln(

∑
i wiri ) for any set of positive

real ri and normalized weights
∑

i wi = 1. With this, one can
perform the inverse Laplace transform in Eq. (4) and deduce
the general expression

Q̃μ,approx(x0, s) = 1√
1 − s

e− 1
π

∫ ∞
0 ln[1−s f̂ (k)] sin(kx0 )

k dk, (12)

where we have used the identity L−1[k/(λ2 + k2)] = sin(kx0)
for x0 > 0 (see also [48]). Equation (12) is easy to evaluate
numerically. Interestingly, the first two terms of its small
μ expansion coincide with the exact expressions q0 and q1

above, as well as the first terms of its small x0 expansion
[48]. Consequently, Eq. (12) gives the correct slope-change
point xm and captures qualitatively the order of the transitions
[see the dashed lines in Figs. 3(a) and 3(b)], along with the
existence of a tricritical point. Equation (12) also predicts
the optimal exponent for long-lived targets, see the dots of
Fig. 3(c).

We conclude with the remark that this problem of a finite-
lived target is reminiscent of a Lévy flight subject to resetting
with a probability r to its initial position. The mean first-
passage time (MFPT) to find a permanent target at the origin
was computed for the resetting Lévy flight [17] where the
walker has two parameters μ and r that can be used to opti-
mize the MFPT (see also [64] for a related problem). Indeed,
the optimal pair (μ∗, r∗) was computed and found to undergo
a first-order transition at a critical value of the initial distance
x0 from the target. This is rather different from our problem
where the Lévy flight has only a single parameter μ, which
can vary to optimize the MFPT. In our model, the walker has
no control over the parameter a associated with the lifetime
of the target. Hence, here we optimize the search strategy by
varying only μ for fixed a, which leads to a new phase diagram
with a tricritical point.

In summary, we have studied a simple model of a Lévy
flight of index μ in one-dimension searching for a finite-lived
target at the origin with mean lifetime 1/(1 − a). We have
shown that the capture probability of the target can be maxi-
mized by choosing an optimal μ�

cap for fixed a and x0 (where
x0 denotes the initial distance from the target). The presence
of a finite lifetime leads to a very rich and nontrivial phase
diagram for μ�

cap in the (x0, a) plane. This work opens up
many interesting possibilities for future works. For instance,
it would be interesting to find the optimal strategy in higher
dimensions, for multiple Lévy flights and for the case where
the distribution of the target lifetime is nonexponential.
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