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Stretched-exponential relaxation is a widely observed phenomenon found in ordered ferromagnets as well as
glassy systems. One modeling approach connects this behavior to a droplet dynamics described by an effective
Langevin equation for the droplet radius with an r2/3 potential. Here, we study a Brownian particle under the
influence of a general confining, albeit weak, potential field that grows with distance as a sublinear power law.
We find that for this memoryless model, observables display stretched-exponential relaxation. The probability
density function of the system is studied using a rate-function ansatz. We obtain analytically the stretched-
exponential exponent along with an anomalous power-law scaling of length with time. The rate function exhibits
a point of nonanalyticity, indicating a dynamical phase transition. In particular, the rate function is double valued
both to the left and right of this point, leading to four different rate functions, depending on the choice of initial
conditions and symmetry.
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Introduction. Anomalous relaxation, characterized by non-
exponential decay, is observed in a wide range of physical
systems [1]. One class of such behavior is stretched-
exponential relaxation [2–6]. This has been seen, for example,
in disordered or heterogeneous systems, where the complex
interplay of interactions leads to a broad distribution of relax-
ation times [7]. Moreover, the stretched-exponential behavior
is observed in the particle movement in disordered dielectrics
[8–10] and in the relaxation of glassy dynamics [11,12].

Some studies of the relaxation of ordered Ising ferromag-
nets have sought, building on the work of Huse and Fisher
[13,14], to connect the observed stretched-exponential relax-
ation to an effective droplet dynamics, which was mapped to
a Langevin equation with an x2/3 potential [15]. It was shown
that this model does indeed exhibit stretched-exponential
relaxation. In this Letter, we present a solution to the Fokker-
Planck equation with a general external potential that grows
with distance as a sublinear power law. We show that for
this class of models the relaxation of the various moments of
the position to their equilibrium values follows an anomalous
stretched exponential. Formally, the Fokker-Planck equa-
tion [see Eq. (2)] for P(x, t ), the probability density function
(PDF), can be solved via an eigenfunction expansion, and
yields stretched-exponential relaxation. However, it turns out
that there is a simpler, more direct, approach, which also
yields additional physical insight. We find that in the long-
time limit, P(x, t ) takes the form of the exponential of a rate
function which possesses a scaling form, as usually results
from a large deviation formalism [16], which looks at the
far tails of the distribution of an observable. Large deviation
theory is a subject of much active interest in statistical physics
[17–26], in particular, due to the recent discovery of dynam-
ical phase transitions in the large deviation behavior of some
model systems [27–34]. These are nonanalytic points of the

rate function, and are so called due to the analogy of the rate
function to an equilibrium free energy [20,22,29]. We show
the relationship between the stretched-exponential relaxation
and the presence of a dynamical phase transition.

The rate function is defined as the logarithm of the PDF
P(x, t ), divided by a power of the time [20,21,29]

I (z) ≡ lim
t,x→∞

z=x/tγ fixed

− ln P(x, t )

tν
, (1)

with the anomalous time exponent ν �= 1 and where I is
a function of the scaling variable z ≡ x/tγ . The stretched-
exponential relaxation of observables will be governed by the
same anomalous exponent ν. It should be noted that in the
previously identified cases with anomalous temporal scaling,
the observable in question was nonlocal in time, whereas here
it is the PDF of x itself that exhibits the anomalous scaling.
The appearance of a rate function in our problem implies
the surprising result that the anomalous stretched-exponential
relaxation we observe is a result of large deviations, i.e., the
dynamics at large x.

We find that the rate function is multivalued, and possesses
a critical point zc. The rate function has two possible branches
for z < zc and two for z > zc, all meeting at zc. All four
possible combinations of branches below and above zc have
different interpretations, corresponding to different classes of
initial conditions and parity. Two of the combinations have
a jump discontinuity in I ′′(z), indicating the presence of a
dynamical phase transition (see Refs. [22,29] for more de-
tails). Such a multivalued rate function appears not to have
been encountered previously. Using the appropriate branches
of the rate function, we obtain the timescales of the stretched-
exponential relaxation of the even and odd moments of x.
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Model. We study noninteracting Brownian particles, in
contact with a heat bath at temperature T , that are also subject
to a binding potential field V (x). The spatial spreading of
the cloud of particles can be described via the PDF P(x, t ),
obtained from the Fokker-Planck equation (FPE)

∂

∂t
P(x, t ) = D

[
∂2

∂x2
+ ∂

∂x

(
V ′(x)

kBT

)]
P(x, t ), (2)

where D is the diffusion coefficient. We consider herein
even potentials, satisfying V (x) = V (−x), which for large x
grow as a sublinear power law, V (x) ∝ xα , where 0 < α < 1.
This means that the force, F (x) = −V ′(x), will be negligi-
ble for large x, as F (x) ∝ xα−1. At long times, the particles
will reach the stationary equilibrium Boltzmann-Gibbs state
PBG(x) = exp[−V (x)/kBT ]/Z , with Z being the normalizing
partition function. For the more commonly considered su-
perlinear growth of the potential, α > 1, F (x) grows with
distance and everything is standard. The system exponentially
relaxes to the Boltzmann-Gibbs state, at a rate given by the
first nonzero eigenvalue of the Fokker-Planck operator, which
has a discrete spectrum starting at 0. This discreteness fol-
lows from the fact that under a similarity transformation, the
FPE becomes a Schrödinger equation [35] with an effective
potential VS (x) = F (x)2/4kBT + F ′(x)/2kBT , which grows
without bound as x → ∞. However, for α < 1, VS (x) decays
at large x as x−2(1−α) and so the spectrum goes continuously
down to 0. Potentials of this form have already been studied
in the context of resetting processes [36] and active processes
[37], in particular, the α = 1 limiting case [38–40]. As noted
above, in Ising ferromagnets below the critical temperature,
the dynamics of spherical droplets have been modeled using
an effective potential which, for d = 3 dimensions, is equiv-
alent to α = 1 and, for d = 2 dimensions, is equivalent to
α = 2/3 [13–15]. For α → 0 [and assuming V (x) ∼ xα/α],
we have that for large x, V (x) ∼ ln x. In that limit, the relax-
ation has been shown to be governed by a power law [41–44].
The question is then what happens for 0 < α < 1?

For our numerical examples, we use the family of poten-
tials

V (x) = V0

(
1 + x2

�2

)α/2

. (3)

For x 	 �, with � being the length scale of the center region,
the potential exhibits the desired power-law growth. Through-
out this Letter, we shall scale the position variable by � and
correspondingly the time by �2/D.

As mentioned above, the P(x, t ) can be decomposed in
a sum of eigenfunctions, each decaying as e−λt with a con-
tinuous eigenvalue spectrum λ starting at 0+, together with
the Boltzmann-Gibbs bound state at λ = 0. It turns out that
the dominant continuum contribution to P(x, t ) for large
times comes from the vicinity of a particular finite eigen-
value λ∗. This dominant eigenvalue scales as a negative
power of the time, λ∗(t ) ∼ tν−1, 0 � ν < 1, so that e−λ∗(t )t ∼
e−tν

, a stretched-exponential relaxation to equilibrium. This
stretched-exponential relaxation is easily demonstrated nu-
merically (see below). The eigenvalue calculation will be
sketched in the Supplemental Material (SM) [45]. We turn
now instead to the rate-function calculation. Most strikingly,

we shall see that the power of t in the stretched exponential
can be obtained immediately from our scaling ansatz for the
rate function.

Large deviation formalism. From Eq. (1) we can write
the PDF, up to preexponential factors, as P(x, t ) ∼ e−tνI(z).
Inserting this ansatz into the FPE (2), we find that in the
long-time limit

zγI ′(z) − νI (z)

t1−ν
= I ′(z)2

t2γ−2ν
− V0

kBT

α

z1−α

I ′(z)

t (2−α)γ−ν
. (4)

We impose that the time dependence of all terms is the same,
namely, 1 − ν = 2γ − 2ν = (2 − α)γ − ν, and find that the
scaling exponents are

ν = α

2 − α
and γ = 1

2 − α
. (5)

With these exponents, both the exponent of the Boltzmann-
Gibbs solution, V (x)/kBT = V0/kBT xα = tνV0/kBT zα , and of
free diffusion, x2/4Dt = tνz2/4D, are compatible with our
scaling.

The rate function can be found by solving the nonlinear
differential equation (4), which now reads

I ′(z)2 −
(

V0

kBT

α

z1−α
+ z

2 − α

)
I ′(z) + αI (z)

2 − α
= 0. (6)

When we consider the large-z limit, the rate-function solution
will assume the form I (z) ≈ ξ0zμ0 , where μ0 and ξ0 must be
determined. Plugging I (z) into Eq. (6) in the limit of large z,
we have

ξ0μ
2
0zμ0−2 − V0

kBT
αμ0zα−2 ∼

(
μ0 − α

2 − α

)
. (7)

There are two possible solutions for this equation. First, we
have μ0 = α, leading to I (z) = V0zα/kBT , i.e., the aforemen-
tioned Boltzmann-Gibbs state, which is a solution of Eq. (6)
for all z. Second, we have μ0 = 2 and ξ0 = 1/4, which is
equivalent to large-z diffusive behavior. We emphasize that
these are the only possible asymptotic solutions of Eq. (6).
Both these behaviors are necessary. The Boltzmann-Gibbs
state is a possible time-independent solution of the problem,
when the initial state is the equilibrium state. However, un-
der any initial conditions that decay with x faster than the
Boltzmann-Gibbs state and for any finite time t , we cannot
expect the Boltzmann-Gibbs state to describe the whole PDF.
The particles cannot spread faster than what is permitted by
diffusion. Since F (x) → 0 as x → ∞, we expect diffusive
behavior at large |x|, consistent with the second asymptotic
behavior.

The next step is to solve Eq. (6) globally. Since Eq. (6)
is a second-order polynomial in I ′(z), we have in fact two
different options for the ordinary differential equation (ODE):

I ′(z) = 1

2

(
V0

kBT

α

z1−α
+ z

2 − α

)

± 1

2

√(
V0

kBT

α

z1−α
+ z

2 − α

)2

− 4αI (z)

2 − α
. (8)

These two ODEs give rise to two smooth solutions that cross
at a critical point zc, at which the square root vanishes. One
solution has the positive sign of the square root for z < zc and
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FIG. 1. All possible rate functions, defined by Eq. (1), which are
solutions of the differential equation in Eq. (6), vs the scaled position
z ≡ x/tγ [the scaled exponents defined in Eq. (5)] for α = 1/2. The
rate function has two low-z and two high-z branches, leading to four
different possible forms. The region where the discriminant of Eq. (8)
is negative is highlighted in gray.

the negative sign for z > zc and the other with the opposite
choices. Interestingly, two other solutions are also possible,
where the sign does not switch, and which have a jump in I ′′,
leaving us with four possible descriptions, two for z < zc and
two for z > zc, as shown in Fig. 1. The next task is to uncover
the physical content of these rate-function branches.

Boltzmann-Gibbs thermal initial condition. As noted
above, if we were to start at time t = 0 with the thermal state
in all of space, the state would remain unchanged for all time.
In Fig. 1, this is shown as the curve ACE . The square root in
Eq. (8) vanishes at the critical point zc,

zc =
(

α(2 − α)V0

kBT

)1/(2−α)

. (9)

The pure thermal state is obtained when we switch from
positive (z < zc) to negative (z > zc) in Eq. (8).

Localized initial condition. Our goal is to associate the
solutions shown in Fig. 1 with classes of initial conditions
and with parity. For an initially localized packet of parti-
cles, we expect the large-z behavior to be diffusive rather
than Boltzmann-Gibbs. However, for small z, we expect the
behavior to match Boltzmann-Gibbs, so that the Boltzmann-
Gibbs regime in x expands as tγ . Keeping the positive sign
of the square-root for z > zc leads to the desired diffusivelike
large-z behavior. The resulting singularity in I ′′ is precisely
the dynamical phase transition. The resulting curve, ACD in
Fig. 1, describes the localized initial condition.

We can write odd/even PDFs using distinct rate functions
as

Peven ∼ e−tνIeven (z) and Podd ∼ e−tνIodd (z). (10)

If the particles start at the origin (x0 = 0), then by symmetry
Podd(x, t ) = 0, since V (x) is even and so all odd moments van-
ish, as they do in equilibrium. On the other hand, for x0 �= 0,
the odd part is present, Podd = [P(x, t ) − P(−x, t )]/2, and is
described by the curve BCD. We then write that Iodd(z) ≡
IBCD(z), which tends to a constant value Iodd(0) as z

approaches zero (see Fig. 1). Therefore, we have that
Podd(x, t ) has an upper bound that decays as e−Iodd (0)tν

, in-
dicating that the odd contributions will decay as a stretched
exponential. Curve BCE describes the contribution from the
continuum modes. This contribution is obtained by sub-
tracting from P(x, t ) the Boltzmann-Gibbs solution, P∗ ≡
P − PBG. At large x, this results in the negative of the
Boltzmann-Gibbs solution, as the full solution is small. Here,
the stretched-exponential relaxation of the even moments of
x to their equilibrium values is controlled by P∗. The rate
function, BCE in Fig. 1, also displays a dynamical phase
transition at the critical point. Finally, the even part, Peven =
[P(x, t ) + P(−x, t )]/2, is described by the ACD rate function,
Ieven(z) ≡ IACD(z). This solution also captures the leading
behavior of the density P(x, t ) for localized initial conditions.

We presented the four different scenarios for the rate func-
tion represented by branches in Fig. 1. Which scenario is the
relevant one is based on the choice of the initial condition and
the parity. We now use finite-time numerical integration of the
FPE to show that, using Eq. (1) (adapted for finite times), the
results converge to the expected rate functions. In Fig. 2(a),
for localized initial conditions, we show the numerical con-
vergence to the rate function ACD, while in Fig. 2(b) we show
the derivative of the curve ACD. The derivative clearly shows
the nonanalytical behavior at the point zc. In Fig. 2(c), we
compare our long-time prediction for Iodd(z) [IBCD(z)] with
numerical results (t−ν log Podd, with Podd obtained numeri-
cally), showing clear convergence.

In summary, we find that two of the rate functions are
completely analytical. Those are the Boltzmann-Gibbs (curve
ACE ) and the odd rate functions (curve BCD). The other
two possibilities, the localized initial condition rate function
(curve ACD) and the continuum mode rate function (curve
BCE ), have a nonanalytical behavior, and therefore a dynam-
ical phase transition, at the critical point zc.

Remark on the notation and prefactors. We highlight that
the rate functions defined in Eq. (10) satisfy Ieven/odd(z) =
Ieven/odd(−z) as these functions are even. Further, they do
not depend explicitly on the initial conditions. The parity
of Peven/odd is determined by the preexponential factors. The
exponential prefactors of Podd will depend on the initial con-
dition, since for symmetric initial conditions, the whole odd
part must vanish. The prefactor is obtained using the WKB
method in the SM.

Anomalous relaxation. Here, we study the relaxation prop-
erties of the system, focusing on the first moment of the
position x, starting with an asymmetric initial condition (x0 �=
0). Because this observable, x, is odd, the only nonzero contri-
bution comes from the asymmetric part of the PDF. The odd
part of the PDF can be written using Iodd, up to preexponential
factors, as shown in Eq. (10). We obtain, up to preexponential
factors, the stretched-exponential characteristic of the mean as

〈x〉 =
∫ ∞

−∞
x Podd(x, t )dx ∼ e−Iodd (0)tν

. (11)

The value of Iodd(0) governs the anomalous timescale τ of
the relaxation. It is possible to obtain this value numeri-
cally by integrating Eq. (8) in the correct branch (positive
sign). We have obtained an analytical expression through our
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FIG. 2. Comparison between theoretical and numerical (at finite
times) rate functions, Eq. (1), as a function of the scaled position z ≡
x/tγ . The solid lines represent numerical results obtained integrating
Eq. (2) at different times, indicated in the legend [(a)] for all panels.
The dotted black lines represent all four possible rate functions (see
Fig. 1) in (a) and (c) and their derivatives in (b). In (a) we show the
clear convergence to the rate function IACD(z) and highlight (open
circle) the critical transition point zc. In (b) we show the derivative
I ′(z), and the nonanalytical behavior becomes clear. The solution is
equivalent to Boltzmann-Gibbs up until the critical point, where the
system changes to the free-particle solution for larger values of z. In
(c) we have the odd rate functions, where there is no dynamical phase
transition. The numerical solutions demonstrate clear convergence
towards the expected rate functions. We have used α = 3/4, � = 1,
D = 1, and V0/kBT = 1.

eigenfunction calculations (see SM)

1

τ ν
= Iodd(0) =

[√
π

(
αV0

2kBT

) 1
1−α

�( α
2−2α )

�( 1
2−2α )

]1−ν

νν (1 − ν)1−ν
. (12)

It is remarkable that a rate function controls the relaxation,
in the sense that it cannot be considered describing a rare
event, nor is it particularly hard to measure it. In Fig. 3, the
stretched-exponential behavior is shown numerically in the
long-time limit. The observed timescale matches our predic-
tion in Eq. (12) and is independent of the odd moment under
consideration. The same can be extended for even moments
x2n (see SM). In order to obtain a complete expression for the
mean in Eq. (11), the rate function is not enough. We must

FIG. 3. The log of the numerical ensemble average of the posi-
tion for a system initialized with a localized condition P(x, t = 0) =
δ(x − x0) for different values of α (shown in legend). The stretched-
exponential behavior is clearly shown for long times, where we
compare with Iodd(0)t ν (dashed black lines), where the anomalous
timescale Iodd(0) is obtained in Eq. (12), and ν = α/(2 − α). In
the inset, the complete theoretical prediction (dotted black lines),
described by Eq. (14), is compared with the numerical simulations
(colored lines) for the same exponents α as in the main label. We
have used V0/kBT = 1, � = 1, and x0 = 0.04.

account for the preexponential factor A(t ), that is, Podd ≈
A(t )x1−αe−Iodd (z)tν

.
In the long-time limit, the main contribution to the integral

in Eq. (11) arises from the region where x is much smaller than
the critical xc(t ), corresponding to the small-z region [46]. For
small z, we have Iodd(z) ≈ Iodd(0)[1 + kBT z2−α/V0(2 − α)2],
and the preexponential factor is (see SM)

A(t ) = x0
kBT

αV0

Iodd(0)e
V (0)
kBT

t3/2−ν

√
γ − ν

4π
. (13)

Note that for the transition value α = 1, γ = ν = 1, and A(t )
will be null. With the contribution of the prefactor, we obtain,
from Eq. (11), the long-time expression for the relaxation,

〈x〉
x0

∼ C1
( V0

kBT , α
)

tν2/2
e−Iodd (0)tν

, (14)

where the definition of C1(V0/kBT , α) is found in the SM.
Thus, the time relaxation of the system to equilibrium is
through a stretched exponential (multiplied by a power law
in time). We show the excellent agreement of Eq. (14) with
the numerical results in the inset of Fig. 3.

Discussion. The results we obtained in this Letter are quite
general, but nevertheless, many extensions to this work are
possible. As a first step in this direction, we studied a case in
dimensions higher than one, showing that the main results re-
main valid. The characteristics of time-averaged observables
and the potential link between different branches and singu-
larities in the cumulant generating function warrant attention
[47,48]. It is likely that the multivalued nature of the rate
function under study, which depends on symmetry and initial
condition, is an important feature for other systems. Thus, the
appearance of the multivalued rate function in more systems
and its relationship with dynamical phase transitions requires
further study.
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