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Universal scaling law for electrified sessile droplets on a lyophilic surface
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Electrified sessile droplets on solid surfaces are ubiquitous in nature as well as in several practical applications.
Although the influence of electric field on pinned sessile droplets and soap bubbles has been investigated
experimentally, the theoretical understanding of the stability limit of generic droplets remains largely elusive.
By conducting a theoretical analysis in the framework of lubrication approximation, we show that the stability
limit of a sessile droplet on a lyophilic substrate in the presence of an electric field exhibits a universal power-law
scaling behavior. The power-law exponent between the critical electric field and the droplet volume is found to
be −1. The existence of this scaling law is further explained by virtue of minimization of the total free energy of
the electrified droplet.
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Due to its importance in a number of applications, such
as meteorology [1,2], nuclear research [3], biological appli-
cations [4], microfluidics, and electrospraying [5], droplet
actuation under electric fields has been investigated since
the early 1900s. The interface between two fluids hav-
ing distinct electrical and hydrodynamic properties, such as
the one between a droplet and its ambient medium, de-
forms along the direction of the applied electric field and
undergoes fragmentation when the applied electric field ex-
ceeds a critical limit [6,7]. Rayleigh [1] and Wilson and
Taylor [8] were the first to use analytical and experimen-
tal methods respectively to study the stability of electrified
droplets. Wilson and Taylor [8] demonstrated that increasing
the applied electric field causes a half-sphere soap bubble to
elongate into a steady egg shape (referred to here as a stable
droplet), which upon further increase in electric field results in
a jetlike structure emanating from the droplet apex (referred to
here as an unstable droplet). The disintegration of the elec-
trified free-floating droplets and the resultant tip streaming
along the direction of electric field have been shown to follow
a universal scaling law between the droplet charge and its
radius [5]. Determining the critical limit of the electric field
below which a droplet can maintain its static shape is a chal-
lenging mathematical exercise. This is due to the nontrivial
relationship of the shape of the droplet and the pressure inside
it with the applied electric field, which requires obtaining the
solution of coupled partial differential equations. Recently,
some theoretical studies have focused on the deformation and
breakup of free-floating droplets under an external electric
field, and reported the existence of scaling behavior at the
critical condition, which have been thoroughly reviewed by
Vlahovska [7]. The complexity of determining the stability
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limit in the case of a sessile droplet is substantially higher due
to the presence of contact-line dynamics.

Beroz et al. [9] recently established a remarkable power-
law scaling for the stability limit of electrified pinned sessile
droplets having a constant radius in terms of two dimen-
sionless groups, namely R3/V and εE2R/γ , derived by
minimizing the free energy of the system, viz., a combination
of surface energy and electrostatic energy. Here, the droplet’s
volume is V , its surface tension with respect to the ambient
is γ , the permittivity of the dielectric ambient medium is
ε, and the applied uniform electric field is E . The droplet
radius R appears as a characteristic length scale in their ex-
periments since the droplet is constrained to have a constant
radius, thereby limiting their analysis only to pinned droplets.
However, the radius (R), contact angle (θ ), and the droplet’s
height (hc) are coupled, and not known a priori for a generic
electrowetting scenario. As a result, V 1/3 is the only relevant
length scale associated with droplet size. In addition, for our
case, an additional nondimensional number arises due to the
length scale associated with electrode spacing, H0. Thereby,
the stability limit ought to be described by two dimensionless
numbers, i.e., εE2H0/γ and H3

0 /V .
Unlike the constant wetting radius case of Beroz et al.

[9], we investigate a more generic scenario of electrowetting,
wherein the wetting radius of the droplet is free to evolve in
response to the applied electric field. This is indeed what we
observe in reality. We consider a perfectly conducting droplet
placed on a lyophilic substrate (where the static contact angle
of the droplet, θ < 90◦), which acts as one of the electrodes,
resulting in a potential difference of �(= EH0) with respect
to another electrode placed in a parallel plate configuration
as shown in Fig. 1. An example of such a system is a water
droplet placed on a glass substrate cleaned with a piranha
solution and dried under nitrogen atmosphere, which exhibits
a contact angle of 12◦ ± 3◦ [10]. Further, the water-air system
is known to obey the perfect conductor model [11]. At room
temperature, water has a conductivity of 5.5 × 10−6 S m−1
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FIG. 1. Schematic of a perfectly conducting sessile droplet with
its centerline height hc(t ) under a constant electric field E . The per-
mittivity of the surrounding medium is ε and γ represents the surface
tension of the droplet with respect to the surrounding medium.

[12], which is several orders of magnitude greater than the
conductivity of ambient air (∼10−13 S m−1). Therefore, a
perfect conductor–perfect dielectric model which is used in
the current study ought to be valid for the water–air-like
systems [11,13]. In our study, for a given droplet volume, we
first determine the equilibrium droplet shape which is then
used as an initial condition for the cases wherein electric field
is applied. The physical parameters used in the numerical
simulations are ρ = 1000 kg m−3, ε = 8.854 × 10−12 F m−1,
μ = 0.9 × 10−3 Pa s and γ = 7.2 × 10−2 N m−1.

The three-dimensional evolution equations for a perfectly
conducting droplet on a lyophilic substrate, obtained using the
inertial lubrication model based on the method of weighted
residual integral boundary layer theory, are given by [14,15]
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Here, h is the interface height; t is time; (x, y, z) represent
the Cartesian coordinate system as shown in Fig. 1; qx and
qy denote the depth-averaged flow rate in x and y directions,
respectively; û, v̂, and ŵ are the O(1) contributions of the
velocity components in the x, y, and z directions, respec-
tively; h f represents the film thickness that minimizes the
conjoining-disjoining potential based on the Hamaker theory
[16]; μ and ρ are the dynamic viscosity and density of the
droplet; F is the Galerkin weight function. The governing

equations are solved using the Fourier spectral collocation
technique [14,15]. Although we have used a Cartesian coordi-
nate system, the problem can be identically formulated in the
cylindrical polar coordinate system. Also, the current model
is typically valid for Reynolds number of O(1), however, the
stability limit is expected to be independent of the same. A
detailed derivation of the governing equations, the associated
boundary conditions, and the solution technique can be found
in the Supplemental Material [17].

In Fig. 2(a), we show the typical stable and critically sta-
ble shapes of the droplet obtained by increasing the electric
potential in our simulations along with the corresponding ex-
perimental results of Wilson and Taylor [8]. Note that Wilson
and Taylor [8] used soap bubbles instead of liquid droplets and
therefore only a qualitative comparison is made. In our study,
the critical stability limit was ascertained from transient sim-
ulations. For a given electric field, transient simulations were
carried out until a steady droplet height was attained. Beyond
a critical electric field, a steady solution was not obtained, and
the interface was seen to sharply spike to rupture at the top
wall. This critical field was used as the droplet’s stability limit.
In Fig. 2(b), the normalized temporal evolution of a droplet
of volume V = 1.33 mm3 and θ = 15◦ at the corresponding
critical electric field, E = 168.3 kV/mm, is depicted. It can be
seen in this case that the droplet evolves into a prolate egglike
shape and subsequently elongates towards a spikelike struc-
ture near the apex. The droplet is unstable beyond this critical
electric field. The initial transient dynamics of normalized
droplet height (hc/V 1/3) with normalized time (t/V 1/3μ/γ )
exhibits a power law with slope 0.22 as shown in Fig. 2(c).
We observed that, while the droplet exhibits a power law for
other set of parameters as well, the exponent of this power
law is dependent on θ and V . Figure 2(d) demarcates the
stable and unstable regions in ln E − ln V parameter space for
three different initial contact angles, namely θ = 10◦ (circle),
θ = 15◦ (square), and θ = 19◦ (triangle). It is to be noted
that the initial contact angle of the droplet corresponds to its
equilibrium shape in the absence of the electric field. Under
the influence of the electric field, the droplet elongates in the
direction of the applied electric field, and thus its contact angle
increases with time. The earlier reports have demonstrated
the validity of the lubrication model for contact angles up to
65◦ [18,19]. We observed that even for very small equilib-
rium contact angles considered in this study, the instantaneous
contact angle increases considerably with time and saturates
to a steady value for stable droplets. In the case of unstable
droplets, the instantaneous contact angle continues to increase
until rupture. Thus, we restrict our analysis to the three initial
contact angles of θ = 10◦, 15◦, and 19◦ in order to ensure that
the droplet shape at its stability limit is well within the validity
of lubrication theory.

It can be seen that the data in Fig. 2(d) collapse to a
single curve such that ln Ecr ∼ ln Vcr

−1. Here, Ecr is the critical
limit of the electric field at which a droplet with volume Vcr

becomes unstable. Thus, this result demonstrates the existence
of a universal power-law scaling for the critical field with
droplet volume for the generic case of electrowetting on a
lyophilic substrates. Figure 3 demonstrates a typical long-time
temporal evolution of the normalized droplet height (hc/V 1/3)
for a stable droplet. It can be observed that after the initial
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FIG. 2. (a) Demonstration of stable and critically stable droplets with an increase in electric field. In this panel, the top row is from Wilson
and Taylor [8] and the bottom row depicts the droplet’s shapes obtained from the present three-dimensional simulations. The stable and the
critically stable droplets in our simulations correspond to E = 73.3 and 168.3 kV/mm, respectively, with the rest of the parameters (θ = 15◦

and V = 1.33 mm3) remain the same in both cases. (b) Temporal evolution of the droplet’s shape at the critical electric field for θ = 15◦,
E = 168.3 kV/mm, and V = 1.33 mm3. (c) Variation of the normalized droplet’s height (hc/V 1/3) with normalized time [t/(V 1/3μ/γ )] during
its initial stage of deformation. At the initial stage, the deformation exhibits a power law with an exponent 0.22 for the case considered in (b).
It is also observed that for the range of parameters considered in our study, the droplet exhibits the power-law behavior, but the corresponding
exponent depends on the electric field and droplet’s volume. (d) Variation of ln E (kV/mm) vs ln V (mm3) showing a power-law behavior
(exponent ∼ − 1) for θ = 10◦, 15◦, and 19◦. This scaling law is found to be universal in nature.

exponential transient as discussed in Fig. 2(c), the droplet
exhibits a secondary transient evolution, before finally settling
at its steady configuration.

We now proceed to explain this universal power-law scal-
ing behavior using the minimization of the total free energy
of the system. This idea is an extension of the one proposed
by Beroz et al. [9]. As the wetting radius R is unknown and
changes over time in the case of a generic droplet, we use V 1/3

as the length scale instead of R, which was employed by Beroz
et al. [9] for pinned droplets. The total free energy F of the
system, is given by the sum of surface and electrical energies,
i.e., F = γV 2/3a(ξ ) + εE2V v(ξ ). Here, the first and second
terms are associated with surface energy and electrical en-
ergy, respectively, wherein a(ξ ) and v(ξ ) are nondimensional

shape functions. Each steady-state droplet shape corresponds
to a minimum of the free energy F such that dF = 0. De-
noting the critically stable droplet shape by ξ = ξ0, dF = 0
implies γV 2/3

cr a′(ξ0) + εE2
crVcrv

′(ξ0) = 0, which in turn yields
εE2

crV
1/3

cr /γ = −a′(ξ0)/v′(ξ0). As the variation is arbitrary,
a′(ξ0)/v′(ξ0) is a constant, albeit electric field dependent.
From our simulations, we found that a′(ξ0)/v′(ξ0) ≈ (E∗

cr)
1.67,

where E∗
cr = Ecr/

√
γ /εH0. Thus, the final scaling law is ob-

tained as E∗
cr ∼ H3

0 V −1
cr . The scaling law for pinned droplets

with a fixed wetting radius under electric field was found to
have an exponent of −2 [9]. The deviation of the exponent
observed in this study is attributed to the motion of the droplet
contact line in response to the electric field. This difference in
scaling law exponent can have profound consequences in a
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FIG. 3. Temporal evolution of the normalized droplet height
(hc/V 1/3) for θ = 10◦, E = 168.3 kV/mm, and V = 1.33 mm3.

variety of applications, including determining the size of rain-
drops in thunderstorms that generate preferential conduction
channels for lightning strikes and power line failure.

To summarize, we have investigated the dynamics of an
electrified generic sessile droplet on a lyophilic substrate.
The droplet undergoes deformation in the direction of the
electric field and becomes unstable once the applied electric
field exceeds a critical limit. The critical droplet height, the

critical contact angle, and the critical droplet radius are all
interdependent unknowns in a generic electrowetting sce-
nario. Despite this inherent complexity in the underlying
physics of generic electrified sessile droplets, it is remarkable
that a universal scaling law characterizes their stability limit.
While Beroz et al. [9] cleverly introduced a scaling law for
the case of a pinned droplet with a fixed wetting radius, our
current approach extends their analysis of the stability limit
of electrified droplets for a more generic case, wherein the
droplet radius is free to move in response to the imposed field.
The results of the current study may lead to more fruitful re-
search endeavors in many areas involving electrified droplets.
For instance, in addition to the several important applications
discussed earlier, the results of the current study can also
be used as an effective anti-icing mechanism on hydrophilic
surfaces, which is a challenging task. A natural extension of
the current study is to consider scenarios with droplets that
contain free charge carriers. Most technological applications
and natural phenomena have droplets with dissolved ionic
species, and this work is expected to lay the groundwork for
research in that direction.
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